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Introduction 

It is well-known that the analysis of dynamic fracture for materials with nonlinear 
behaviour presents fundamental difficulty. The complete solution of this kind of problems 
is not available at present. The use of some simplified models or approximate analyses 
for this purpose is beneficial. 

The author reports briefly a simplified model named moving Dugdale model for 
mode I in a letter [1]. This paper gives calculation for the problem for mode I, II  and III  
in detail. The dynamic crack opening, sliding and tearing displacements •dynamie bdynamlc 
and ~dynamic are obtained and shown to be significant for describing the dynamic fracture 
process of materials with nonlinear behaviour. 

w 1. Fundamental assumption 

It is assumed that there is a Griffith crack (or a pileup group of dislocations, inclusion 
or other displacement discontinuity surface) with length 2 a in an infinite medium. The 
crack is moving with constant speed v along the direction of axis oxl and the body 
is subjected to a tension a <~ along the direction of axis oy far from the crack (see 
the schematic Fig. 1). In the front of the crack tip, that is, in the zone y = 0, 
a < I xl < a + R, the atomic cohesive forces are effective. Suppose further that the co- 
hesive force per unit surface is equal to the yielding stress a s of the material along the 
whole length R which is unknown temporarily. In the above statement there are two 
coordinate systems, one is the fixed coordinate system (xl, y, t), the other represents the 
moving one (x, y). The following relationship holds: 

x = x 1 - vt ,  y = y. (1) 

The following analysis will indicate that if ~r (~) ~ as, then R will tend zero and this model 
will reduce to the Yoff6 problem [2]; when v --* 0, the model will reduce to the static 
Dugdale [3]/Bilby, Cottrell, Swinden [4] problem. With this model the nonlinear dynamic 
fracture problem can be linearized. The method used either by Yoff6 or by Dugdale/ 
Bilby, Cottrell, Swinden can not be directly used to solve this problem. The solving 
procedure is the one proposed by the author [1]. 

*) This work is supported by the Research Fellowship of Alexander yon Humboldt Foundation, 
Federal Republic of Germany. 
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Figure 1 ~(=) 

The above description deals only with the problem of mode I, but the problems of 
mode II  and III may be solved with a similar procedure. 

The mathemat ic  analysis concerning the above problems is given in detail as folIows. 

w 2. M a t h e m a t i c  analysis  for the problem of  mode  I 

1. Basic relations and boundary value problem 

Introduce wave functions (p (xl, y, t) and ~ (xl,  y, t) in the fixed coordinate system, 
that is 

= - -  - -  uy - (2) 
uxl ~x 1 + ~y '  ~y ~xl 

where uxl and uy are displacements in directions ox 1 and oy respectively, and q) and ~, 
satisfy the following wave equations 

I ~2 q~ v2 ~ _ I ~2 0 (3) 
V2q) c~ ~t 2 '  c 2 ~t 2 

in which V 2 = 8Z/~x~ + 8Z/~y2 is Laplace operator  for two dimension, cl and c 2 are two 
velocities of longitudinal and transverse elastic waves, respectively, i.e. 

cl = ( ~ ) 1 / 2 ,  c2 = ( : )1 /2  (4) 

and 2, # and ~ are the two Lam6 constants and mass density respectively. 

Making the Galileo t ransformation (1), the wave Eqs. (3) will reduce to the Laplace 

equations in the moving coordinate system (x, y) 

~ + ~  ~o=0, ~ +  ~ = 0  (5) 
aY2J 
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where 

Yl = alY, Y2 = ~2Y, 
~1 = (1 -- V2/C2) 1/2, ~2 = (1 -- vZ/e~) 1/2. (6) 

The crack problem stated in Sect. 1 (shown by Fig. 1) may be resolved into two 
problems. One is a problem of moving crack with length 2 (a + R), and by using super- 
position it may be presented as the following equivalent boundary value problem in the 
sense of fracture mechanics (the difference between the original and the equivalent prob- 
lems is only a constant term which has no contribution for stress singularity and doesn't 
produce crack opening displacement): 

y = 0 ,  ]x] < a + R: ~yy = - a (~ axy=0 ;  

(X 2 "4- 22) 1/2 ~ 00: (7ij = O.  (7) 

The other one is the problem of the effect of cohesive force zone and may be reduced to 
the boundary value problem 

y = 0 ,  a < l x l < a + R : a y y = %  axy=0 ;  

y = O ,  I x l < a : % r = O ,  % = 0 ;  (8) 

(X 2 _{_ y2)1/2 ~ 00: tYij = 0 

in which a u are stress components and stand for the following expressions 

(82 q9 82 ~/ ~ ,  
% = 2v2~~ + 2u \~x2 + 8xSyJ 

aYY = 2V2~ + 2 # \ ~ 5 y  z 8 x S y J '  

. .y = 2 # ~--@y + # \~-yg 8x2j. 

(9) 

2. Solution o f  the boundary value problem - the method o f  funct ion theory 

The solution of boundary value problem (7) may be easily obtained and will be 
discussed later. The solution of boundary value problem (8) is given in Ref. [1] in brief, 
it will be discussed here in detail. 

Introducing complex variables 

z 1 = x  1 + i y l ,  z 2 = x + i y  2 (10) 

then the solution of Eqs. (5) may be expressed as [5] 

q~(x, Yl) = IF1 (zl) + Fl(z*)], O(x, Y2) = i[V2(z2) - F2(z2)] (11) 

where F 1 (za) and F2 (z2) are two analytic functions of complex variables z 1 and z 2, and 
F 1 (z 0 and F 2 (z2) are their complex conjugates, respectively. 

Denoting 

q~(zl) - dF*(zl~) - F; (zO, T(z2) - dF2 ( z 2 ~ )  - F;(z2) (12) 
dz 1 822 
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and substituting expressions (I1) and (12) into Eqs. (2) and (9) yields 

U x ~- iUy : (] -- ~Zl) ~D(ZI) J- (] J- O(1)~(ZI) "~- (] -- 0~2) ~(Z2) -- (I "J- 0(2) ~J(Z2) , (13) 

a=  + a,, : 2#(c~ - c ~ ) [ ~ ' ( z J  + ~ '(zl)] ,  

a~,:, - ayy + i2oxv : 2/~ [(1 - %)2 ~b'(z~) + (1 + cq) z ~b'(zl) (14) 

-~ (1 - -  0~2) 2 ~r.t' (Z2) - -  (J  "~ 0~2) 2 ~t '  (Z2)] , 

For  the problems (7) and (8), the functions ~b(zJ and 7J(z2) have the following 
structure (when z 1 and z 2 being sufficient large) 

Ob(za) = i a, z l " ,  7 t ( z2 )=  i b, z2"  (15) 
n=l n=l 

where a. and b. are arbitrary complex constants. 
With the conformal mapping 

z 1,z 2 = c o ( 0 = -  ~+ (16) 

the outer region of the crack in z , -p lane/z2-p lane  is mapped into the inner region of 
the unit circle 7 in ~-plane (Fig. 2 and 3). Denoting the value of ~ on the unit circle V 
as ~ r = e  i~ the points A ( y = 0 ,  x = a +  R), B ( y = O + , x = a ) ,  C ( y = 0 ,  x = - a ) ,  
D (y  = O, x = - a - R), E (y  = 0 - ,  x = -- a) and F (y = 0- ,  x = a) in the physical plane 
are mapped onto the corresponding points % : 1, cr I = e i~ a 2 : e I{~-~ ~o : -  1, 
a 3 - e i(~+<) and a 4 = e -i~ on the unit circle in ~-plane after the conformal mapping. 

Figure 2 
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and 

Supposing the solution of problem (8) as r (zJ and T 1 (Z2) , w e  have 

�9 1 (z~) = ~ [co (01 = ~, (0, % ( z j  = ~1  [co (01 = % (0 (17) 

el (zJ = r  (0/m'(0, ~i (~) = ~', (0/co'(0 (18) 

where r  (0 and T ,  (0 are two new unknown functions. 
Substituting the relations (14) into boundary conditions (8) leads that 

Re [(1 + c O 4~] ( z j -  2 a 1 T'~ (z2)]r = o = a~f (x), (19) 

lm [2~ 1 ~i  (Z1) - -  (1 -1- ~2  2) ~tZtt 1 (Z2)]y= 0 = 0 ,  Ixl < a + R 

where the signs Re and Im represent real part and imaginary one of the complex function 
respectively, and the function f (x) is 

{;  a < , x l < a + R  (20) 
f ( x )  = Ix[ < a 

Substituting conformal mapping (16) into formula (19) and considering expressions 
(17) and (18) yields that 

1 - -  a 2 - - 1 a + R a s  
G1 (,:r) a~ Ga (a) = -aT 2 2 f (0), 

1 - -  (21) 
G 2(a) + ~ G z(a) = 0 

in which 

2 t t G 1 (a) = (1 + ~2) r  (a) - 2 ~2 T ,  (a), 

G~(~) = 2 ~  r 1 6 2  - (1 + ~)~' ,  (o) 
(22) 

and 

10 - 0 1 < 0 < 0 1 ,  n - 0 1 < 0 < 7 r + 0 1  (23) 
f (O)= 0 1 < 0 < ~ - 0 1  , ~ + 0 1 < 0 < 2 ~ - 0 1  " 

Multiplying by da/2 ~i(a - 0 both sides of Eq. (21), then integrating along 7 with 
respect to a one gets 

1 Gl(a ) ~ a - ~  ~ 1 1 da a + R a ~ I ~ l  !321o2--1 a 2 da 
2 n i [ m  da - -  2~n/[ ~ - + ~r o ' - -~ 4~i  #t_r a - -  

(24) 
1 1 G2 (a) 1 ~G 2(a) d a + ~ ! a 2  d a = 0  

In the above formulas I ~1 < 1, that is, it takes its values in the interior of the unit circle. 
Because G1 (0 and G2 (0 are the analytic functions in the inner region of the unit 

circle, based on the Cauchy integral formula, both first integrals on the lefthand side of 
Eqs. (24) result as 

1 S G1 (a) da = G1 (0, 1 ~ G 2 (a) da = G 2 (~) 
2rci ~, a- -  ~ ~ni~, a - -  ( 
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Also, because of the same reason, they may be expressed by the Taylor series 

GI(~)= ~ g.~', G2(O= ~ h.~", [r 
n = l  n = l  

in which g, and h. are arbitrary complex constants. 
Defining two new functions 

gl = g. and G2 = h-, , 1~1 > 1 
n = l  n = l  

these two functions are analytic in the exterior of the unit circle, therefore the functions 
in both second integrals on the lefthand side of Eq. (24) 

1 - -  
G 1 (e) and 1 G2 ((7) 

may be considered as the boundary values of the functions (the values of the functions 
on 7) 

i 
( ~ G I ( ~ )  and ~ G 2 ( ) )  

respectively, and these two functions are analytic in the outer region of the unit circle as 
mentioned above. According to the Cauchy integral formula, both second integrals on the 
lefthand side of the Eqs. (24) must vanish, so that 

[ !  ~'~] or2 - I de 
a + R e~ + e 2 

G: (0 = O. 
(25) 

After some calculations from formulas (25) and combining with formulas (22) 

a + R e  s 1 + ~  2 [2 I 1 1 - ~ 2  e 2 i < - ( z  1 
~;(0= ~ - ~ ( 1  + ~ / ~ - - 4 ~ 1 7 ~  ~ +2~i ~:~ l n ~ - - ? - i j  

~ , ( ~ ) = a + R o s  2c~1 [-2 10  1 1- -~  2 e2i~ 1 
T p ( l + c d ) 5 - 4 c q ~ 2 k z ~ 2  1+2~ri  ~2 lne-2~<_~2 [ .  

(26) 

a + R e  (~~ 1 +~22 
q~o(0- 2 # (1+c~2) 2 -4%% ~ 

a + R a (~) 2 ~1 
% ( 0  = ~. 2 # (1 + c~2) 2 - 4 % ~2 

(27) 

The problem (8) is now solved completely. 
The problem (7) may be solved in a similar manner but the calculation is simpler. 

Denoting the solution of problem (7) by ~o (0 and 7/o (~), we have (the solving approach 
here is different from that adopted by Yoff6 [2] 
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By superposing solutions (26) and (27) one may  obtain the total solution �9 (Zl) and 
7 j (z2) of the problem, that is 

~' (Z1) __ ~ ;  (r A V ~ ;  (r ~ '  (Z2) = ~t; (r ..~ ~ ;  (r (28) 
co' (0 co' (0 

Substituting formulas (26) and (27) into (28) and integrating, the expressions of functions 
~b(zl) and 7/(z2) may  be given directly. 

Based on these expressions and formulas (13) and (14) the displacement and stress 
fields of the problem are determined completely. 

3. Determination of  size R of  the cohesive force zone 

At the end of the cohesive force zone, that  is at y = 0, x = + (a + R), or at r = +_ 1 
in (-plane, the stresses must  be finite. F rom formulas (26), (27) and (28), this condition 
leads 

2 0 1 G  a r 0 o r  01 7[O'(m) = - (29) 
2a~ 

because of 

- c o s o l  : c o s  d, ,%Ix 
a 

a + R  \ 2 G /I 

so that 

R =alsec(~a(~ -- 1] (30) 

this is identical to the result of the Dugdale model in nonlinear fracture statics [3] as well 
as the result of the dislocation model proposed by Bilby, Cottrell and Swinden [4] for the 
static case. 

4. Dynamic crack opening displacement 

From formula (13) one can find that  

uy = - 2 Im [~1 ~(z l )  - 7~ (z2)] (31) 

and by using formulas (26), (27) and (28) and after some calculations, one gets 

1 cq (~  - 1) [-  (20~ a, t 
u,=  g(a + (1 -; --4 a, < Lrm't--g-- + r 

d 

( (2 _ e2iO, . ' In (r + el~ (r -- e i~ 1 
+ Re e i~ + e io)in r _ e-~2*~ ( e'~ - e- '~ (r + e - i~ - (~  _ e~O,~j j"  (32) 

Let ( take its value on the unit circle (that is setting ( = a = e~~ making the limitation 
according to the following formula, the dynamic crack opening displacement is obtained 
a s  

(~dynamic : lim 2 uy = 4 a as a,  (1 - -  ~2)  2 2  In //n a{~)'~ 
o~o, ~ p 4oq e2 -- (I + ~2) sec [ , , ~ - G  ) '  (33) 
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The result is calculated for plane strain state, while the result for plane stress state 
can easily be obtained from formula (33) only by making a substitution of material 
constants. The latter is more significant physically. The dynamic crack opening displace- 
ment for these cases may be written uniformly as below 

(~dynamic : A t (sstatic I (v) (34) 

where 

~A(v)(l + v) (plane stress state) (35) 
,4' (v) = (A (v)/(l - v) (plane strain state) 

~ (1 - ~ )  (v /c :V  (1 - v2/c~) '/2 
A (v) = 4e~ az - (l + c~z2) 2 4(1 - v2 / c~ ) ' / 2 (1  - v 2 / c i )  ' /2 - (2 - v2/c2)  2 

(36) 

8 a a  s [ 'ua(~176 I I~ tatic - ~ - ~  In s e c ~ - )  (37) 

E (plane stress state) 
E' = (38) 

E/ (1  - v 2) (plane strain state) 

In the above formulas the expression 5 static is identical to the result obtained by Goodier 
and Field [6] in which E and v are Young's modulus and Poisson's ratio respectively. The 
formula (34) is mentioned in Ref. [1]. 

w 3. The solution of moving Dugdale model for mode II 

By using superposition, this problem may be reduced to the following two boundary 
value problems of set (5): 

y = 0 ,  Ix [<a+R:a~y=- -~ (~~  a y y = O ;  
(39) 

(X 2 ..~ y2)1/2 ~ co:  a u = 0 

and 

y = 0 ,  a < [ x l < a + R : ~ x y = ' c ~ ,  

y = 0 ,  I x l < a : ~ y y = 0 ,  % = 0 ;  

(X 2 .~_ y2)U2 ~ oo : c~ij = O. 

~yy = 0; 

(40) 

Similarly, introduce two analytic functions �9 (zl) and ~ (z2) and 

(z0 = ~ i  (z0 + ~2 (zl) = ~ l  [co (01 + ~2 [co (0l = ~ ,  (0  + ~o (~-) 

~'(z2) = ~ (z2) + ~2 (z2) = ~e, [co (0] + q'~ [co (0] = % (0  + % (0 
(41) 

in which the functions 4) 1 (z 0 and 7Jl (z2) or ~,  (~) and ~ ,  (~) in the ~-plane are the 
solution of the problem (40) and the functions (b 2 (z 0 and 7~2 (z2) or ~o (() and % (~) 
in the (-plane are the solution of problem (39), respectively. In a similar procedure 
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to w 2 we obtain the functions (or their derivatives) as below 

and 

O , ( ~ ) i a + R ' G  2e2 
= - - - -  + (z e=5/~ / - -~2 j  2 #(1  + ~ 2 ) 2 - 4 ~ 1 c ~ 2  2 u i  

gJ,(~)=ia+Rv~ 1 +e22 [2 1 I 1-~2 e:,O~_~2 
2 # ( l + ~ ) ~ - - - 4 c q a  2 ~ y O ~ + 2 u i ~ - e - ~ ~  

(42) 

a + R r (~176 2 e2 
Oo (0 = - i - -  

2 # (1 +~2)2- -4~1~  2 

a + R r (~ I + ~22 
(43) 

The notations here are the same as those in the preceding paragraph.  
Requiring the stresses to be finite at y = 0, x = +_ (a + R) and considering the 

formulas (41), (42) and (43) yields that  

R = a [sec (~z(~)~\~-,,/- 1] (44) 

This determines the size of the cohesive force zone. 
The formula (13) leads 

u x = 2 Re [O (z 0 - a2 ~Y (z2)] (45) 

and based on formulas (45), (41), (42), (44) and the definition 

d y n a m i c  = lim 2ux 
II 

0 ~ 0 1  

we obtain the dynamic crack sliding displacement as follows 

odynamic t s ta t ic  = B (v) 61i (46) 

in which 

J'B (v) (1 + v) B' (v) 
( B  (v)/(1 - v) 

(plane stress state) 
(plane strain state) (47) 

~2 (1 - ~ )  (v/c2) ~ (1 - v:  /c~) 1/2 
B ( v )  = 

4 al  a2 - (1 + ~22) 2 4 (1 - v2/e~) ~/2 (1 - v2/e~) ~/2 - (2 - vZ/el) 2 (48) 

(49) 

E' is the same as in definition (38). 
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w 4. The solution of moving Dugdale model for mode III 

The governing equation of mode I I I  is 

1 ~2w 
V 2 w - ( 5 0 )  

c~ ~t ~ 

where w represents the displacement in direction of a x i s  o z  and c 2 is defined by 
formula (4). 

In terms of t ransformation (1), Eq. (50) is reduced to the Laplace equation in the 
z2-plane, that  is 

(8 
2 ~2 ) 

w = 0 (51) 
+ ey2 

in which the definition of Y2 is given in formulas (6). 
In this case only two stress components  a~z and O-y~ do not vanish. They satisfy the 

relations 

~w ~w 
ax~ = # ~ ,  tr,~ = #~.5. (52) 

u y  

the meaning of # is as the same as before. 
The Dugdale model of mode I I I  for a moving crack may  be found from the follow- 

ing two boundary  value problems by using superposition and neglecting a constant  
term 

and 

y = 0 ,  [ x l < a + R : % z = - z ( ~ ) ;  
(X 2 _1_ y2)1/2 ~ 0(3: O'/j = 0 (53) 

y = 0 ,  a < [ x l < a + R : % z = ' C s ;  

y = 0 ,  Ixl < a : % z = 0 ;  (54) 

(X2 + y2) 1/2 "-~ OO: Gij = O. 

The solution of boundary  value problem (53) is easy to obtain and will be given later. 
The solution of problem (54) is considered first. 

Because w is a harmonic  function of variables (x, Y2), it may  be expressed as a real 
or imaginary part  of an analytic function X (z2) where z 2 = x + i y2 .  For  problem (54) 
setting 

Z(z2) = ~1 (z2) and w ( x ,  Y2) = Re Za (z2) 

from formulas (52) and (55) one has 

(55) 

axz - -  i ~y~ = # X't (z2) : # -  
x;  (~) 
co'(~) (56) 

where Z, (~) -- Xx [co (()1 and co (~) is given by formula (16). 
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After some calculations the boundary value problem (54) leads to the following 
functional equation in the ~-plane 

1 Z , ( 0  I r 1 Z . ( 0 d c r = _ i  zS (a+R)  1 a 2 - 1  da (57) 

where e = e/~ f (0) are defined by formtda (23) and 7 represents the unit circle contour. 
By using a similar analysis as in w the solution of function Eq. (57) is obtained 

~s [-2 i ~1 21~z 1 -~2 ~2 ~eZi~ _ ~2]j 
z;, r  = - (a + R) 01 + in (58) 

Thus, problem (54) is solved. 
In similar manner, the solution of boundary value problem (53) may be found as 

.C(~) 
Zz(Z2) = X2 [o~(~)1 = Zo(~) = i(a + R) ~. (59) 

# 

The total solution of the problem consists of Z1 (z2) and Z2(z2) (or ;~. (~) and Zo (0 
in ~-plane). 

Using the formulas (56), and (59) and requiring the stresses to be finite at y = 0, 
x = +_ (a + R) (or at ~ = _+ 1 in ~-plane) leads to 

R :  a [  see (~(~~ \ ~ - z ~  J - 1] (60) 

This is the size of the plastic zone for mode III. 
The displacement w (x, Y2) is equal to 

w(x, Y2) = Re [Z. (0 + Z0 (~)l (61) 

From this, the dynamic crack tearing displacement is determined 

4 zs (rc~(~~ _ 8a%(1 + v)In /'rc~(~"~ vIII'gdynamic = 0~0,lim 2w : - a - -  In sec \~ - -% j T r  # ~E  sec t 2 ~ - L  ) (62) 

It is identical to the static one [4]. 

w 5. A crack propagation criterion based on the opening displacement 

As in static case, one can propose a criterion of crack opening displacement for the 
dynamic problem as follows 

~dynamic = ~Ic (V) (63) i 

in which ~I dynamic is described by formulas (34)-(38) and 6i~(v) should be a material 
constant but depending on the crack moving speed v. This criterion may be used to check 
crack propagation and determines the critical speed or critical length of the crack. 

After some modifications it may be used in the analysis of a moving crack for 
materials with elastic perfectly plastic or with hardening behaviour.  

A comparison with experimental results and other aspects will be discussed in 
another report. 
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Abstract 

This study proposes a moving Dugdale model for modes I, II and III, presents a fully dynamic 
analysis of the problem with the help of complex function theory and gives an exact analytical 
solution. From this solution, the stress and displacement fields and the dynamic crack opening 
displacement for mode I, II and III are determined. Based on this, the author proposes a criterion 
to describe dynamic behaviour of a moving defect in solids. 

Zusammenfassung 

Diese Arbeit schl/igt ein bewegliches Dugdale Modelt fiir Mode I, II und III vor. Sie gibt 
eine vollstfindige dynamische Analyse des Problems mit der Methode der komplexen Funktions- 
theorie und liefert die exakte analytische L6sung. Aus dieser L6sung werden die Spannungs- und 
Verschiebungsfelder und damit die dynamischen RiB6ffnungsverschiebungen ffir Mode I, II und III 
dieses Problems bestimmt. Auf dieser Grundlage schl/igt der Autor ein Kriterium zur Beschreibung 
des dynamischen Verhaltens eines bewegten Defekts in einem Festk6rper vor. 
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