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Introduction 

Thermal plane plumes arise in nature as well as in many industrial 
applications. In laboratory simulations of these flows, in order to stabilize 
the flow a small externally imposed stream is sometimes employed. In this 
situation, the buoyancy force and the free stream are in the same direction. 
This flow configuration is termed aiding mixed convection. Also, mixed 
convection plumes arise from the cylindrical sensing elements of hot-wire 
anemometers. In this circumstance, the flow configuration can be aiding or 
opposed or orthogonal depending upon the relative orientations of the 
sensing element and the flow. In a recent paper, Krishnamurthy [1] reported 
an analysis of the stability of mixed convection from a line source of heat. 
In [1] only first order mixed convection effects were considered. In the 
present paper those results have been extended to include second order 
mixed convection effects. 

Analyses of laminar mixed convection from a horizontal line source of 
heat have been reported in a number of recent studies. These include the 
earliest by Wood [2], followed by those of Wesseling [3], Afzal [4], Haaland 
and Sparrow [5], Krishnamurthy and Gebhart [6] and Wilks and Hunt [7]. 
These studies clearly indicated that in an aiding mixed convection situation, 
the flow field downstream of the source can be divided into three distinct 
regions. Near the source, the flow field is dominated by forced convection 
effects. In this region the force due to buoyancy is small enough to be regarded 
as a perturbation on the viscous and pressure forces. Far downstream of the 
source, buoyancy effect dominates the flow field. In this region the presence 
of the free stream is a perturbation on the far-field boundary condition for 
the u-component of the velocity. See Fig. 1. In between these two regions lies 
the true mixed convection region where both the effects are important. 

In this paper, the stability of such flows to small disturbances is 
investigated in terms of the linear stability theory. The buoyancy force and 
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the free stream flow are taken to be in the same direction. The region 
sufficiently downstream of the source is considered, where buoyancy effects 
dominate. In this flow, as in other aiding mixed convection flows, the 
presence of the free stream enhances the stability of the flow. The physical 
mechanism underlying the stabilization is related to the lessening of the 
inflection of the velocity profile of the base flow. Details of this line of 
explanation can be found in [8]. The important issue addressed by this 
paper is the quantitative extent of the stabilization. 

The present analysis includes the effects of two distinct perturbations. 
The first is that due to the free stream velocity on the far-field boundary 
condition on the u-component. This perturbation is termed the mixed 
convection effect and is characterized by the parameter eM. Also taken into 
account is the first order correction to the "Classical" boundary layer 
solution to the laminar natural convection plume. This correction results 
from the interaction of the plume with the irrotational flow outside the 
boundary layer. This perturbation is termed the higher-order effect and is 
characterized by s/~. The base flow is taken to be the classical natural 
convection plume perturbed by sM and e/_/. The stability analysis is then 
performed by expanding the disturbance field too, in terms of these two 
perturbation parameters. These two perturbation parameters have been so 
chosen that at zero order, the governing equations reduce to that of the 
laminar natural convection plume. Computed results are presented and 
discussed for Pr = 0.7. 
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Analysis 

The mixed convect ion flow arising f rom an infinitely long horizontal  line 
source of  heat is considered as a two-dimensional  steady flow. See Fig. 1 for 
a sketch of  the flow configuration. With the usual Boussinesq approxima-  
tions, neglecting viscous dissipation and pressure terms in the energy 
equation,  the full two-dimensional  governing equations take the form, 

~v _a  (v20)  _ r a a T  - ax ~ (v~o)  - ~ v 4 0  - gfl ~ = o (1) 

~?T a T  v 
~'y 7 x  - ~x ay  = e-i (Txx + rye) (2) 

where the stream function ~k has been so defined that,  

U=~y and v = - ~ k .  

Boundary  condit ions are: 

y ~-- O, 0 "~- ~lyy = Ty = 0; for all x (3) 

y - + m ,  Oy--+Ug, T-+Too; f o r a l l x  (4) 

Also for x > 0, the convected energy is, 

Q(x) = OCpOy(T- Too) dy = {2o = Cons tant  (5) 
c O  

where Q0 is the thermal input  per unit  length o f  the line source. 
In the region y < 0(6), the base flow can be represented as, 

~ff = U 6 ( F  1 (r/) q- 8MF2(r/) + e 2 f 3 ( t / )  + aHF4(q)) (6) 

and 

T -- Too = AT(H,  (~l) + gMHz(rl) + 8~tH3(r/) q- e,vH4(r/)) (7) 

where the governing equations and corresponding boundary  condit ions for 
Fi and Hi, i = 1, 4, are given in the Appendix.  It has been shown in [6] that  
the base flow as given in equat ions (6) and (7) satisfies tbe integral 
constraint  in (5). 

In the usual manner  for Linear stability analyses, we superimpose on the 
base flow an arbitrarily small disturbance of  the form, 

= UfS(r l )exp( i (A(x)  - coz)) + c.c. (8) 

]P = ATq~(r/) exp(i(Ax) - or ) )  + c.c. (9) 

where "c.c." denotes complex conjugate and S, ~ and A are complex and co 
is taken to be real. Also, ~ = ff~. and g = - ~ .  In analyses of  the stability o f  
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non-parallel flows, a slowly varying amplitude factor is sometimes included 
in the expressions (8) and (9). This is done in order to account for the 
steamwise variations in wavenumber and in the eigen function. An example 
of this approach may be found in Gaster [9]. However, in the present 
problem since the region far downstream of the source is considered, the 
Grashof number is sufficiently large to allow us to neglect the streamwise 
variations in the amplitude and essentially regard it to be a constant. 

Each flow variable is represented by the sum of its base flow component 
and the disturbance component. Then by subtracting the base flow equations 
from the complete two-dimensional, time-dependent governing equations 
and combining the x- and y-momentum equations to eliminate pressure 
terms, the vorticity and energy equations for the disturbance components are 
obtained. The linearized forms of these equations are given below. Note that 
in these equations the base flow is not assumed to be parallel. 

aC aT 
a, + Vyy ay - -  + u -ff-s + g + e + v V 2 ~  - g fl - -  ( 1 O) 

aT af fiat eat eat v (WT) (11) 
+ ax + 

In stability analyses of natural convection boundary layers, an approach 
that has been successfully used in the past is to exploit the linearity of the 
disturbance equation by representing the disturbance field as, 

S = Sl + B2S2 + B3S3 (12) 

~b = ~/~1 -~ B2 (~2 "q- B3 t~3 (13) 

where each (Sj, ~bj) is an integral of the coupled Orr-Sommerfeld euqations, 
with j = 1 corresponding to the inviscid limit and j = 2, 3, being character- 
ized by viscous effects. This very approach has also been successfully used 
by Carey and Gebhart [10] in analyzing the stability of an aiding mixed 
convection boundary layer flow adjacent to a vertical uniform-flux surface. 
However, in boundary-free flows such as plumes, B2 and B 3 have to be 
identically zero as pointed out by Lin [11] and discussed by Hieber and 
Nash [12]. A more appropriate method is to expand the disturbance field in 
terms of the perturbation parameters as done in [12]. Thus, 

S = S1 (t/) 4- ~MS2(t]) + ~2MS3(t]) 4- ~HS4(t/) (14) 

= (~1 (t/) -~- /~Mq~2(t/) -]- /~2(~)3(t]) -~- ~Hq~4(t/) (15) 

A = Al(x) + eMAz(x) + e~A3(x) +/;HA4(x) (16) 

Additional quantities that arise are, non-dimensional frequency f~, complex 
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wave number  c~ and the complex wave speed c, given by: 

f~ = & o / U  

d A  

C = ~'~/0~ = C 1 -{- eMC 2 Jr- e2MC3 71" eriC4 ( 1 8 )  

Here o) the value of  the frequency of  the disturbance will be taken as real. 
Substituting the expressions for 0, if, g, g, liP, ~, ~-and if~into eqns. (10) 

and (11) and ordering the terms in terms of  eM and ell, the following 
equations result. The terms accounting for non-parallel nature of  the base 
flow as well as other terms that are of  the same order affect the disturbance 
field at O(eH). 

A t zero order: 

L (S ,  ) = (F{ ~, - a)(S'~' - c~ 2 $1 ) -- cq F'," S, --- 0 (19) 

4), = H,  S, cq /(F~ cq - f~) (20) 

A t  O{eM }: 

L ( S z )  = R,  + c~aRz (21) 

where, 

R~ = -F'2~1 (S'( - ~ $ 1 )  + ~1 S i F t '  

and 

R2 = 20q $1 (F'I ~1 - f~) 

4)2 = (ce2 (g~ S, - F~ 4) 1 ) + cq ($2 g~ + S~ H ;  - F~ 4)~ ))/(F{ oq - f~) (22)  

A t  0 ( ~  )" 

L ( S 3 )  = R3 -{- ~3R4 ( 2 3 )  

where, 

R3 = - -  (S'I '  - -  oq S 1 )(F~o~ 2 + o~ 1F'3) + cq SI F'3" + o~282F'[' 

- (F; 2 + - 2 -  2Sl) + FT( I& +  2S,) 

+ (F{ ~i -- ~)($1 ~2 2 + 2S2~, ~2) 

and 

R4 -~ - - (37  -- g231 )F{ 4- 2gl 31 (F{ oq - ~Q) %- S 1F'I" 

A t  O(e,/): 

L ( S 4 )  = R 5  %- ~4R6 ( 2 4 )  
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where 

R5 i(S] v ,~ 2 ~  . . . . . .  - -  - -  - - ~ 1 O l  - 1 - ~ 4 S 1 - t - ~ ' 1 - l O ~ l F 4 ( S 1  - ~ 2 S 1 )  

+ i ~ f 2 S ~  -4/5a~r/F'~S~ + 3/5a~fiS~ + 3/5~7F~S~ 

+ 1/5F]S';'+ I/5S~F~ - 3/5~F~S~ + 3/5F, S~' 

+ 3/5F'('S, + n ( 4 / 5 ~ ( r / S ~  - S~) - 1 /5~S, )}  

R6 2cq ~ S  1 2 . . . .  = - -  3 ~ I F I S 1  q- F1S1 - F'~'S1 

The boundary conditions are that, S~(0)=  S j ( o e ) =  0; j = 1, 4. Here, only 
antisymmetric modes of disturbance are considered. This choice is based on 
measurements in a natural convection plume reported by Pera and Gebhart 
[13] who found this mode of the disturbance to be more unstable than the 
symmetric mode. Such measurements in mixed convection plumes are not 
yet available. Since the homogeneous problems for $2, $3 and $4 are the 
same as those for S~, it is required that, 

and 

(R  1 -q- o~2R2)Wdr/= 0; 

( R  3 -~0~3R4)Wdr /  = 0 ;  o~ 3 -  - 

fo~R~Wdr//ffR2War/ (25)  

R3 R4 W dr/ (26) 

fo /fo (R5--~o~4R6)Wdr/=O; 0 c 4 = -  R5Wdr/ R6Wdr/ ( 2 7 )  

where W(r/) is a non-trivial solution of the adjoint homogeneous problem, 

(F] a~ -- n)(W" - a~ W) + 2F]'a~ W = 0 (28) 

with 

w ( 0 )  = w ( ~ )  = 0 

The two perturbation parameters ~M and eH arise from distinct physical 
considerations. Yet the two can be related by, 

~M = /~}3 (29) 

where, 

= U~ (v2k/gflOo)1/3/v 

Clearly R is independent of x. In air, for Q0--~50Wm -~ and 
Uoo "~ 1 - 10 cm s -1 /? turns out to be of the order unity. I f /~  is substan- 
tially different from 1, the relative ordering of terms implicit in (6) and (7) 
would no longer be valid. It is to be noted that in (6) and in (7), terms of 
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Table 1 
Computed eigenvalues for the disturbance flow field 

391 

~'~ ~1 ~2 ~3 ~4 

.02 .0610 --.0582i - .0049 + .2291i -.2601 - .4118i  - .033 + .779i 

.04 .1150 - .0884i  - .1058 + .3097i .0660 - .5797i  - .078 + .813i 

.06 .1693 - .1069i  --.2250 + .3198i .4343 - .3938i  - .123  + .842i 
,08 .2213 - .1158i  - .3142 + .2743i .5081 - .0425i  - .165  + .856i 
.10 .2693 - .1181i  - .3628 + .2113i .3763 + .1950i - . t 9 8  + ,860i 
.12 .3130 - .1162i  - .3819 + .1528i .2068 + .2903i - .223 + .861i 
.14 .3529 - .1120i  - .3843 + .I050i .0682 + .3031i - .242  + .863i 
.[6 .3897 --.1064i - .3785 + .0674i - .0307 + .2796i - .258 + .866i 
.18 .4238 - .1000i  - .3688 + .0382i - .0980 + .2436i - .271 + .870i 
.20 .4558 - .0933i  --.3576 + .0155i - .1428 + .2058i - .282  + ,875i 
.24 .5147 - .0794i  - .3347 - .0164i  - .1919 + .1389i - .300  + .888i 
.28 .5685 - .0657i  - .3139 - .0366i  - .2123 + .0878i - .316  + .904i 
.32 .6187 - .0525i  - .2958 - .0496i  - .2196 + .0502i - .329  + .925i 

O(e~)  are omitted, although with /~ = 1 such terms are expected to con- 
tribute at the same order as terms of  O(eH). This apparent inconsistency is 
resolved when the results of  the base flow calculations in [6] are considered. 
In [6], with e~  = 0.4 (an upper limit for the validity of  the perturbation 
expansion of  the base flow) the contribution of  terms of  O(e 3 )  to centerline 
velocity is seen to be less than 10% while that on centerline temperature 
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Contours of constant amplification in natural (R = 0) and mixed convection flows (/~ = I). 
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excess is only about 3% of the corresponding contributions of term of 
O(eH). Thus the effect of the terms omitted in (6) and (7) can be expected 
to be rather small. With /~ = 1, the contributions of the non-linear terms 
such as e~,eH arise only at O(e4). In [6] contributions of such terms on the 
base flow have been shown to be negligible. 

Computed values of 51,52, 53 and 54 are listed in Table 1 at various 
values of fL for Pr = 0.7. Using these values neutral stability and amplifica- 
tion contours can be constructed. These are shown in Fig. 2. 

Results and discussion 

The procedure of determining 51, 52, 53 and 54 is as follows. First, for a 
chosen value of ~), eqn. (19) is solved to determine $1 and 51. (Equation 
(19) was integrated inwards, that is, towards the centerline of the plume 
from its outer edge, by making use of the asymptotic form for Sl(t/) as 
~/-> o0.) Then W(t/) is determined from eqn. (28). With 51 and W known, 52 
can then be determined from eqn. (25). The procedure for obtaining 53 and 
54 is similar. The neutral stability curve i.e. f~(G) on which 5 i -  O, is 
obtained by solving, 

5 i = 51, i ~- ~M52,i -]- ~2M53, i "q- ~H54,i -~ 0 (30) 

Here, 5i is the imaginary part of 5. The value of G at a given f~ that one 
obtains from eqn. (30) depends on the value of/~. In all the computations 
here,/~ has been taken to be unity. The neutral curve so obtained is shown 
in Fig. 2 along with contours of constant amplification. These latter curves 
represent the exponential growth of a disturbance of fixed frequency i.e. ~o, 
as it crosses the neutral curve and propagates downstream. If A, is the 
amplitude of a disturbance at a downstream location corresponding to 
neutral stability and Ax its amplitude further downstream, then, 

Ax/A,,=e "4, A = -  5 idx /~=-5 /3  5~dG (31) 
n \ J G n  

with 5~ being the imaginary part of 5. the neutral curve is A = 0. Curves of 
constant amplification have been obtained by determining 5~ at various 
values of G, keeping 09 fixed. The integral in eqn. (31) is then evaluated by 
simple trapezoidal rule, with a step size in G of 2.5. 5i is a rather slowly 
changing function of G. This justifies the use of a step size of 2.5. Also 
shown for comparison, in Fig. 2 are neutral curve and contours of constant 
amplification for a natural convection plume. 

It is clear from Fig. 2 by comparing the neutral curves and those for 
A = 2, that mixed convection effect stabilizes the flow considerably. An 
example of the effect of considering terms of O(e~t) is shown in Table 2. It 
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Table 2 
A comparison 
and at O(e~) 

of the neutral curves at O(eM) 

~q G. [at O(eM)] G, [at O(e]~)] 

.02 90.68 28,53 

.04 63.18 13.33 

.06 44.48 19.80 

.08 29.66 28.22 

.10 20.56 29.44 

.12 15,55 26.57 

.16 10.99 19.92 

.20 10.14 16.00 

.24 10.18 14.21 

.28 10.80 13.76 

.32 12.51 14.36 

is clear that the flow is further stabilized by inclusion of  the second order 
mixed convection terms. It is also apparent that this enhanced stabilization 
is not  observed at lower values of  f~. 

In a recent paper, Riley and Tveitereid [14] report an analysis of the 
stability of an axisyrnmetric plume in a uniform stream. Although the free 
stream was found to have a stabilizing influence, unlike here they were able 
to find neither a critical value of  the Grashof number nor a lower branch of  
the neutral curve'. This can be attributed to the parallel flow assumption in 
their analysis. Pera and Gebhart  [13] also employed the parallel flow 
assumption in an analysis of plane natural convection plumes. A lower 
branch of  the neutral curve nor a critical value of  the Grashof  number was 
found. Haaland and Sparrow [15] incorporated the non-parallel effects and 
were able to obtain both a lower branch of the neutral curve and a critical 
value of the Grashof  number. The analysis reported here as well as that in 
[ 12] considers non-parallel nature of the base flow in a consistent manner by 
inclusion of other terms in the governing equations for the disturbance field 
that do not represent non-parallel base flow, yet whose contributions are of 
the same order. In [ 15] these additional terms were not considered. From 
Fig. 11.11.1 in [16], it can be seen that the inclusion of these additional 
terms stabilizes the flow further. 

Another  interesting feature of the results reported here is the enhanced 
stabilization even for neutrally amplifying disturbances. However, in wall 
bounded mixed convection flows, an aiding free stream was found to 
stabilize the amplifying disturbances while for neutral disturbances destabi- 

An anonymous referee has pointed out that their work has been extended to include non-parallel 
effects. Apparently, critical values and lower neutral stability curves are exhibited by these new results 
which were presented in a Euromech Conference on Mixed Convection held in Poitiers, France (1986). 
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lization was observed. See for example, Fig. 
[17]. 
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1 in [10] and Figs. 1 and 2 in 
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Appendix 

Governing equations o f  the base flow 

At zero order: 

F'('+ 1/5(3F~F'( - F~ 2) + H, = 0 

H~ + 3/5Pr F1 H1 = 0 

F~(O) = F'((O) = F~(oo) = 0; 

At O(~M): 

fo ~ 1 Fq H1 d r / -  2Pr 

F'~' + 1/5(3F, F'~ + 2F2F'( - F'IF'2) + Ha = 0 

1t2 + 1/5Pr(3F1H'2 + 2F2H] + 4H2F'~ + 3HIF'2) = 0 

F2(0) = F~(0) = F;(oo)  - 1 = H; (0 )  = H2(oo) = 0 

At O(e~t): 

F~' + 1/5(3F~F~ + 2F2F~ + F~F,) + H3 = 0 

H~ + 1/5Pr(3F~H'3 + 5F~H3 + F3H~ + 3F'3HI + 4H2F'2 + 2F2H'2) = 0 

F3(0) = F~(oo) = F;(0)  = H; (0)  =- H3(oo) = 0 

At O(eH): 

Fi~' + 1/5(3F, F~ + F]F'4) + H4 = 0 

HA + 1/5Pr(3F, H'4 + 6F~H4 + 3F'4H,) = 0 

F4(0) = F](0)  = H~(0) = H 4 ( ~ )  = 0 

F ; ( ~ )  = cot-~- Fl(oo) 
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The solution to these equations at zero order and at O(e~) can be found 
in [4] and in [6] whereas [12] and [18] give solution at O(EH). However, the 
non-dimensionalization employed here differs from that used in [4], [6] and 
[18]. For the sake of completeness, all the unknown boundary conditions 
required to numerically integrate these equations, in their present form are 
listed below. 

i F; (0) Hi (0) 
1 0.93273 0.49654 
2 0.05982 --0.21831 
3 0.19499 --0.00733 
4 0.09969 --0.25111 
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Abstract 

Aiding mixed convection flow resulting from the vertical flow of a uniform stream past a horizontal 
line source of heat is of importance in many practical situations such as hot-wire anemometry, etc. In 
this paper, the stability of such a flow to small disturbances is analyzed in terms of the linear stability 
theory. The analysis treats the presence of the free stream as a perturbation of a natural convection 
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plume generated by the line source of  heat. The base flow as well as the disturbance field are determined 
by means of  a systematic perturbation expansion. 

The results presented here extend the results of an earlier investigation [1], by considering 
second-order mixed convection effects. The results reveal that the free stream has a stabilizing effect. As 
expected, consideration of  second-order mixed convection effects further enhances the stability of  the 
flow. The reported results are valid at a large distance from the source where the flow field is dominated 
by buoyancy effects. 

R~sum~ 

Aidant la convection mixte d 'un ~coulement r6sultant d 'un 6coulement uniforme vertical, ~, l'arri6re 
d'une source rectiligne horizontale de chaleur, est important en plusieurs situations pratiques, comme 
celui de l'an6mom+tre /t fil chaud, etc. Dans cet article, la stabilit~ de ce genre d'~coulement aux 
pertubations est analys6e par la th6orie de la stabilit6 lin6aire. L'analyse traits la pr+sence de l'6coule- 
ment libre comme perturbation d'une convection naturelle du panache cr6e par la source rectiligne de 
chaleur. L'6coulement de base ainsi que le champ expos6 aux perturbations sont d6termin~s au moyen 
d'une s6rie de perturbations syst6matiques. L'analyse prend en consid6ration la nature non-paral!6le de 
l'6coulement de base. 

Les r6sultats pr6sent6s ici, 61argissent les r6sultats d'une 6tude pr6c+dente [1], en consid6rant le 
second ordre des effets de la convection mixte. La consideration du second ordre des effets de la 
convection mixte augmente la stabilitfi de l'6coulement. De m~me, l'effet de la convection mixte sur la 
courbe neutre semble diff6rent de celle-ci pour une paroi limit6e des 6coulements. 
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