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I. Introduction 

The main purpose of this note is to demonstrate that a postulate for 
balance of entropy in thermomechanics-- in  the form introduced by Green 
and Naghdi [1]-- is  consistent with, and can be derived from, the balance of 
energy. However, additional results also emerge from our derivation which 
include the classical conservation laws of  the mechanical theory for mass, 
momentum and moment  of momentum. 

After some preliminaries in section 2, our starting point in section 3 is 
a statement of balance of energy which at first has a slightly different form 
than the usual in that it also includes the rate of thermal energy due to heat 
density (see Eq. (2.3)2); the latter may be regarded as the counterpart of the 
rate of kinetic energy in a purely mechanical theory. In this form of the 
balance of energy (or the First Law of thermodynamics), it is the specific 
Helmholtz free energy (and not the specific internal energy) which first 
occurs. However, after invoking the well-known relationship between these 
two specific energies (see Eq. (3.11)2), we recover the usual form of  the 
balance of  energy in terms of  the specific internal energy. In section 4, we 
turn to our main objective for deriving a balance of entropy from the 
balance of energy. Here, we designate certain quantities by the scalar m, the 
vector f, and the scalar ~; and later identify these, in the order listed, as 
internal generation of mass, internal force per unit mass and internal 
generation of entropy (see Eqs. (4.4)-(4.6)). These help to provide a clearer 
picture of the structure of the basic equations in thermomechanics; and 
eventually, in the context of a nonlocal theory, the first two, namely m and 
f, are set equal to zero. Also, in the course of our derivation in section 4, we 
first set aside the invariance conditions under superposed rigid body mo- 
tions (hereafter abbreviated as s.r.b.m.), but these conditions are eventually 
utilized in order to deduce the balance of entropy in the form postulated in 
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[ 1]. A part of the derivation which concerns the recovery of the mechanical 
conservation laws is presented only briefly in the latter part of section 4, 
since it is somewhat similar to the procedure and used previously with 
various degrees of generality by Green and Rivlin [2], by Naghdi [3, pp. 
487-490] and by Green and Naghdi [4]. 

Two aspects of the present derivation are worth emphasizing. The 
inclusion of the rate of thermal energy (due to heat density) in the primitive 
form of the balance of energy in section 3, together with additional 
quantities introduced in section 4 (see Eqs. (4.4)-(4.6)), now provide 
clearer interpretations of the various derived results. Moreover, the balance 
of entropy in the present development emerges naturally instead of being a 
separate postulate motivated only by the form of the energy equation for an 
inviscid fluid [1]. 

2. Notations and preliminaries 

Consider a body N' with particles (material points) X and identify X 
with its position X in a fixed reference configuration Ko in a three-dimen- 
sional Euclidean space ~3. Let x be the position vector in d ~ occupied by 
the particle X in the current configuration K at time t. Also let ~0 and ~ be, 
respectively, the mass density of N in the configuration Ko and K. A motion 
of ~ is a sufficiently smooth and invertible mapping )~ defined by 
x = ~(X, t). The particle velocity is defined by v = ./, where a superposed dot 
denotes material time differentiation holding X fixed. Let ~ in its current 
configuration K occupy a material volume N bounded by a smooth closed 
surface #N and denote the volume occupied by any subset 5Pt of r in K by 
a part N ~ N bounded by a closed surface c?N. 

Recalling the basic concepts of force, work and energy in classical 
continuum mechanics, we suppose that the body ~ is acted upon by surface 
(or contact) forces f per unit area of ~?N and by body forces b per unit mass 
throughout N. The rates of work of these forces are defined for all v, 
respectively, by f" v per unit area of 0~  and by b �9 v per unit mass in ~ .  

1 Also, the kinetic energy per unit mass is defined by 5v �9 v throughout  ~ .  It 
is assumed that the externally applied force f gives rise to a surface (contact) 
force t per unit area of 0g~, defined by a corresponding rate of work 1 t �9 v 
for all v. 

Next, in the context of thermomechanics, we admit the existence of an 
empirical temperature T and heat energy. Thus, a positive scalar variable 0 
is defined throughout  N which depends on T and on the kinematical and 

1 In addition to t, the external forces t could be assumed to give rise to internal body forces in ~ ,  but  
it is not  necessary to admit such internctl body forces here. 
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thermal properties of the body restricted by the condition (OO/~?T)> O. 
Then, 0 is invertible with respect to T and is adopted as a measure of 
temperature throughout N. The external rates of supplies of heat to the 
body N' consist of a surface flux of heat - h- per unit area of ~?N and volume 
rate of supply of heat r per unit mass throughout N. These are accompanied 
by an external surface flux of entropy - k  -- -/7/0 per unit area of ~ and 
an external volume rate of supply of entropy s = r/O per unit mass through- 
out N. It is assumed that - / 7  and -kS give rise to a surface flux of heat - h  
into ~ and measured per unit area of 0~, together with a surface flux of 
entropy - k  = -h/O per unit area 2 of ~ .  Further, corresponding to the 
kinetic energy density in N arising from mechanical concepts, there is a 
density of heat ~ together with an entropy density r /=  ~/0 per unit mass in 

In the remainder of this section, we record various expressions repre- 
senting the kinetic energy, thermal energy due to ~, heat supplies and rate of 
work contributions to any subset 5 a, of the body in ~ occupying a volume 

bounded by a closed surface ~3~. The kinetic energy K and the thermal 
energy H due to the heat density ~ = Or/per unit mass in 5#, are: 

K( ,)=f�89 H(6e,)=foOtldv. (2.1) 

The total rate of work R on 5 e, due to rate of work by the body force b and 
the rate of work by the contact force t is 

R(Se~)= f Qb'v'dv + fo~t'vda. (2.2) 

Similarly, the total rate of heat Q supplied to 5 e, is 

Q(~t)=f ~rdv-f~hda 

= f oOsdv-   Okda. (2.3) 

Finally, for later reference, we introduce the total rate W at which internal 
energy (both due to rate of mechanical work and thermal energy) is 
generated in 5e, by 

W(~,)  = J~ Ow dr, (2.4) 

where w is density of internal energy. 

2 Internal volume of rate of supply of heat and entropy may also be generated in ~ ,  but these are not 
considered here. 
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The balance of energy (or the First Law of  thermodynamics)  for any 
part  5a, occupying a volume ~' in K may be stated as follows: 

(i) The total rate of  work of external body forces in 5~ plus the rate of  
work of  surface traction on OSe,, plus energy due to external volume 
supply of  heat in 5e, and external surface flux of  heat across ~35et, minus 
the total rate of  change of  kinetic energy and heat in Set plus the total 
rate at which internal energy (mechanical  and thermal) is generated in 
~ ,  is zero. 

(ii) The total heat energy Q and mechanical  work R supplied to or 
extracted f rom 5 e, in a cycle is zero. 

A cycle referred to in (ii) is a thermomechanical  process, during a closed 
interval of  time I = [tl, t2] with tl < t2, involving various kinematical,  kinet- 
ical and thermal variables, which define the state of  any part  of  the body 
and which assume the same values at the beginning and end of the cycle at 
times tl and t2. For  example, the body could be completely at rest at the 
beginning and end of  the cycle, with the same values of  the kinematical and 
kinetical variables. 

In adopt ing a balance of energy for Set in the form stated in (i) and (ii), 
it is tacitly assumed that  the theory under  discussion is a local theory, i.e., 
any internal forces or rate of supplies of  heat generated in 5~,, as well as 
quantities such as t and k, do not  depend on kinematical quantities outside 
5e~. Some modifications are necessary in order to discuss a nonlocal  theory. 

In view of  the statement (i) and the definitions (2.1)-(2.4) ,  the balance 
of  energy may  be stated in the form 

d 
dt {K(6e') + H(6e')} + R(~ , )  + Q(Sa,) + W(Se,) = 0. (3.1) 

Observing that  the time rates of  change of  kinetic energy R and of  thermal 
e n e r g y / ; / t a k e  the  same values at the beginning (t = tl) and end (t = t2) of  
any cycle during the time interval I = [tl, t2], f rom the s tatement  (ii) and an 
expression resulting from integration of (3.1) with respect to t between the 
limits t~ and t2 we obtain 

~ ,2 W(Se,) dt = 0, (3.2) 
i 

where we have also used (2.4). The result (3.2) must  hold for all ~ and for 
any cycle during the time interval I = [q, t2]. If  the time integral in (3.2) is 
taken over any thermomechanical  process which is not  a cycle during the 
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closed time interval [h, t], the integral is nonzero and will not  depend on the 
path  but  only on the state of  the body at t ime t (and tl) so that  

f ' W(Set) = -q~(Set), (3.3) dt 
1 

with ~P defined by 

W(5P,) = f~ OO dr. (3.4) 

The scalar potential  tp on the r ight-hand side of  (3.4), as becomes evident 
later, is known  as the specific Helmholtz  free energy. It follows f rom (3.3) 
that  

d 
rV(~,) - ,it W(~,)  (3.5) 

and then by virtue of  (2.4) and (3.4) we also have 

- ewdv=  40dr, (3.6) 

which holds for every part  ~ .  Hence, with the usual continuity assumptions 
we may deduce the local result 

OJw = -~)~9, (3.7) 

where J = det F and F = c~)s stands for the deformat ion gradient. With 
the help of (3.5) or (3.6), the balance of  energy in the form (3.1) can be 
reduced to 

d 
--d5 {g(~tgt) -4- H(~2,~ + kt/(~t) } -~- R(o,~ 2i-- Q(Se,) = 0, (3.8) 

or equivalently to 

d + 0  +,7o]eav dt 

+ fe(sO+b.v)odv+ foe ( t ' v -kO)da=O.  (3.9) 

Before closing this section, we indicate the relationship between (3.9) 
and the usual form of  balance of  energy. For  this purpose,  we introduce a 
specific internal energy e and define internal energy E by 

E(5 e,) = f Oe dv (3.1 O) 
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Then, after setting 

E(5~,) =q ' (6e , )  +H(Se , ) ,  e = O  + q 0 ,  (3.11) 

the balance equat ion (3.9) can be rewritten in its usual form in terms of  e 
after also replacing sO and kO by r and h, respectively. 

4. A derivation of conservation laws of thermomechanics from the balance of 
energy (3.9) 

F r o m  the balance of  energy (3.9) we derive here a general balance of  
entropy, as well as the mechanical  conservation laws of  the classical 
con t inuum mechanics. We first apply the balance of  energy (3.9) to an 
elementary te t rahedron and using the usual smoothness  assumptions,  we 
deduce that  

( t  - T n ) "  v - ( k  - p  " n ) O  = 0 ,  (4.1) 

where n is the outward unit  normal  to 0~.  As will be seen below, the second 
order tensor T in (4.1) is the (Cauchy) stress tensor, and p is an entropy flux 
vector which is related to the usual heat flux vector q by p = qO. With the 
help of  (4.1) and the divergence theorem, the energy balance (3.9) may be 
reduced to 

= f~ { -  (0 + 0 div v)[�89 v + 0 + qO] 

+ ( --0v + Qb + div T )  �9 v4 - 0s �9 e~ + T .  D + ( - o i l  + Os 

- div p)O 

- p .  grad 0 - 0(~ + t/0)} dv = 0, (4.2) 

where 6 v defines the integral in (4.2), "div" stands for the divergence 
operator  with respect to the place x keeping t fixed, grad 0 = 80/Ox is the 
temperature  gradient, D is the rate of  deformat ion tensor, W is the spin 
tensor, oJ = curl v is the vorticity vector and 

- - o F  = � 8 9  T r ) ,  A • a = F a ,  o) x a = 2 W a  (4.3) 

for all arbitrary vectors a. Also, in (4.2) and (4.3), the nota t ion T r stands 
for the transpose of  the second order tensor T, F is a skew-symmetric 
second order tensor w i th / t  being the corresponding axial vector. 

We now define a vector f and scalars ~ and m by the equations 

m = 0 + 0 div v, (4.4) 

o f  = oi~ + my - Ob - div T, (4.5) 

03 = O r} + m ~ / -  Os + div p. (4.6) 
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Then, after adding and subtracting my �9 v to and from the integrand of (4.2) 
and using (4.4)-(4.5), (4.2) and hence (3.9) reduces to 

= f~ { � 8 9  �9 v - m O  - ~ f "  v - ~i~ �9 + T "  D 

- ~ 0  - p .  grad 0 - ~(q) + ~/0)} dv = 0. (4.7) 

Since g (defined by the left-hand side of (3.9))-- in accordance with 
statement (i) of section 3--represents the sum of all energies displayed in 
(3.1), the reduced expression (4.7) enables us to give an interpretation and 
meaning to m, f and r which so far are defined only mathematically by 
(4.4), (4.5) and (4.6). It is convenient to provide here interpretations as to 
what each term in the integrand of the integral in (4.7) represents. A list of 
these interpretations is as follows: 

T �9 D: rate of work of internal stress T 
- p - g r a d  0: rate of internal generation of heat due to entropy flux 

vector p 
- Q f ' v :  rate of work by an internal force f per unit mass 

- ~ ; t  �9 e~: rate of work by an internal couple per unit mass 
- ~ 4 0 :  rate of supply of energy due to an internal generation of 

entropy 
-rnq/: rate of supply of energy due to an internal generation of 

mass 

In a complete theory it is necessary to specify constitutive equations for 
T , p , f  4, m, as well as for O and t/ (or 0). Then, equations (4.4)-(4.6) 
represent field equations for balances of mass, momentum and entropy, 
respectively, and these equations cease to be merely definitions of m , f  4. It 
should be noted that in this approach there is, at this stage, a nonzero 
internal force f and internal couple ~t although only stress vectors were 
applied to the surface. As will be seen presently, these internal forces will be 
zero. However, if the theory had been a nonlocal theory these quantities 
would not be zero and would have been present in the original energy 
balance (3.1) since they are affected by material outside ~ ,  unless N is the 
entire region occupied by the body as a whole (see, for example, [4]). 

Since (4.7) must hold for every part ~ ,  assuming that the integrand is 
continuous, we may deduce the local equation 

� 8 9  �9 v - m ~  - ~ f "  v - ~ 2  �9 ~o + T "  O 

-- Q40 - p  �9 grad 0 - ~(~ + r/0) = 0. (4.8) 

Given constitutive equations for T , p ,  rl, re , f ,  4, the equations (4.4)-(4.6) 
with specified values for the external force and external supply of entropy 



166 A.E.  Green and P. M. Naghdi ZAMP 

and suitable boundary and initial conditions are sufficient to determine the 
velocity (or the displacement) and temperature fields. Moreover, as in the 
paper of Green and Naghdi [1], the reduced energy equation (4.8) must be 
regarded as an identity which provides some restrictions on constitutive 
equations. 

It will be observed that the balance of momentum in (4.5) contains the 
extra internal force f and is, therefore, somewhat different from that in the 
usual approach which postulates a momentum balance at the outset. 
Moreover, the entropy balance (4.6) appears here naturally consistent with 
a general balance of energy instead of being a postulate with only a limited 
motivation (based on the form of the energy equation for an inviscid fluid) 
as in [1]. 

In order to relate the second order tensor T to the stress vector t and the 
vector p to the surface flux of entropy k, we return to (4.1) and examine its 
implication under s.r.b.m. Under such motions of the body moves to the 
configuration K + which differs from 1r only by a rigid motion. Thus, by 
considering a special s.r.b.m, in which the particle velocity v + in ~r + differs 
from v by only a constant rigid body translational velocity and after an 
appeal to well-known invariance conditions, we readily obtain 

t =  Tn, k = p ' n .  (4.9) 

The first of  (4.9) is a standard result in continuum mechanics and identifies 
T as the Cauchy stress tensor, while the second of (4.9) relates the surface 
flux of entropy k( = h/O) defined in section 2 to the entropy flux vector p. 

As noted in section 1, it is known that from the energy equation and the 
invariance conditions under s.r.b.m., the field equations for mass conserva- 
tion and the linear momentum may be recovered in the forms (4.4) and 
(4.5) with 

m =0 ,  f =  O, (4.10) 

and that the equation for moment  of momentum may be recovered with 
= o or equivalently with 

F = O  or T = T  T. (4.11) 

It should be emphasized that the local equations for mass conservation and 
linear momentum, namely (4.4) and (4.5) together with (4.9) and (4.10), are 
obtained here using a special s.r.b.m, in which v + differs from v by only a 
constant rigid body translational velocity; and that the result (4.11) corre- 
sponding to the local form of the consequence of moment  of momentum is 
obtained using a special s.r.b.m, in which the skew-symmetric part of the 
velocity gradient in K + differs from that in K by a constant rigid body 
angular velocity. Of course, the results discussed in this paragraph may 
alternatively be derived directly from (4.8). 
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Before closing this section, it may be observed that the basic structure of 
(4.6) together with its interpretation as a balance of entropy--consis tent  with 
the reduced energy equation (4 .7)- -was  established prior to any consider- 
ation of invariance under s.r.b.m. Furthermore, the use of a particular 
s.r.b.m, and associated invariance conditions in connection with (4.9) and 
(4.10) is very mild indeed. With this background, by invoking (4.10)1 once 
more, the second term on the right-hand side of (4.6) vanishes and we obtain 

~ = dl  - Os + divp,  (4.12) 

which is the local form of the balance of entropy postulated in [ 1]. 

5. Additional remarks 

Most of the existing literature on thermodynamics does not admit an 
entropy balance but postulates an entropy inequality, such as the Clausius- 
Duhem or similar inequalities, where often the concept of entropy first 
appears. An alternative procedure in [ 1] makes use of an entropy balance as 
an independent balance law in the form (4.12). In this approach, after 
elimination of the heat supply r and the body force b with the use of  the 
local equation for balance of entropy and the equations of motion, the local 
balance of energy results in a reduced energy equation. The latter is then 
regarded as an identity for all thermomechanical processes and is used to 
place restrictions on constitutive equations. Additional restrictions which 
arise from the Second Law of thermodynamics can also be imposed with 
profit on the constitutive equations, but these are not discussed here either. 
Instead reference is made to the discussion of  this aspect of  the subject in [5] 
after suppressing the electrodynamic effects. 

The entropy flux p in (4.6) and (4.12) is clearly defined through (4.9)2 or 
equivalently through q/O, where the positive temperature 0 depends on 
empirical temperature T and may also depend on a particular material. At 
this stage 0 is not an absolute temperature. It frequently happens, however, 
that after full discussion of constitutive equations for a given material, the 
temperature 0 can be proved to depend only on the empirical temperature 
7". Then, by imposing also the condition that the scalar 0 is an increasing 
function of T, i.e., O0/~?T > 0, it can be concluded that 0 is an absolute 
temperature of the particular class of materials discussed but not necessarily 
for all materials. Some authors have claimed that a definition of the form 
q/O for an entropy flux is not always true. However, in general, such a 
quantity cannot be measured directly. Sometimes claim is made in regard to 
the form of entropy flux on the basis of comparison with kinetic theory, but 
macroscopic definitions used in kinetic theory do not necessarily coincide 
with those used here or other developments in thermomechanics. 
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