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1. Introduction 

In general, most of the mathematical models in chemical engineering are 
given in the form of a linear implicit differential algebraic equation (DAE) 
system: 

A(z,  u) �9 ~ = f l  (z, u) 

o u) (1.1) 

z(o) = 

f l :  R n x RI--* R ~ 

f l :  R "  x R t ~ R n - k ;  f l , f 2  smooth 

rg(A(z, u)) = k. 

Here, z denotes the vector of state variables, while u contains the control or 
input variables which are used to control the chemical plant described by 
(1.1). In this paper we study the influence of discontinuous control variables 
on the solution of system (1.1). In chemical engineering the "Sprung- 
Antwort-Verhalten" of a chemical plant is often investigated in order to 
study the dynamic behaviour of the system. Further, in the simulation of 
chemical plants with controls, discontinuous control variables (i.e. bang- 
bang controls) occur. Let us, for example, have a look at the case of a 
distillation column which is controlled by the reflux ratio, i.e. the quotient 
of the outlet stream and the reflux stream at the top of the column. This 
ratio is closely connected with the purity of the outlet stream, which itself is 
often connected with the temperature of certain stages of the column. 
Hence, at discrete times, the temperature is measured and the new value of 
the reflux ratio is calculated. 

Problems of this kind can usually be formulated by (1.1) with control 
variables u which are piecewise continuous. For simplicity, we will assume 
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in the following that  the input variables u(t)  are continuous (or  even 
differentiable with continuous derivative) for t < to and t > to, but with a 
jump at t = to > 0, i.e. u + .'= U(to + O) # u - ,= u(to - 0). 

Now, what  is the response of  the state variable vector z to the jump in 
u at time to? For  physical reasons the following definition seems to be 
appropriate. This definition is given for full implicit D A E  systems of  the form 

f (~ ,  z, t, u) --- 0, z(0) = Zo. (1.2) 

Consider the set of  regularizations on the interval [to, to + 1]: 

,= {~ ~ c( [ t0 ,  to + 11, R')  ~ C~((to, to + 1), R')  I 

~(to) --- u - ,  ~(to + 1) = u + } .  

Let fie(t) = ~(to + (t - to)/~), e > 0. Further,  denote by ze(t, ~ )  the unique 
solution of  the initial value problem 

f ( ~ , z ,  t, fi~) = 0  

z(0)  : Zo. 

Definition. z + is called the genuine  initial value 
z -  ,= Z(to - 0) and the jump of  u at to) iff: 

the limit 

(corresponding to 

z + = lim z~(to + ~, fie) 
~-.o 

exists for all regularizations fi ~ ~ of  u and does not  depend on fi ~ ~-. 

In many applications z + = z -  is assumed. This assumption is correct in 
the treatment of  ordinary differential equations with discontinuous control 
variables (see [2]), but not  in the case of  D A E  systems (even in the index-1 
case). This is evident because of  the example of  a pure system of  algebraic 
equations. Moreover,  for the index-1 example (see [2]) 

Z1 J - '73  " Z2 = 0 

z2 = u, (t) 

Z 3 = u 2 ( t  ) .  

the genuine initial value generally does not  even exist. Take, for example, 
Zl( t )  - -  z2( t  ) - -  z3(t)  = u I ( t )  ---- u2( t )  - -  0 f o r  t < 0 and ul ( t )  = u2(t) = 1 for 
t>-0.  Suppose fi(t) is an arbitrary function (differentiable on (0, 1), 
fi(0) = 0 ,  ~ ( 1 ) =  1) and consider the regularizations i l l ( t )=f i ( t ) ,  ~2( t )=  
[fi(t)]n, n ~ N. Then: 

lira zl(~) --= - 1/(n + 1). 
e ~ 0  
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In this paper  we will characterize those semi-linear D A E  systems (1.1) for 
which the genuine initial value z + always exists. After  some in t roductory  
remarks in Section II, we will t ransform the DAE system (1.1) into an 
ordinary differential equat ion which is easier to handle. Necessary and 
sufficient condit ions (Section III) for the existence of  z + are then deter- 
mined. We will see that  these condit ions are a natural  generalization of  the 
well known integrability condit ions in the context with curve integrals. 
Finally, in Section IV, we will apply the results to DAE systems and state 
a sufficient criterion which is easier to check for special problems. Last, but  
not  least, a simple numerical  me thod  is provided to calculate z + 

We will assume in the whole paper  that  (1.1) has global (or differential) 
index 1 (see [3]). Fur ther  it is assumed that  the solution z(t) exists globally 
for bounded  cont inuous  control  variables u and depends at least twice 
cont inuously  differentiable on u. It will become clear that  these assumptions,  
as well as the assumptions  about  the region of  definition of  A(z,  u), f~ and 
f2, can be generalized (i.e. Theorem 1 for star-shaped regions etc.) in the 
well known manner .  Finally, we put  to = 0 for simplicity. 

II. Transformation into an O D E  system 

First we note that  the existence of  the genuine initial value z + of system 
(1.1) is not  influenced by the r ight-hand side fl  (z, u) of  the differential part  
of  (1.1) (except for the fact that  the global solvability and cont inuous  
dependence upon  u has to be guaranteed).  To see this, consider an arbitrary 
regularization z7 ~ ~ ,  e > 0 and the corresponding solution z~(t, ~t~), t E [0, e] 
of  (1.1). Then 

z(t, 

solves the system 

A ( z ,  �9 = e �9 f ,  ( z ,  

z ( 0 )  = z - 
0 = A ( z ,  

for t ~ [0, 1] and 

z + = lim z( 1, e) 
s:~0 

holds. Therefore, the assertion follows f rom the theorem on cont inuous 
dependence of  the solution on parameters.  

It is well known that  the t ransformat ion of  a D A E  system with the 
Gear-Petzold algori thm (see [4]) into a pure ODE system leads to tremen- 
dous numerical  problems, due to the fact that  the number  of  degrees of  
f reedom is increased (see [1]). However,  for consistent initial values the new 



322 L. Briill and U. Pallaske ZAMP 

system is analytically equivalent to the original one and therefore it can be 
used to describe analytical conditions for the existence of the genuine initial 
value z +. 

Using this transformation (i.e. differentiating the algebraic part of (1.1) 
and solving the resulting set of equations for z), the original D A E  system 
(1.1) with f~ (z, u) = 0 is transformed into 

= F ( z ,  u )  . u, 

where 

z(O):z- 

/ ~ ) F (z, u).'= M -1 .  af2 (z, u) (2.1) 

and 

1 

We have provedl 

Lemma 1. The following conditions are equivalent: 

i) the genuine initial value z + exists for 

A(z ,  u) �9 ~ = f l (z, u) 

0 = f2 ( z ,  u), z(0) = z -  

ii) the genuine initial value z + exists for 

= F (z,  u)  �9 u,  z ( 0 )  = z - .  

(2.2) 

(2.3) 

(2.4) 

Ill.  Necessary and sufficient conditions 

In the following, F~j(z, u) denotes the element in row i and column j of 
the matrix F(z ,  u), i = 1 , . . . ,  n; j ~ 1 , . . . ,  1. The main result in this paper 
is as follows. 

Theorem 1. For  the differential equation 

-~ F ( z ,  u) " i4 (3.1) 
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with fixed z(0) and u(0), the solution z(1) only depends on u(1) if and only 
if the integrability condit ions 

~3F~j c~Fij _ ~ ~3F~ -F~j + ~ (3.2) 
v =  1 ~ " Fv' 'u "JI- Obl u - -  v =  1 ~ Z v  ~l, lj  

are fulfilled for 

i = l , . . . , n ;  j ,  FL= I , . . . , I .  

In particular,  the genuine initial value z § of  (3.1) always exists if and only 
if (3.2) holds. 

Proof. 

I. Necessity: 
Consider  fixed values for z -  and u -  
Let us assume that  for each u + a unique value of  z + exists. Then there 

is a funct ion H with 

z + = H(u+) .  

Because of  the invariance of  the solution of  ~ = F ( z ,  u) �9 ii with respect to 
the t ransformat ion  t ~ ~(t), ~(t) r 0 we have 

z ( t )  = H ( u ( t ) ) ,  

where z ( t )  is the solution of  (3.1) with arbitrarily given u(t) ,  u(O) = u -  

Hence, for differentiable u(t) we have 

OH 
= -g f fu  

Since ~ can be chosen arbitrarily, we find 

0H 
- F ( z ,  u)  = F ( H ( u ) ,  u). (3.3) ~u 

Let us look at the components  Hi of  H = ( H 1 , . . . ,  Hn) 7-. F r o m  the general 
assumptions  we conclude: 

(32Hi c32Hi 

~/~/j . OU k - -  ~b/k . O/,/j ( 3 . 4 )  

for i = 1 , . . . ,  n; k , j  = 1 . . . .  ,1. Applying (3.4) to (3.3) yields the condi t ion 
(3.2). 

II. Sufficiency: 
The p roo f  of  the sufficiency is somewhat  more  complicated.  To begin with, 

consider for arbitrarily given u e R t the special cont inuous  regularization 

u( t )  ,= u - + t �9 (u - u - ) .  
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z(t) denotes  the cor respond ing  solut ion o f  p rob l e m (3.1), with z(0) = z -  
Fur ther ,  assume that  (3.2) is fulfilled. Then  we have 

Lemma 2. 

~ Z  v &k (0 = F v , ~ ( z ( t ) ,  u ( t ) )  . t 

v = l , . . . , n ;  k = l , . . . , l .  

(3.4) 

P r o o f  of  the lemma. Cons ider  the linear o rd inary  differential equa t ion  

dt Wv.k(t)= ~_, ~ OFv, OFv,~ - ~ = 1  , = 1  & - - - ]  w , . k ( t )  + - g - ~  . t �9 (u~  - Uo.~) + r v . k  

with v = 1 , . . . ,  n; k = 1 . . . .  , l. I t  is easy to show that  bo th  C3Z~/OUk(t) and  
F~,k(z(t), u(t)) �9 t are solut ions  o f  the linear O D E  sys tem with initial condi-  
t ion %,k(0) = 0 (where  the intergrabil i ty condi t ions  for  the second funct ion  
have to be used).  Hence,  L e m m a  2 is proved.  

N o w  consider  for  a rb i t ra ry  u = ( u l , . . . ,  ut ) r E R l 

Hi (u)== z/- + f01 
l 

Fi,~(z(t), u(t)) �9 (u~ - Uo,~) dt 

H ,= (H1, . �9 �9 , Hn) r: R t _+ R .. 

Then  we have: 

i) z(1) =/-/(u) 

ii) H ( u - )  = z -  

OH; ' 

Using the integrabil i ty condi t ion  (3.2) we get 

;[ ( ] 
auk Oz, " Ou~ } ' ~ = 1  ~ = 1  

;0' = ~ [Fi,k(z(t), u(t)) �9 t] dt 
ell 

- - ' O U k  + ~ "  t "(U~--Uo,~) + Fi,k dt 

- - "  r , k  + OFi,'~ . ] 
' OUkJ t ' (u~--Uo,~)+Fi,k  dt. 

dt 

= Fi,k(z(1), u(1)) = F,.,k(H(u), u). 



Vol. 43, 1992 On differential algebraic equations with discontinuities 325 

Hence there is a differentiable funct ion H:  R I ~ R  n such that  

OH 
~ u  (u) = r ( H ( u ) ,  u) 

holds. 
N o w  consider an arbitrary function u(t)" R d - - ~ R  ~, with u ( 0 ) =  u - .  

Look  at the funct ion 

z(t) ,=H(u(t)). 

Because of  ii) we have z(0) = z - .  
Further ,  

OH 
~(t) = -~u " it = r ( H ( u ) ,  u) �9 fi = F ( z ,  u) �9 it 

shows that  z ( t )  is a solution of  the initial value problem (3.1). Since our  
D A E  system is uniquely solvable, the theorem is proved.  

IV. The genuine initial value and DAE systems 

Using the t ransformat ion (2.1), (2.2), it is evident that  the described 
necessary and sufficient condit ions can be translated for linear implicit DAE 
systems 

A ( z ,  u) �9 ~ = f , (z,  u) 

0 =fz(z ,  u) (4.1) 

z(0)  : z0. 

However,  these condit ions involve the inverse of  the matrices A and Of~/Oz 
and hence will not  be useful for many  applications. Therefore, we will state 
a sufficient condi t ion for the existence of  z +, which is often much  easier to 
verify. For  example, this condi t ion is fulfilled in most  applications in 
chemical engineering. This result is proved in [2]. 

Theorem 2. Consider  the linear implicit DAE system (4.1) and assume 
that  f~,fz are bounded,  differentiable functions with cont inuous  derivatives 
which are Lipschitz-continuous with respect to z. Assume further that  for 
each row ai(z), i = 1 . . . .  , k there exists a non-zero cont inuously differen- 
tiable funct ion g; (z): R ~ ~ R, such that  gi (z)  . ai (z)  has a potential  p,. (z) (i.e. 
d /d t (p~  (z))  = gf (z)  �9 ai (z)  �9 ( d / d t ) z )  (i = 1 , . . . ,  k) .  Then z + exists and fulfills 

p i ( z  + ) = p i ( z - ) ,  i = l , . . . , k  

f2 (z  +, u +) = O. 
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Besides the existence of  z + for systems (4.1) with integrating factors, the 
theorem gives a simple method of  evaluating z +. Unfortunately,  since the 
potentials Pi (z) have to be known, this method will not  be of  use in many 
applications. In the following, a much easier way to calculate z + is given by 
Theorem 3. However, this theorem is not  only applicable in the case when 
integrating factors exists. Further,  it can be generalized for a lot of  
nonlinear D A E  systems of the form (1.2). 

Theorem 3. Consider the initial value problem (4.1) and assume that 
u(t): R - - , R  t is an arbitrary function, continuous for t < 0 and t > 0 with a 
discontinuity at t : 0. If the genuine initial value z + exists, then we have 

z + = z ( 1 )  

where z(t) is the solution of  the initial value problem 

A(z, ~) �9 2 = 0 (1.1) 

0 =f~(z, 5) 

z ( 0 ) = z - ,  t ~ [ 0 , 1 ]  

and 5(0 is a continuous function for t ~ [0, 1] with 5(0) = u - ,  5(1) = u + 

The proof  can be carried out by analogy with the first remarks of 
Section II. 
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Summary 

The dynamic features of systems in mathematical process simulation are often studied by looking 
at the response of the system to discontinuities in the input variables (Sprung-Antwort-Verhalten). A 
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more detailed analysis ([2]) shows that for systems in the form of differential algebraic equations (even 
with index 1), which frequently occur e.g. in chemical engineering, a solution to the problem need not 
exist. 

In this paper we derive necessary and sufficient conditions for such systems to guarantee the 
solvability of the problem (Theorem 1). Further, a simple algorithm is stated (Theorem 3), which is 
suitable for numerical computation. 

Zusammenfassung 

Die Untersuchung der dynamischen Eigenschaften von Systemen mit Hilfe der mathematischen 
Prozel3simulation geschieht hfiufig durch die Betrachtung des Systemverhaltens bei sprungartiger Ver- 
finderung der Eingangsgr6Ben (Sprung-Antwort-Verhalten). Eine genauere Analyse ([2]) zeigt, dab f/Jr 
Systeme in Form von Differential-Algebraischen Gleichungssystemen (sogar mit Index 1), welche h/iufig 
auftreten z.B. in der chemischen Verfahrenstechnik, eine L6sung dieser Aufgabe nicht existieren mug. 

In dieser Arbeit leiten wir f/Jr Systeme vom Index 1 notwendige und hinreichende Bedingungen her, 
welche die L6sbarkeit des Problems garantieren (Theorem 1). Ferner wird ein einfacher Algorithmus zur 
numerischen Berechnung beschrieben (Theorem 3). 
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