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1. Introduction 

The idea to describe complex multibody systems by redundant coordi- 
nates, introducing position and velocity variables for each body separately, 
is now generally accepted (see e.g. [6, 10, 13]). The formulation of the 
dynamical laws and the constraint conditions results in a set of coupled 
differential and algebraic equations, which presents difficulties for either the 
computation of the reactive forces or for applying a direct numerical 
integration scheme. Various methods for reducing this conglomerate of 
equations have been proposed [5, 7, 8, 11]. 

A new formulation of the equations of motion for multibody systems is 
presented here, where this problem does not arise. It is based on a 
projection method proposed previously [1], combined with the concept of 
mass-orthogonality. The multibody system is first described as a system of 
free bodies. All constraints of the system are written as kinematical con- 
straints and used to construct two projections splitting the space of veloc- 
ities into the space of admissible velocities of the constrained system and a 
complementary space of velocities vanishing as a result of the constraints. 
The projections are uniquely determined by an orthogonality condition in 
the mass metric of the free system. A corresponding splitting will then also 
hold in the space of the momenta. For the computation of the projections 
a positive definite and symmetric matrix, the fundamental matrix, has to be 
inverted. An explicit formula for the non-working constraint reactions as a 
function of the position and velocity variables is then obtained together with 
a system of explicit first order differential equations describing the motion 
of the constrained system. 

The method presented is well suited for the simulation of complex 
multibody systems as well as for the further development of the theory of 
dynamics [2, 3]. 
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2. The free system 

We assume that the multibody system to be investigated, which will be 
addressed as the constrained system, can be obtained from a free system by 
introducing constraint equations. The free system may simply be the system 
of free bodies of the multibody system, but it could as well be any system 
easily described by the classical equations of  mechanics. We will assume the 
constrained system to be scleronomic, so that all constraint conditions will 
be time-independent. We will not assume, however, the constrained system 
to be either holonomic or conservative. As will be seen, nonholonomic 
constraints do not present special difficulties. Also, nonconservative and 
time dependent forces are easily included in the description used. 

Let us then assume that the free system is described by a set of 
generalized coordinates qk and velocities u k, where k runs from 1 to n, and 
n denotes the degree of freedom of the free system. If holonomic velocities 
are used, we have 

O k = u k. (1) 

In the case of nonholonomic velocity parameters, they will be linearly 
related to the O k by 

u k = B~(qJ)4 h (2) 

or, denoting the inverse of the matrix B~ by/?~, 

0 k = h (3 )  

respectively. Here, the summation convention for repeated indices has been 
adopted. 

Let us furthermore assume that the kinetic energy of the free system is 
a homogenous quadratic form of the velocities, 

T(q k, u h) = �89 (4) 

The coefficient matrix Mij represents the mass matrix of the free system, it 
is symmetric and positive definite. Then 

Pk = Mkj u j (5) 

are the canonical momenta,  and with the inverse mass matrix A ij we also 
have 

u k = A kJpj. (6) 

Notice that the two matrices B~ and M;j will typically be block diagonal 
matrices, so that their inverses can be easily computed. 

For the definition of the generalized forces we introduce the quantities 

5~ k = B~ fq  h, (7) 
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which in the case of holonomic velocity parameters coincide with the 
variations of the coordinates cSq k. The generalized forces Qk are then defined 
through the relation 

6W = QkcS~ h (8) 

for the virtual work. We will also need the further notation 

c3T OT ~h 1 c3Mij ~ u i u J  (9) 
~?~h -- ~qh Bk -- 2 ~3q h 

and introduce the matrices 

= ( e q  s Oq"J BhB~. (10) 

We are now ready to formulate the classical equations of dynamics. In 
the case of holonomic velocities we write the equations of Lagrange in the 
form 

#T 
Pk =~qk  + QK, (11) 

0 h = U h = A kjpj. (12) 

These equations describe the motion of the free system in the canonical 
variables Ph and qh, while the u h are used as abbreviations to be inserted 
into the expression (?T/c'~q h in (11). 

In the case of nonholonomic velocities we formulate the equations of 
Euler-Lagrange [4, 12] 

0T 
Dk + C~,phu'=-~qk + Qh, (13) 

u h = AkJ&. (14) 

Together with (3) they describe the dynamics of the free system in terms of 
the canonical variables Ph and qh. For later reference it is convenient to 
write (11) and (13) in a common form, 

15h = Qh, (15) 

where Qh denotes either the right hand side of (11) or, in the case of 
nonholonomic velocities, 

~T 
Ok = ~qk + QK -- ChkiPh ui. (16) 

The relevant dynamical equations can then be written in matrix form as 

/i = ~, (17) 

u = A p ,  (18) 
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and 

O= 
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(19) 

3. Constraints and projections 

We will now introduce constraints. They are time independent, since we 
assume the constrained system to be scleronomic. Geometric constraints are 
of  the form 

f (q  k) = 0, (20) 

while kinematical constraints read 

e~(qi)u k = 0. (21) 

Since differentiating a geometric constraint results in a kinematical con- 
s t ra in t - - the  reverse is true only for holonomic cons t ra in t s - -we  may as- 
sume that all constraints of  the system are kinematical. We then arrive at a 
set of  constraint equations of  the form 

euk (qi)u k = 0. (22) 

Let nc denote the number of  constraints, which we assume to be linearly 
independent. Then the index # will run from 1 to nc and the index k from 
1 to n. In matrix notation (22) reads 

Eru = 0. (23) 

This represents a homogenous linear system with a coefficient matrix of  
rank 

r(E r )  = nc. (24) 

The solution space consists of  the admissible velocities of  the constrained 
system. At a given point, this is a subspace of  the tangent space of  the free 
system and has dimension na, i.e., the degree of  freedom of  the constrained 
system. Obviously, 

na + nc = n. (25) 

We now want to construct two complementary projections ~, and f 
splitting the tangent space of  the free system into the admissible velocities 

u~ = ~u (26) 

of the constrained system and a complement of  velocities 

u~ = flu (27) 
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vanishing due to the constraint  equations.  As complementary  projections, at 
and p satisfy the relations 

at2 = at, /~2 =/~ (28) 

and 

�9 + / ~ = L  ~/~=0, /~at=0, (29) 

where I denotes the unit  matrix. Fur thermore ,  since the image of  at is the 
solution space of  (23), we have 

E T a t = 0  and E T / ~ = E  T. (30) 

Also, the rank of  at has to be na, the rank of  p no. One verifies easily that  
a possible choice of  projections is 

p = KE(ETKE) -~E ~ (31) 

and 

at = I - /~ .  (32) 

In these formulas an arbitrary regular symmetric n by n matrix K can be 
substituted. Choosing for K the unit  matrix makes the two projections 
or thogonal  in the usual metric. We will see, however, that  an orthogonality 
condition in the natural metric o f  the free system, i.e. the mass metric, is more  
appropriate.  

In the space of  the velocities of  the free system a scalar p roduct  is 
in t roduced with the mass matrix M of  the free system by 

(u, v) = uTMv. (33) 

Two velocities will be called or thogonal  if their scalar p roduct  vanishes. A 
project ion /~ will be called or thogonal  if its image and its kernel are 
or thogonal  subspaces. We then have 

Theorem 1: The following condit ions are equivalent: 

i) the project ion/~ is or thogonal ,  

ii) at TM~ = O, 

where at is the complementary  projection of  p, 

iii) M]~ = (M/~) r. 

(34) 

(35) 

Proofi Let us first show that  i) and ii) are equivalent. Let v~ be an 
element of  the image of  /~ and us an element of the kernel. Then the 
definition of  or thogonal i ty  demands  that  

u~Mv~ = u Tat TMIJv = 0 (36) 

for all u and v. But this holds if and only if (34) is satisfied. 
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Now let us assume that (34) holds. Then 

~ r M ~ = M ~ - ~ T M ~ =  M ~ .  (37) 

Adding the transpose of (34) then results in (35). On the other hand, if (35) 
holds, multiplication by e r  from the left gives (34) since ~r/~T= 0. 

We are now in a position to state 

Theorem 2: The following conditions uniquely define the projection/~: 

i) /~2 =/~, (38) 

ii) Er/~ = e T, r(~) = r(E r)  = no. (39) 

iii) M/~ = ( M ~ )  r. (40) 

Proof: The solution is unique, since a projection is uniquely determined 
by its image and kernel. Condition ii) defines the kernel of ~. In fact, the 
first part of condition ii) implies that the kernel of ~ is included in the kernel 
of E v. Since /~ and E r have the same rank, the two kernels coincide. 
Condition iii) then, by mass-orthogonality, defines the image of ~. 

The solution is obtained by setting 

K = A (41) 

in (31). 
We present the formulas for the two projections by introducing the 

matrix 

G = E r A E ,  (42) 

which we call the f undamen ta l  matr ix .  It is a symmetric nc by nc matrix and 
because of (24) it is positive definite. Hence 

= M[~ = E G -  J E r (43) 

is well defined and the two projections are 

e = I -  An ,  ~ = Art. (44) 

In the space of forces the transpose projections have to be used, since it 
is the dual of the space of velocities, therefore we have 

Q ~ = ~ r Q  and QB=~rQ.  (45) 

Q~ represent the external forces acting on the constrained system, while Q~ 
consists of contributions from loads and from constraint reactions. 
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4. Mass and influence matrices of the constrained system 

If, in the expression for the kinetic energy of the free system 

T = �89 TMu (46) 

we insert 

u = u~ + u B, (47) 

we arrive at 

T 1 T T 1 T = ~u~,M~,~,u~, + u~, M~,~u~ + ~u~M~t3u ~, (48) 

where the matrices 

M ~ = ~ r M ~ ,  M ~ r  Ma/s=~TM~,  (49) 

have been introduced. The most important of these is the mass matrix M~  
of the constrained system. It is an n by n matrix of rank na. 

The momentum of the free system is 

0T 
P - •u - Mu, (50) 

and if we differentiate the kinetic energy (48) with respect to u~ and u, we 
find 

c3T 
- M~u~ + M~t3u/3 = erp, (51) P~ - Ou~ 

OT 
Pa - Ou~ - Ma~u~ + M p ,  ua = ~ rp. (52) 

Obviously, by duality, the transpose projections ~ r and / i  r have to be used 
in the space of momenta and forces. In the constrained system, since u~ 
vanishes, we have the two momenta 

p~ =M~,~,u~ (53) 

and 

p ,  = Magus. (54) 

From (54) together with (34) and (49) follows 

Theorem 3: In the constrained system the momentum p~ vanishes for an 
arbitrary u~ if and only if the projections ~ and/1 are mass-orthogonal. 

This theorem will be the basis for deriving the formula for the constraint 
reactions. 
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We have already seen that in the spaces of forces and momenta  the 
projections at T and fir  have to be used. An immediate consequence is that 
the formulas for the influence matrices corresponding to (49) are of the 
form 

A~.~. = ~A~ T, A . ,  = ~ A # T =  Aft.. A , ,  = #A#  T. (55) 

Inserting the expressions (44) for the projections in (49) and (55) we have 

M ~ , ~ , = M - n ,  M ~ = 0 ,  M ~ = 0 ,  M ~ = n  (56) 

and 

A~,~ = A - A n A ,  A~,p = O, Aa~, = O, Aaa = A n A .  (57) 

We see that the matrices A~a and A~ also vanish due to mass-orthogonality. 
In addition we obtain 

Theorem 4: The matrices A~,  M ~  and A~,  Mt~ a respectively are gener- 
alized inverses in the mass metric of the free system, i.e.: 

.4, ,M:~ = ~, M ~ A , ,  = ~T (58)  

and 

A~pM~/~ = fl, M/3~A~/~ = f i r .  (59) 

Proof: The definition of the generalized inverse [9] demands that the 
product of the two matrices be an orthogonal projection acting as unity on 
each factor. In our case orthogonality will hold in the mass metric. In order 
to prove the first part of (58) we use the relation 

n a n  = M f l A M f l  = M f l  2 =  M f l  = n (60) 

to find 

A~,~M~,~, = (A  - A n A ) ( M  - n )  = A M  - A n  - A n A M  + A r i A n  

= I - A n  = ~t. (61) 

and 

M~,A~,~, = (A~,~,M~,~) r =  ~t r. (62) 

The formulas (59) follow in a similar way. 
As a result of Theorem 4 the relation (53) can be inverted to yield 

u~, = A~,~,p,.  (63) 
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5. Dual formulation of constraints 

I77 

In section 3 we have assumed kinematical constraint equations. The 
rows of the matrix E r in (23) can be interpreted as a virtual constraint 
force, and this equation then simply states that the power of such forces has 
to vanish for an admissible motion. 

In a dual formulation one can assume a matrix F r of  virtual admissible 
velocities and formulate the constraint condition as 

F r Q  = 0. (64) 

The linear space of forces satisfying (64) then coincides with the image of 
B r. By duality, the two projection operators �9 and ~ can be constructed 
from F "r, uniqueness being guaranteed again by an orthogonality condition. 
Notice that the metric in the force space is given by the matrix A. The dual 
formulation of Theorem 2 yields 

Theorem 2": The following conditions uniquely define the projection 6: 

i) ~2 ~, 

ii) ~F = F, r(~) = r(F) = na, 

iii) ~A = (~A) r. 

The fundamental matrix now is 

H = FrMF.  

It is a symmetric positive definite matrix of order na. With 

~p = o~A = F H - 1 F  r, 

the two projections are 

�9 = O M ,  ~ = I - O M .  

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

The expressions for the mass and influence matrices (56) and (57) now read 

M ~ = M ~ k M ,  M~r  M ~ = 0 ,  M ~ = M - M ~ k M  (71) 

A~=~p ,  A ~ = 0 ,  A ~ = 0 ,  A ~ p = A - O .  (72) 

The dual approach is convenient for mechanisms and systems with na 
small in comparison to no. One has to realize, however, that there is a basic 
difference between the two descriptions. While it is possible to choose 
matrices E r of full rank globally, this will not in general be possible for the 
matrices F r. In fact, a global regular F r would imply the existence of  na 
linearly independent vector fields tangent to the configuration manifold of 
the constrained system. This is only possible if this manifold is a torus, an 
Euclidean space or a product of  the two. 
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6. Derivatives o f  projections 

In order to derive the dynamical equations of  the constrained system, 
the time-derivative of  the two projections e and '8 will be needed. This 
time-derivative, which we denote by a dot, is understood to be the con- 
vected derivative as the point representing the system moves along the 
configuration manifold. 

F rom 

+ ,8 = I (73) 

we find 

= -1~. (74) 

Let us first assume that A is constant. Differentiating 

1r = E G - I E r =  E ( E T A E )  - ' E  T (75) 

and introducing 

/]7 = D, (76) 

we find 

r~ : = o  = E G - 1 D  r -  E G - 1 D r A E G - 1 E  r 

+ D G - 1 E  r -  E G - 1 E T A D G - l E  r 

= E G - I D r ( I -  A n )  + ( I  - A n ) D G - ' E  r (77) 

or, with the notation 

12 = E G - I D  r, (78) 

finally, 

a~ = ~ t  + ~ rfa r. (79) 

In a second step, we assume E r constant and compute the influence of  
h)/. F rom 

'8 = A n  = A E G  l E t =  A E ( E r A E ) - I E T  

we get 

= Arc - A r i A n  

= ( I  --  A n ) J t M ' 8  = ~ A M ' 8  

= - AM'8 = --A T I'8 = 

As a result we obtain the formula 

(80) 

(81) 

(82) 
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In the dual formulation the corresponding formulas read 

0 = [ ~ H - 1 F  r, 

0 = ~ 0  + O T ~  T, 

= - -~  = OM -- +~:~M. 
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(83) 

(84) 

(85) 

7. Dynamics of the constrained system 

In Theorem 3 we have seen that the momentum pa of the constrained 
system vanishes as a consequence of mass-orthogonality. Differentiating the 
equation 

p~ = p Tp = 0 (86) 

we find 

o r  

= ~ ~ 0  + ~,Aj, - ~ t ~ A ~  = 0, (87) 

Q~ = -o~At, +//~+tp. (88) 

Let us now assume that the forces Q are composed of  loads F and 
non-working constraint reactions R = R~. Then 

Q~ = F~ + R~ (89) Q~ = F ~ ,  

and 

()~ = • + R~. (90) 

Here the correction terms (16) have been included in the loads. We thus 
have 

Theorem 5: The non-working constraint reactions are given as functions 
of position and velocities by 

R~ = - F / 3 - t o u  + N/~u. (91) 

In order to derive the dynamical equations for the constrained system 
we differentiate 

p~ =~trp = p  (92) 

to obtain 

/i s = / i  = Q~ + Q~. (93) 
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Inserting (88), we get 

[~ = 0.~ - o~Ap~ + M~=Ap~, (94) 

which has to be combined with 

us = A=~p~ = ~Ap~ (95) 

and, eventually, 

4 =/~u. (96) 

Dropping the indices ~ in (94) and (95) we get 

Theorem 6" The equations below correctly describe the dynamics of the 
constrained systems on its configuration manifold: 

= Q~ - o~Ap + N I ~ A p ,  (97) 

= Bu, u = ~Ap. (98) 

The extension of the dynamical equations from the constrained system 
to the phase space of the free system, however, is not unique. Another 
version of the basic equations is given by 

Theorem 7: The equations below correctly describe the dynamics of the 
constrained system on its configuration manifold: 

/~ = Q~ - flu +/~ r!l)/u, (99) 

( l = B u ,  u = A p .  (100) 

Proof: For the constrained system 

u = u~ = ~ A p ~  = A ~ T p ~  = A p ~  = Ap,  (101) 

which proofs the equivalence of (98) and (100). Also, from (79) 

r = om~ = ~ u ~  = ~ u ,  ( 1 0 2 )  

since 

~ ' ~  = 0. (103) 

Furthermore, 

N/~u =/~ rN/~u =/~ VMu (104) 

So (99) is equivalent to (97). 
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Notice, however, that the two sets of dynamical equations differ in 
respect to the integrals they admit in the space of the free system. The 
equations (99) and (100) of  Theorem 7 admit the integral 

J = ErAp.  (105) 

In fact, 

) =  EVAp + ETAp + ErAp 

= EvAQ= - EVAflu + EVA~Vi~Iu 

- EVA~IAp + F.rAp. (106) 

But, due to 

ETA0  = ETA TQ = ET, A 0  = 0, (107) 

- E r A f 2 u  + [~TAp = - E r A E G - t F . r u  +/~ru = 0 (108) 

and finally 

ErA~ VNlu - EvAlf/IAp = Er~ANIu - ErAiVIu = 0, (109) 

the right hand side of (106) vanishes. This allows for the interpretation that 
in the set of equations (99) and (100) no additional instabilities are 
introduced by describing the constrained system in the space of the free 
system. 

In using either Theorem 6 or Theorem 7 for computations (see e.g. [2]) 
one will have to be careful to start with initial conditions satisfying the 
constraints of the system both for position and momenta. 
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Abstract 

A projection method based on the classical equations of mechanics for the description of multibody 
systems is presented. The system is described by arbitrary coordinates and velocity parameters. From the 
constraint equations two complementary projections splitting the space of velocities into the space of 
admissible and inadmissible velocities respectively are constructed. They are uniquely determined by a 
condition of mass-orthogonality. A consistent description of the dynamics of the constrained system 
results. The constraint reactions are given as functions of position and velocities and an explicit system 
of differential equations for the motion of the constrained system is derived. 

Zusammenfassung 

Eine Projektionsmethode zur Beschreibung yon Vielk6rpersystemen, die auf den klassischen 
Gleichungen der Mechanik basiert, wird vorgestellt. Das System wird mit beliebigen Lagekoordinaten 
und Geschwindigkeiten beschrieben. Aus den Bindungsgleichungen werden zwei komplementfire Projek- 
tionen konstruiert, die den Raum der Geschwindigkeiten des gebundenen Systems in den Raum der 
zul~ssigen und unzul/issigen Geschwindigkeiten spalten. Sie sind durch eine Bedingung der 
Massenorthogonalit/it eindeutig festgelegt. Es resultiert eine konsistente Beschreibung der Dynamik des 
gebundenen Systems. Die Bindungsreaktionen werden als Funktion yon Lage und Geschwindigkeiten 
angegeben, und ein explizites System von Differentialgleichungen fiir die Bewegung des gebundenen 
Systems wird hergeleitet. 
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