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1. Introduction 

In a paper by Beard and Walters [1], the equations of motion for a 
visco-elastic fluid are derived and solved for the case of two-dimensional flow 
near a stagnation point. It has also been shown by three authors indepen- 
dently [2, 3, 4] that stagnation point flow can be modified to describe the flow 
of a Newtonian fluid near a point of re-attachment. In this modification the 
dividing streamline approaches a flat rigid boundary at an arbitrary angle of 
incidence. Dorrepaal [4] has shown that the slope of this streamline at the 
point of re-attachment divided by the slope of the same streamline far from 
the wall is a constant independent of the angle of incidence. 

In the present paper the same visco-elastic fluid considered in [I] will be 
studied near a point of re-attachment. In particular, the relationship discov- 
ered by Dorrepaal for a Newtonian fluid will be investigated for a visco-elas- 
tic fluid. 

2. Equations of motion 

Following Beard and Walters [ t] we assume the fluid occupies the upper 
half plane y > 0. Since the fluid is incompressible and the flow is two-dimen- 
sional, a stream function 0(x, y) exists from which the velocity components 
u(x, y) and v(x, y) can be derived: 

a0 a0 v - (2.1) 
u c~y ' 8x 

The equation of motion, after scaling, is as follows: 

ar av9 aO av9 ,jar av~o ar av~r 
V4~b+ax ay ay 8 ~  + k  ~,~x ay 8y ax J = 0  (2.2) 
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where k, the Weissenberg number, is a ratio of  elastic effects to viscous 
effects and is always positive. The equation is only valid to O(k) and so any 
visco-elastic solution obtained from this equation must be regarded as a 
perturbation of the corresponding Newtonian flow. 

Consider first the stagnation point flow investigated by Beard and 
Walters [1]. For future reference we sketch here a modified version of their 
solution. 

Consider a hyperbolic flow impinging on a flat wall at y = 0. The no-slip 
conditions apply at the wall and the stream function far from the wall has 
the form ~(x,  y),,~ xy  which suggests a similarity solution of the form 
~ ( x , y )  = x F ( y ; k ) .  After substitution into (2.2), the o.d.e, satisfied by 
F(y ;  k) is found to be 

F i~ + FF"' - F ' F "  + k { F F  ~ - F ' F  i~} = 0. (2.3) 

The boundary conditions are F(0) = F ' (0)  = 0 and F '(oo)  = 1. Equa- 
tion (2.3) can be integrated once and after the condition at infinity is 
invoked, we have 

r "  + FF" - -  F "2 q- 1 + k { F g  i~ - 2 F ' F "  + F "2} = 0. (2.4) 

Despite the fact that the equation is fourth order, it can be solved as a 
third order equation by using a perturbation approach. We assume 

F(y ;  k) = Fo(y)  + kF~(y) + O(k 2) (2.5) 

where 

F~' + FoF; -- F~o 2 + 1 = 0 (2.6) 

F0(0) = F ; ( 0 )  =0 ,  f a ( c e )  = 1 

defines the well-known Hiemenz function [5] describing the stagnation point 
flow of a Newtonian fluid. 

From a numerical solution recorded by Goldstein [6], we have 

g o ( Y )  = 1 C y  2 - -  _~,y3 + O ( y S ) ,  

(2.7) 
Fo(y) ~ y - A  + O { ( y  - A ) - 4  exp[- �89 -A)2]} ,  

where C = 1.232588, A = 0.647900. 
The term of O(k) is, from Beard and Walters [1], 

F'~' + FoF'( -- 2F'oF~ + F'~F, = 2F'oF~' -- FoF~ -- --0~'"2 (2.8) 

F~ (0) = F{ ( 0 ) =  O, F', (oo) = O. 

This equation is linear in & ( y )  and can be numerically integrated in its 
present form. However, a similar equation with a more compact right side 



710 J.M. Dorrepaal et al. ZAMP 

can be obtained by making the substitution 

F~ (y) = f ( y )  - F~ (y). (2.9) 

The boundary-value problem for f ( y )  is as follows: 

f "  + Fof" - 2r 'of '  + F'~f  = r~  

f(0)  = C (2.10) 

i f ( 0 ) = - I  f ' ( o o ) = 0 .  

The numerical integration of (2.10) yields the following results which are in 
agreement with Beard and Walters: 

f"(0) = D = 1.139019 

f(c~) = A, = 0.825547. (2.11) 

The solution to equation (2.4) to terms of O(k) is therefore 

F = Fo + k ( f -  F'~) + O(k2).  (2.12) 

The function F(y;  k) has the following properties to O(k): 

F(y;  k) = �89 + kD)y 2 - I(1 + kC2)y 3 -}- O(y 5) 

F ( y ; k ) , - , y - ( A - k A t ) + e x p .  y ~ o e .  (2.13) 

3. The flow near a point of re-attachment 

We assume the stream function far from the wall to be of the form 

~(x, y) ..~ xy  + ny 2 (3.1) 

where n is a constant. The dividing streamline which comes into the wall 
from infinity is defined by ~O(x, y ) =  0 and so the slope of the dividing 
streamline at infinity is -1 /n .  Equation (3.1) suggests that ~O(x, y) has the 
form 

tp(x, y) = xF(y )  + G(y) (3.2) 

where 

F(y)  ,,~ y ] (3.3) 
G(y) ,~ ny2j y ~ oo. 

When (3.2) is substituted into (2.2), it is found that F(y)  satisfies exactly 
the same boundary-value problem as that considered in w The solution 
given there applies and, to O(k), the small-y and large-y expansions for F(y)  
are shown in (2.13). 
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The equation for G(y)  is 

G iv + F G "  - F"G '  + k { r G  v - FiVG '} = 0 (3.4) 

G(O) = G'(O) = O, G"(oe) = 2n 

and after one integration, we have 

G "  + FG" - F ' G '  + k{FG ~ - F ' G "  + F"G"  - F " G ' }  

=2n( - A  + kAl) .  (3.5) 

The right side of (3.5) is the value of the integration constant obtained by 
examining the behaviors of F(y )  and G(y)  at infinity. The order of equation 
(3.5) can be reduced once more by the substitution G'(y)  = 2n i l ( y )  which 
yields 

H" + FH'  - F ' H  § k{FH'"  - F ' H "  + F " H '  - F " H }  = - A  + kA1 (3.6) 

H(O)=O,  H ' ( ~ ) =  I. 

Following the pattern of w we assume a perturbation solution for H ( y )  

of the form 

H ( y )  = Ho(y)  + k[h(y) - H~(y)] + O(k2). (3.7) 

The boundary-value problem for Ho(y)  is given by 

H~ + FoH'o - F'oHo = - A (3.8) 

H0(0) =0 ,  H~(oo) = 1 

and has been solved by Dorrepaal [4]. The Maclaurin series for Ho(y)  has 
the form 

Ho(y) = Ey - �89 2 + O(y 4) (3.9) 

where E = 1.406544. 
The equation for h(y)  is easily obtained by substituting (3.7) and (2.12) 

into (3.6) and retaining terms of O(k). We have 

h"(y)  + Fo(y)h ' (y)  - F'o(y)h(y) = R(y )  (3.10) 

h ( O ) = - - A ,  h ( o o ) = O  

where R(y )  = A1 + Hg(y )  - f ( y ) H ' o ( y )  + f ' ( y ) H o ( y ) .  
The condition at infinity is a consequence of the fact that h ' (y)  must 

vanish as y gets large. This implies that h(y)  must approach a constant 
whose value must be zero in order to maintain consistency with the large-y 
behaviors of the other terms in equation (3.10). 

The problem defined by (3.10) is a linear second order differential 
equation which can be solved analytically using reduction of order. The 



712 J .M.  Dorrepaal et al. ZAMP 

reduction is possible because F'~(y) is a solution of the homogeneous 
equation. Omitting the details, we have 

fo ~ K(Q) h(y) = - ( A / C ) F ; ( y )  + F~(y) . F;(e)I(o) de (3.11) 

where 

K(~) = R(r)I(r) dr 

(3.12) 
I(0) --= f~(0) "exp fo(s) ds . 

The condition at infinity is satisfied because both terms in (3.11) decay 
exponentially as y --, + oo. 

Having obtained h(y) analytically, it is now possible to obtain Maclau- 
tin series for H(y) and G(y) via back-substitution. Using (3.11), (3.9) and 
(3.7), we obtain the following results: 

h(y) = - A  + (A/C)y + �89 2 + O(y 3) "~ 
! 

H(y) = [E + k(A/C)ly - �89 + k(EC - A,)ly 2 + O(y 4) ~ .  (3.13) 

G(y) = n[E + k(AIC)]y 2 n [A + k(EC - A,)]y 3 + O ( y S ) l  
3 ) 

4. Behavior of the flow near the wall 

By substituting into equation (3.2) the Maclaurin series for F(y) and 
G(y) found in (2.13) and (3.13) respectively, we obtain a small-y expansion 
for the stream function 0(x, y) which has the form 

O(x, y) = N2(k)yZ + N3(k)y3 + Mz(k)xyZ + M3(k)xy3 + O(y 5) (4.1) 

where Ni, M, are the corresponding coefficients. 
Expression (4.1) can be rewritten 

O(x, y) = M2yZ{x + N'2 + N'3y + M'3xy + O(y3)} (4.2) 

where N; = Ni/M2, M'3 = M~/M2. 
If the change of variables X = x + N~ is made and then terms of O(Xy 3) 

are neglected, we have 

0(X, y) = M2y2{X + (N3 - M'3N'2)y + O(Xy) }. (4.3) 

Thus near the wall, the dividing streamline ~ = 0 has the equation 

X +  (N; -- M ; N ; ) y  = 0 (4.4) 
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and its slope m~ at the point  of  re-a t tachment  (X = 0, y = 0) is 

1 M~ (4.5) mw= , , , =  
M 3 N 2 -  N3 M 3 N ~ -  N3M2 

F r o m  w the slope of  the dividing streamline at infinity is moo = - 1/n. Thus 
after substi tuting for the coefficients N,., Mi in (4.5) and neglecting terms of  
O(k2), we find that  the ratio of  slopes is 

m---sw = 3.748513{1 + k(0.523675) + O(k2)}. (4.6) 
moo 

The point  of  re-a t tachment  is located at 

x = - N~ = - 2.282262n {1 - k(0.550376) + O(k2)}. (4.7) 

In Fig. 1, the effects of  elasticity are illustrated. The streamline on the 
left is the dividing streamline in a Newtonian  fluid (k = 0) impinging on a 
flat rigid boundary .  The streamline on the right is the same streamline in the 
flow of  visco-elastic fluid (k > 0). The  effect of  elasticity is to move  the point  
of  re-a t tachment  closer to the origin and to steepen the angle at which the 
dividing streamline meets the wall. 

As in the Newtonian  case, the slope ratio is constant  for all angles of  
incidence of  the dividing streamline at infinity. The constant  depends,  of  
course, on the Weissenberg number  k and as k ~ 0, Dorrepaal 's  result [4] is 
recovered. Relat ionship (4.6) means that  the Weissenberg number  of  a 
slightly visco-elastic fluid can be determined by examining the steady flow of  
such a fluid near a point  of  re-at tachment.  I f  the slope-ratio of  the dividing 
streamline can be measured f rom a photograph ,  say, the value of  k can be 
easily calculated. Once k is known,  it is possible using (4.7) to determine the 
relative strength n of  the shear flow which is responsible for the displace- 
ment  of  the s tagnat ion point  by the a m o u n t  ]x I. 

0 X 

Figure 1 
Dividing streamlines near a point of re-attachment for (a) Newtonian fluid; (b) visco-elastic fluid. The 
streamlines have the same angle of incidence far from the wall. 
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Abstract 

The flow of a visco-elastic fluid near a point of re-attachment is examined to see how elasticity 
affects the constant slope-ratio relationship which Newtonian fluids exhibit. The slope of the dividing 
streamline at the point of re-attachment divided by the slope of the same streamline far from the wall 
is found to be constant in the visco-elastic case, as well, for all angles of incidence. The slope ratio 
depends solely on the Weissenberg number which measures the extent to which viscous effects dominate 
elasticity effects. 
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