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Introduction

It is well-known that the analysis of dynamic fracture for materials with nonlinear
behaviour presents fundamental difficulty. The complete solution of this kind of problems
is not available at present. The use of some simplified models or approximate analyses
for this purpose is beneficial.

The author reports briefly a simplified model named moving Dugdale model for
mode I in a letter [1]. This paper gives calculation for the problem for mode I, II and I1I
in detail. The dynamic crack opening, sliding and tearing displacements §fyamic, gfynamic
and d3/"*™ are obtained and shown to be significant for describing the dynamic fracture
process of materials with nonlinear behaviour.

§ 1. Fundamental assumption

It is assumed that there is a Griffith crack (or a pileup group of dislocations, inclusion
or other displacement discontinuity surface) with length 2a in an infinite medium. The
crack is moving with constant speed v along the direction of axis ox,; and the body
is subjected to a tension ¢ along the direction of axis oy far from the crack (see
the schematic Fig.1). In the front of the crack tip, that is, in the zonme y =0,
a < |x| < a + R, the atomic cohesive forces are effective. Suppose further that the co-
hesive force per unit surface is equal to the yielding stress g, of the material along the
whole length R which is unknown temporarily. In the above statement there are two
coordinate systems, one is the fixed coordinate system (x, y, t), the other represents the
moving one (x, y). The following relationship holds:

X=x, —vt, y=y. 1

The following analysis will indicate that if ' < g, then R will tend zero and this model
will reduce to the Yoffé problem [2]; when v — 0, the model will reduce to the static
Dugdale [3]/Bilby, Cottrell, Swinden [4] problem. With this model the nonlinear dynamic
fracture problem can be linearized. The method used either by Yoffé or by Dugdale/
Bilby, Cottrell, Swinden can not be directly used to solve this problem. The solving
procedure is the one proposed by the author [1].
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Figure 1 o (=)

The above description deals only with the problem of mode I, but the problems of
mode II and III may be solved with a similar procedure.
The mathematic analysis concerning the above problems is given in detail as follows.

§2. Mathematic analysis for the problem of mode I

1. Basic relations and boundary value problem

Introduce wave functions ¢ (x;, y, ) and ¥ (x,, y, t) in the fixed coordinate system,
that is

Op Oy Op Oy
= — -, = = 2
e Ox; * dy " dy Ox, @

where u, and u, are displacements in directions ox, and oy respectively, and ¢ and
satisfy the following wave equations

10%¢ 1%y
VZ = > V2 = 3
¢ c? ot? 4 cZ or? ©)

in which V? = 92/6x} + 8%/0y? is Laplace operator for two dimension, ¢, and c, are two
velocities of longitudinal and transverse elastic waves, respectively, i.¢.

;» + 2# 1/2 u 1/2
€ = < ) s == )
@ Y

and 4, u and ¢ are the two Lamé constants and mass density respectively.

Making the Galileo transformation (1), the wave Egs. (3) will reduce to the Laplace
equations in the moving coordinate system (x, y)

9% a2 hE L
(arag)e=o (Gerag)v=o ©



632 T.Y. Fan ZAMP

where

Yi=0o1)s Y2 =03,
ay = (1 —v*eD)'?,  ay = (1 —v¥cH)Y2

(6)

The crack problem stated in Sect. 1 (shown by Fig. 1) may be resolved into two
problems. One is a problem of moving crack with length 2(a + R), and by using super-
position it may be presented as the following equivalent boundary value problem in the
sense of fracture mechanics (the difference between the original and the equivalent prob-
lems is only a constant term which has no contribution for stress singularity and doesn’t
produce crack opening displacement):

— . _ (o) —0-
y=0, |[x|<a+Rio,=—0%, 0,=0; o
(x* + yHY* - 01 6;; = 0.

The other one is the problem of the effect of cohesive force zone and may be reduced to
the boundary value problem

y=0, a<|x|<a+Rig,=gqg,
y=0, |x]j<a:0,=0, o,=0; (8)
(x* + y)?* > w0:0;=0

in which ¢;; are stress components and stand for the following expressions

e Oy
— Ve 4 2u(2 Y :
T =AVIOF “(ax2+axay>

o’ Oy
= 1V? 2ul— — —— 9
o, =AViY + #(ayz axdy)’ ©)
e ol 0O’y
S DL A L A )
T = <l oy dy * u(@yz 0x?

2. Solution of the boundary value problem — the method of function theory

The solution of boundary value problem (7) may be easily obtained and will be
discussed later. The solution of boundary value problem (8) is given in Ref. [1] in brief,
it will be discussed here in detail.

Introducing complex variables

zy =X, + 1Yy, Zya=X+1iy, (10)
then the solution of Egs. (5) may be expressed as [5]

@ (x,y1) = [Fi(z)) + Fi(z)), ¥ (x,y) =i[F(z5) — F,(z,)] (11
where F, (z,) and F, (z,) are two analytic functions of complex variables z; and z,, and
F, (z,) and F,(z,) are their complex conjugates, respectively.

Denoting

dF(z,) dF,(z,)

dz, =Fi(z;), P(z)= dz,

P(zy) = = F;(z) (12)
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and substituting expressions (11) and (12) into Eqgs. (2) and (9) yields
uy Hivy=(1—0) @)+ +a)P(z) + (1 —0y) ¥(z3) — (1 + ) ¥(z;), (13)

Oxx -+ ny = Z‘U((X% - 0(%) [(p’(zl) + ' (Zl)]a
Oxx = Oyy + izaxy =2p1 - c)‘1)2 P'(z)+ (1 + ‘X1)2 ' (z,) (14
+ (1 - “2)2 ¥izy) — (1 + 0‘2)2 ¥ (z,)].

For the problems (7) and (8), the functions ®(z,) and ¥{(z,) have the following
structure {(when z, and z, being sufficient large)

@(21)}2 ;1 anZ;"’ lP(ZZ)= 21 anZ_n (15)

where a, and b, are arbitrary complex constants.
With the conformal mapping

R 1
21,22=w(o=“+2 <C+Z> (16)

the outer region of the crack in z;-plane/z,-plane is mapped into the inner region of
the unit circle y in {-plane (Fig. 2 and 3). Denoting the value of { on the unit circle y
as ¢ =¢" the points A(y=0, x=a+R), B(y=0",x=a), C(y=0, x=—a),
D(y=0x=—a—R),E(y=0",x=—a)and F(y =07, x = a) in the physical plane
are mapped onto the corresponding points g, =1, g, = €1, 0, = @7 g, = — 1,
o3 = €% and o, = ¢ on the unit circle in {-plane after the conformal mapping.

Figure 2

Figure 3



634 T.Y. Fan ZAMP

Supposing the solution of problem (8) as @, (z,) and ¥, (z,), we have
P1(z1) = D1 [0 (O = 2,.(0), ¥i(z) = ¥i[w@] =P, a7

and
D (z1) = P, D/ (D), Pil(zz) = ¥4 D/ () (18)

where @, () and ¥, ({) are two new unknown functions.
Substituting the relations (14) into boundary conditions (8) leads that

Re [(1 + 43) P (z1) — 20, ¥ (22)],=0 = 0, f (%), 19)
Im 20, @ (z) — (1 + a3) ¥ (z2)l,-0 =0, [x]<a+R

where the signs Re and Im represent real part and imaginary one of the complex function
respectively, and the function f(x) is

f(x)={1 a<|x|<a~|—R. 20)

x| <a

Substituting conformal mapping (16) into formula (19) and considering expressions
(17) and (18) yields that

1 6?—1a+Roa,
G1(0) = =5 G1(0) = ——5———— 5/ (0),
4 (21)
G,(0) + G20 =0
in which
G (0) = (1 + 03) B, (0) — 201, ¥, (0),
(22)
Gy (0) = 20, &, (0) — (1 + o3) ¥, (0)
and
1 —-08,<8<806,, n—0,<8<mn+0
foO=5 ' ' 0. 23)
<f<n—06,, n+0,<80<2n—-0,

Multiplying by de/2mi(s — {) both sides of Eq. (21), then integrating along y with
respect to g one gets

1 Gl() 1 1 de a+Rg[ ]e*—1 do

Cyert ;j‘_z — ="\t =

2niy o C 2wiy o { 4mip el 0° o= 24)
1 .Ge) 14 @ Y

27tiya—C 2 iyo©o—

In the above formulas |{] < 1, that is, it takes its values in the interior of the unit circle.

Because G, () and G, ({) are the analytic functions in the inner region of the unit
circle, based on the Cauchy integral formula, both first integrals on the lefthand side of
Eqs. (24) result as

N N

2niy o 2mi

D

2 (0

do = G,(0)

q
m
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Also, because of the same reason, they may be expressed by the Taylor series

GO= T 6l GO= T h (<

in which g, and A, are arbitrary complex constants.
Defining two new functions

_ = (1) ~ (1N _ & (1Y
a0 5] = o) 550

these two functions are analytic in the exterior of the unit circle, therefore the functions
in both second integrals on the lefthand side of Eq. (24)

|
?Gl () and G, (0)

1
o2

may be considered as the boundary values of the functions (the values of the functions
on y)

1 _ /1 1 . /1
C_?‘Gl (E) and FGZ <Z>

respectively, and these two functions are analytic in the outer region of the unit circle as
mentioned above. According to the Cauchy integral formula, both second integrals on the
lefthand side of the Eqs. (24) must vanish, so that

Ro[o @lo?—1 d
G0 ="2 %[yu}‘iT—”—

2 P o o—{(

(25)
G, (()=0.

After some calculations from formulas (25) and combining with formulas (22)

. a+ R, 1+ o 21 1102 22
2. (0= - 33 =0+ ———In—;
2 p(l+ead?—4dou,|nl 2ni ¢ e %0 2
: (26)
+R 2 2 1 112 2
'Pl*(oza % 220‘1 —a bl T o 2(: In e—z'e - :
2 p(+ad)—daa,|nl 2ni ¢ e~ 2

The problem (8) is now solved completely.

The problem (7) may be solved in a similar manner but the calculation is simpler.
Denoting the solution of problem (7) by @, ({) and ¥, ({), we have (the solving approach
here is different from that adopted by Yoffé 2]

B0 (1) = a+ R o™ 1+ o]
o 2 o+l —daa,
@7
a+ R o™ 20,
Yo (l) =~ ¢.

2 4 (1+ad?—4duq,
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By superposing solutions (26) and (27) one may obtain the total solution @ (z,) and
¥ (z,) of the problem, that is
BARAG

B0+ 40Oy Tl o8
o' (§) o' ({)
Substituting formulas (26) and (27) into (28) and integrating, the expressions of functions
P(z,) and ¥ (z,) may be given directly.
Based on these expressions and formulas (13) and (14) the displacement and stress
fields of the problem are determined completely.

¥ (z4) =

3. Determination of size R of the cohesive force zone

At the end of the cohesive force zone, thatisat y =0, x = + (@ + R),orat{ = +1
in {-plane, the stresses must be finite. From formulas (26), (27) and (28), this condition
leads

20,0 ' o™
L2 =0 or 0,= (29)
i 20,
because of
a 4 gl
= cosf, = cos
a+ R ! 20,
so that

R=a [sec <7r20:°)> — 1:| (30)

this is identical to the result of the Dugdale model in nonlinear fracture statics [3] as well
as the result of the dislocation model proposed by Bilby, Cottrell and Swinden [4] for the
static case.
4. Dynamic crack opening displacement

From formula (13) one can find that

u,=—2Imfo; @(z;) — ¥(z,) (31
and by using formulas (26), (27) and (28) and after some calculations, one gets

1 o ay (@ —1) 20,
= R)-= I * @
S e v e B A

. . CZ _ eZiﬂl ) » (C + eiﬂl) (C _ e*iol)
i0 ‘lel I 0y i 1 : _ (32
+Re{(e +e ) nCZ—e_Z"’l (e e ) n(C+e“"‘)(C—e"") (32)
Let { take its value on the unit circle (that is setting { = ¢ = ¢"), making the limitation
according to the following formula, the dynamic crack opening displacement is obtained
as.

. 4 4 o (1 _ ('12) 7'50'{00)
dynamic __ 1i — -8 L 2 In sec . 33
o1 Gerell,Zuy nau40€10€2—(1+°‘§)2 20 .

S
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The result is calculated for plane strain state, while the result for plane stress state
can easily be obtained from formula (33) only by making a substitution of material
constants. The latter is more significant physically. The dynamic crack opening displace-
ment for these cases may be written uniformly as below

5;1)’namic = A (U) O"Static (34)
where
() = A@({ +v) (plane streés state) (35)
A{)/(1 —v) (plane strain state)
A== v/ (1 = o¥fc]) "2 46
V) = =
dojo, —(1+a3)> 401 = %) (1 = 0P [c)V? — (2~ v*[c3)?
. 8ag 7ot
5statlc — s 7
i T In sec( 20, ) (37)
B E , (plane stre'ss state) (38)
E/(1 —v?*) (plane strain state)

In the above formulas the expression §**¥¢ is identical to the result obtained by Goodier
and Field [6] in which E and v are Young’s modulus and Poisson’s ratio respectively. The
formula (34) is mentioned in Ref. [1].

§ 3. The solution of moving Dugdale model for mode 1I

By using superposition, this problem may be reduced to the following two boundary
value problems of set (5):

y=0, |x|<a+Rio,=—1%, ¢, =0;

(x> +y)? > 0t g;=0 39)
and
y=0, a<x|<a+Rig,=1, 7,=0;
y=0, |x|<ag,=0, 6,=0; (40)
(x> + yH? > w00, = 0.
Similarly, introduce two analytic functions ¢{z,) and ¥ (z,) and
P(z) = P (2) + P2(z)) = Dy [0 (O] + P2 [w (O] = D, (0) + Do () @)

P (z,) = ¥1(2) + ¥ (22) = ¥y [0 (O] + P2 [0 (] = P, (D) + ¥, (D)

in which the functions @, (z;) and ¥, (z,) or @,({) and ¥, ({) in the {-plane are the
solution of the problem (40) and the functions @,(z,) and ¥, (z,) or &,({) and ¥,({)
in the {-plane are the solution of problem (39), respectively. In a similar procedure
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to §2 we obtain the functions (or their derivatives) as below

, .a+ R, 2a 271 1 1 — 2 g2 _ g2
¢*(()=l - N2 2 __201+“.—- ZC —~2i6 CZ
2 p(l4+03)Y —4daa,|wl 2ni e ¥h ¢

) _a+ R, 1+ a3 21 11— ¥ _ 2
Y’*(O:l - V) 2 =50+ 2C ) Cz
2 p(l+a3yY —4dayu,|nl 2ni P e ¢
and
a+ Rt™ 2a
¢O(C)=_l R 222
2 p (+ag) —4daa,
a4+ Rt 1+ a2
Yo =—1i z ¢

2 u (l+ed?—daa,

The notations here are the same as those in the preceding paragraph.

ZAMP

(43)

Requiring the stresses to be finite at y =0, x =+ (a + R) and considering the

formulas (41), (42) and (43) yields that

At
R = -1
ofse(55) 1]
This determines the size of the cohesive force zone.
The formula (13) leads

u, =2Re[P(zy) — ay ¥ (2,)]
and based on formulas (45), (41), (42), (44) and the definition

Sdymamic — im 24,
g0y

we obtain the dynamic crack sliding displacement as follows
5ﬁynamic — BI (U) 5§Itatic

in which

B (o) < B(®)(1 +v) (plane stress state)
) = B@®)/(1 —v) (plane strain state)

B(1) = (1 —a3) _ (v/c)* (1 — v*[e))'?
O = Fara, — A+ 27 40 = DT = DT — @ = L)

. 8arz P
otie = *In sec
nkE 21,

E’ is the same as in definition (38).

(44)

(45)

(46)

(47)

(48)

(49)
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§4. The solution of moving Dugdale model for mode II1

The governing equation of mode III is

1 0%w

o

Viw (50)

where w represents the displacement in direction of axis. oz and ¢, is defined by
formula (4).

In terms of transformation (1), Eq. (50) is reduced to the Laplace equation in the
z,-plane, that is

8?2 o2

in which the definition of y, is given in formulas (6).
In this case only two stress components o,, and ¢,, do not vanish. They satisfy the
relations

ow ow

ow — 52
% O “ay (52)

O—XZ:fu

the meaning of u is as the same as before.

The Dugdale model of mode III for a moving crack may be found from the follow-
ing two boundary value problems by using superposition and neglecting a constant
term

y=0, |x|<a+R:iog,=—1";
(x*+ ¥y - 01 6;=0 3
and
y=0, a<|x|<a+ Rig, =1
y=0, [x| <a g, =0; (54)

(x*+ )" > 010, =0.

The solution of boundary value problem (53) is easy to obtain and will be given later.
The solution of problem (54) is considered first.

Because w is a harmonic function of variables {x, y,), it may be expressed as a real
or imaginary part of an analytic function y(z,) where z, = x + iy,. For problem (54)
setting

x(22) = 71(z;) and w(x, y,) = Re x;(z,) (55)

from formulas (52) and (55) one has

X (£)
o' ({)

where y, ({) = x; [@{{)] and w({) is given by formula (16).

Oxz — iayz = NXll (ZZ) =H (56)
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After some calculations the boundary value problem (54) leads to the following
functional equation in the {-plane

14O, 1140
2riyo —¢ 2n1y0 g—¢

do = — -
u(+R) j f

C (57)

where ¢ = ¢, f(0) are defined by formula (23) and y represents the unit circle contour.
By using a similar analysis as in §2, the solution of function Eq. (57) is obtained

2 1 1 — 2 2i61 2
Xe () = (a+R)—[ : 6, + : In zlel_iz]

CZ CZ (58)

Thus, problem (54) is solved.
In similar manner, the solution of boundary value problem (53) may be found as

()

12(22) = 12 [0 Q) = 10 (O) = ila + R)%c. (59)

The total solution of the problem consists of ¥, (z,) and y,{(z,) (or x, ({) and x4 ({)
in {-plane).

Using the formulas (56), and (59) and requiring the stresses to be finite at y = 0,
x =+ (a+ R) (or at { = + 1 in {-plane) leads to

(=) ‘
R= a[sec( - >_ 1] (60)

This is the size of the plastic zone for mode IIL
The displacement w(x, y,) is equal to

w(x, y2) = Re [1, () + %0 (0] (61)
From this, the dynamic crack tearing displacement is determined
4 {=0) 8 1 ()
Fynamic — 11m 2w =" aZnsec| 2] =22 %+ ) In sec | - (62)
8- 61 T U 2t nE 21,

N

It is identical to the static one [4].

§5. A crack propagation criterion based on the opening displacement

As in static case, one can propose a criterion of crack opening displacement for the
dynamic problem as follows

P = 6y, (v) (63)

in which §&*™ic is described by formulas (34)-(38) and J (v) should be a material
constant but depending on the crack moving speed v. This criterion may be used to check
crack propagation and determines the critical speed or critical length of the crack.
After some modifications it may be used in the analysis of a moving crack for
materials with elastic perfectly plastic or with hardening behaviour.
A comparison with experimental results and other aspects will be discussed in
another report.
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Abstract

This study proposes a moving Dugdale model for modes I, II and I11, presents a fully dynamic
analysis of the problem with the help of complex function theory and gives an exact analytical
solution. From this solution, the stress and displacement fields and the dynamic crack opening
displacement for mode I, II and III are determined. Based on this, the author proposes a criterion
to describe dynamic behaviour of a moving defect in solids.

Zusammenfassung

Diese Arbeit schligt ein bewegliches Dugdale Modell fir Mode I, IT und I1T vor. Sie gibt
eine vollstindige dynamische Analyse des Problems mit der Methode der komplexen Funktions-
theorie und liefert die exakte analytische Losung. Aus dieser Losung werden die Spannungs- und
Verschiebungsfelder und damit die dynamischen RiBéffnungsverschiecbungen fiir Mode I, IT und 11
dieses Problems bestimmt. Auf dieser Grundlage schldgt der Autor ein Kriterium zur Beschreibung
des dynamischen Verhaltens eines bewegten Defekts in einem Festkdrper vor.
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