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Mixed convection on a vertical circular cylinder 

By T. Mahmood and J. H. Merkin, Dept. of Applied Mathematical Studies, 
University of Leeds, Leeds LS2 9JT, Great Britain 

I. Introduction 

The problem of the mixed convection boundary-layer flow on a vertical 
plate has been discussed in some detail, by, amongst others [1, 2, 3, 4, 5]. 
The problem of the mixed convection on a horizontal cylinder has been 
treated by Merkin [6]. The occurrence of dual solutions in mixed convection 
similarity solutions was shown by Wilks and Bramley [7], they also consid- 
ered the eigenvalue problem arising out of a linear stability analysis of these 
solutions. 

However, the problem of mixed convection in axi-symmetric boundary 
layers has received much less attention, and, perhaps, the easiest of such prob- 
lems to set up is the boundary-layer flow over a vertical circular cylinder, held 
at a constant temperature in a uniform free stream Uo. Previously Narain and 
Uberoi [8], have considered the problem of the combined forced and free-con- 
vection heat transfer thin needles in a uniform external stream, obtaining a series 
and local similarity solutions. The related problem with a prescribed wall heat 
flux has been treated by Mucoglu and Chen [9], they gave results only for 
moderate distances from the leading edge. 

Glauert and Lighthill [10], have investigated the forced flow problem, giving 
two methods for obtaining a solution. One is a Pohlhausen method, based on 
a velocity profile chosen to represent conditions near the surface as accurately 
as possible. The other is asymptotic series solution, valid far enough downstream 
from the leading edge for the boundary-layer thickness to have become large 
compared with the cylinder radius. This asymptotic series was also given by 
Stewartson [11]. For this problem Seban and Bond [12], obtained a series 
solution valid near the leading edge where the boundary layer is thin compared 
to the cylinder radius. 

We show that in the mixed convection problem the flow depends on the 
Gr 

buoyancy parameter ~ = - - .  When ~ > 0 when the buoyancy forces act in the 
Re 

same direction as the flow and so aid the development of the boundary layer, 
whereas when ~ < 0 they oppose its development. 
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We obtain a solution for the present problem by first deriving a series 
solution for small X (where X measures (non-dimensional) distance from the 
leading edge). The leading order term is the Blasius flat plate solution and we 
find that the curvature effects give an 0(X 1/2) perturbation to this, while the 
contribution from the buoyancy force first appears at 0 (X). This series solution 
is then extended by a numerical solution of the full boundary-layer equations. 
We find that for c~ > 0 this numerical solution can give accurate results only up 
to moderate values of X as, for large X, the solution develops a logarithmic 
singularity on the cylinder. Then, following [10], we obtain an approximate 
solution valid for all X; we find that this solution gives a good approximation 
for small X. For large X we find that the flow is essentially free convection, the 
asymptotic solution of this problem has been given by Kuiken [13], and on 
comparing with his solution we find that our approximate solution has the 
correct asymptotic behaviour. 

For e < 0 the boundary layer separates at a finite value X s of X with a flow 
reversal indicated. We find for moderate values of e, at least, that near X = X s 
the solution behaves in a regular way, without the singularity that was reported 
for the flat plate problem [1]. 

2. Equations of motion 

Consider a uniform stream U 0 flowing past a fixed vertical cylinder of 
radius a. The temperature of the cylinder is held at the constant value T 1 differ- 
ent to that of the ambient fluid which has temperature T O . 

The boundary-layer equations governing the flow are: 

(r u) + ~ (r w) = 0 (l) 
~x 

. ~  + w ~  = 0/~(r-  To) + v \ ~  + ; ~ j  (2) 

uux+W~r=~Ck~r  2 +-rCr (3) 

together with the boundary conditions 

u = w = 0 ,  T =  T1 on r = a )  

u ~ U  o, T ~ T  o as r ~ o o  ~ (4) 

where u, w are velocity components in the x, r directions, fl is the coefficient of 
thermal expansion, g is acceleration due to gravity, v and K are the kinematic 
viscosity and the thermal diffusivity respectively. Equations (I)-(3) can be made 
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non-dimensional by introducing the non-dimensional variables, 

u W = w T -  T o (5) 
R = r/a, X = (x/a) R e -  1 U -- Uo, Uo Re, 0 - A ~  

where Re is the Reynolds number given by Re = U~ a and A T = T 1 - T o. In (5) 
v 

the transverse coordinate r is made non-dimensional using the cylinder radius 
a, whereas the much longer scale a r e  (Re ~ 1) is used for the streamwise coor- 
dinate x. This, in turn, implies that, as in [10, 11, 13], the present discussion is for 
thin cylinders, i.e. cylinders which are long compared with their radius. 

Using (5), Eqs. (1)-(3) become 

(R U) + ~-R (RW)  = 0 (6) 

U 0U OU 8 2 U 1 ~U 
a x  + = 0 + + (7) 

 a0) 
U ~ + W oR - Pr \ ~ R  2 + R ~ (8) 

where Pr is the Prandtl number and ~ = 
g fl A T a  2 

- Gr/Re is the buoyancy 
Uov 

parameter; ~ > 0 for aiding flows (i. e. where the buoyancy force acts in the same 
direction as the flow) and a < 0 for opposing flows (i. e. where the buoyancy force 
and the flow are in opposite directions). The boundary conditions are 

U = W = 0 ,  0 = 1  on R = I ~  
(9) 

U ~ I ,  0 ~ 0  as R ~ o o  

3. Solution 

(a) Series solution for  X small 

Near the leading edge the flow will be basically that on a flat plate, with the 
effects of the curvature of the cylinder and the buoyancy forces having only small 
effects. This suggests the transformation 

R 2 - 1 
~, = X 1 / 2 f ( X , q ) ,  0 = O(X,q), r I -  2X1/2 (10) 

where ~, is the stream function defined so that 

1 0~u 1 0q/ 
U -  W . . . .  

R OR' R 0X" 
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Substituting (10) into Eqs. (7) and (8) gives 

1/2 8 3 f  s l12 82 f 
(1 + 2 ~/X ) ~-gq3 + 2 8r/2 

+ a O X  + i f  82f  
2 81~2 

8s 
= x ~ 8 ~ 8 x  8 x  8~ ~) 

82 0 80  1 80  
(1 + 2r/Xl12) ~q2 + 2 X 1 / 2 ~ + T P r f  ~ 

with boundary conditions 

8f 8f f = 0 ,  N = 0  o n e / = 0 ,  N ~ I  a s ~ / - * o o  

0 = 1  o n e / = 0 ,  0 - - . 0  as r / ~ o o  

. 

(11) 

(12) 

(13) 

Equations (11) and (12) suggest an expansion for f ( X ,  ~I) and O(X, rl) for small 
X in the form 

d (X, ,D = do (,D + x ~/~ L (,) + X d~ (,D + ......].( 
(14) 

0 (x, ,D 0o (~) + x 1/2 01 (~) + x 02 (~) + 

We can see from Eqs. (11) and (12) that  curvature effects appear in the 
0 (X 1/2) terms, while the buoyancy force effects first appear at 0(X). This 
requires us to split up f2 and 0 z as f2 = F2 + a ~o 2 and 02 = 02 + c~ h2, where 
the equations for F z and 02 include just the curvature effects, and (o 2 and h a 
include just the buoyancy effects. The resulting equations have to be solved 
numerically�9 To do this we used the known numerical solution of the 
leading order term in Eq. (11), (the Blasius equation) which has fs (0) = 0.33206 
and for Pr = 1, 0'o(0 ) = -  0.33206. This gave for Pr = 1, f i ' ( 0 ) =  0.69432, 

! 
f ; '  (0) = - 0.65658 + 1.14666 ~, 01 (0) = - 0�9 0' 2 (0) = 0�9 - 0.27108 ~. 

Using these values it follows that the non-dimensional skin friction coeffi- 

cient C f  = \R-SRJR: i  - Xil2 \a~/zJ,=o is given by: 

C f  = X -112 (0.33206 + 0.69432X 1/2 + ( -0 .65658  + 1.14666e)X + .. .) 

and that  Nusselt number  (15) 

, C00) 
Uu = \ R  -SR.iR=i X i l 2 . . ~  ,1=o 

is given by, 

Nu = X -  1/z (0�9 + 0.69432X 1/2 - (0.65658 - 0.27108 e)X + . . . ) .  

(16) 
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(b) Finite-difference solution 

Because near the leading edge the flow is basically that on a flat plate, with 
the effects of the curvature of the cylinder and the buoyancy forces having only 
small effects, transformed Eqs. (11) and (12) are the appropriate ones to solve 
numerically starting at the leading edge. However to remove the singularity in 
these equations at X = 0 arising from the X x/2 term we first put ~ = X ~/2, giving 
the equations, for Pr = 1, 

~, 8 3 f  ~ 2 f  •  
(1 + 2r/gJ ~-~3 + 2r ~ 2  + er 0 + 2 8r/2 

(v (17) 

82 0 80 i f  80 ~'2/'Sf 80 8./" 80"] 
(1 + 2 ~ / ~ ) ~ + 2 r  5 ~ = g /  ~ - ~  8~8r///" (18) 

To solve Eqs. (17) and (18) numerically we use q = ~  and 0 as dependent 

variables, and then replace the derivatives in ~-direction by differences and 
all other quantities by averages. On writing v = v 1 + v z, u = 01 + 02 and 

2 - - - ,  Eqs. (17) and (18) become 

E, [ l + t / ( ~ i + ~ 2 ) l ~ 2 +  ~ 1 + r  o + v - - ~ X q i  d d~- 

-- 2 v ( v - -  2ql) = 0 (19) 

dq~+ ~ i + ~ 2 ) + o i  + v - ~ 2 q ,  dq 

1 
- - 2 v ( u  - 2 0 1 )  = 0 .  ( 2 0 )  

4 
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The derivatives in the r/-direction are then replaced by central differences, giving 
finally the system of nonlinear algebraic equations" 

vj+ 1 - 2 v / +  vj_ i + 

h 2 

2 [I + %+1 - vj_l)  

L h 

(~  ~)  1 6j] ( ~ t + ~ 2 )  2 h 2 
- -  + + Vj - 5 2 + c~ 2 [1 + j h (~a + ~2)] uj 

2h 2 
/ 2 2 v j) 0 

4 [1 + j h (~1 "-]- ~2)] ~uj 
qlj (21) 

uj+ 1 - 2uj + uj_ 1 + 
h 2 

2 [1 + j h ( ~  1 + 42)1 (uj+~ - uj_~) 

. + 

L h 

2 h  2 

- 411 + j h ( ~  + ~2)1 v j (u j -  20t j  ) = 0 (22) 

(j = i, 2, 3 ... n). Where h is the step length in the r/-direction and where 

1 V~ = (vl + v2 + " "  + �89 and 6j = (q~ + q2 + " "  + ~ qj). 

These nonlinear algebraic equations are solved iteratively using the 
Newton-Raphson method�9 Starting with initial estimates for v~ and uj (the 
values calculated at the previous step) a new value for vj was obtained using 
Eq. (21). Then using these values for vj in Eq. (22), a better estimate for u~ 
was calculated. The process was continued until the difference between suc- 
cessive iterates in both vj and u~ was less than 10 -6. The process was found 
to converge easily, usually taking no more than 4 iterations to achieve conver- 
gence�9 

To start the integration at ~ = 0 values of fo and 0 o obtained from expan- 
sion (14) were used�9 The integration then proceeded for increasing ~ in step-by- 
step manner�9 To maintain accuracy in the ~-direction the step from ~ to ~ + A~ 
was covered in first one and then two steps with the step-length A~ being ad- 
justed so as to keep the differences between these two solutions less than 5.10- 5 
At each step, the values of q and 0 obtained via the two-step integration were 
used�9 Having calculated the velocity and temperature profiles the skin friction 

l ( ~ q )  and Nusselt number  Nu = 1(80"] parameter  Cf = ~ ~qq ,=0 - ~ \~tL},=0 were calcu- 

lated at each step in the ~-direction. 
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(c)  Approx imate  me thod  

To obtain an approximate solution, which is valid for all X, we use an 
integrated form of the energy Eq. (8), namely 

d m 

Pr \ ~ R J R  = 1 
(23) 

and take approximate forms for the temperature and velocity profiles as 

1 
0 = 1 - ~ l o g R  

U = (1 - R 2) + 1 + 4 (e2a -- 1 log R I < R < e A (24) 

0 = 0 ,  U = 0 ,  R > e a .  

These profiles are chosen so as to satisfy the conditions that 

0 = 1 ,  U = 0  on R = I ;  0 ~ 0 ,  U = I  as R ~ o o .  (25) 

The form for the temperature profile is suggested by the approximate solu- 
tion for the flow past a cylinder derived by Glauert  and Lighthill, [10], while the 
form for the velocity profile arises from the condition, from Eq. (7), that for 

R -  1, ~ _-_- c~R. Integrating this twice, and using (25) gives the 

expression for U in (24). Substituting (24) into Eq. (23) gives an ordinary differ- 
ential equation for A which, for Pr  = 1, is 

dA  )e4a - d s  - + 

+ + g - 4 ~  

- 4 ~  + 1 ~  - +  

3a  1 ~ / 
+ l - ~  + 2A  2 4~12 e2A 

/ 

3~ 1 ~ -]-1 

64A 2A 2 + 8 ~ J  " 

(26) 

Equat ion (26) can be solved implicitly for S in terms of A subject to X = 0 at 
A = 0 to give 

X 3o~ e4 A + 1 + e 2A (4(1 e 2A) ~x (1 + e 4A 2 e2A)) 
= 6 4  4 + - -  - -  - 

( 2 7 )  

dS.  
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For small X, (27) gives A - (12X) 1/2, independent of c~, from which it follows 

that 

Nu = 0.289 X -  1/2 (28) 

This is seen to be in good agreement with the correct form for Q near X = 0 as 

given by (16). For X large and c~ > 0, X --- 3~ e4A, so that 
64 

4 
Nu ~ (29) 

(64X~ 
l o g \  3 ~ J 

for X >> 1. 

4. Results 

(a) Aiding case, ~ > 0 

Consider first the case when e > 0 (i. e. where the buoyancy forces act in the 
same direction as the flow). The effect that the buoyancy forces have on the flow 
and heat transfer characteristics are shown in Figs. (la) and (lb) in which the 

values of .=o = Cf R ~ e  and - ~ = Nu Re respectively, as obtained 

from the numerical solution described above, have been plotted against X for 

16.  

i a= 11 1 0 
1 12 / 3 

cfRe~ 

0 i 
0 4 8 12 16 20 24 

x 

Figure la  ~q = ~ e e  Cf plotted against X for various values of ~ (aiding Graphs of wall velocity gradients 
case), o 
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3,0 

2,4 

1.8. 

a = 5  3 1 

1,2 �9 

0 . 6 .  

N uRex�89 

Re 

0 . 0  I I i I I I 

0 4 8 12 16 20 24 
X 

Figure lb  (80 )  ~ .  Relx/2 
Graphs of wall temperature gradients - = Nu Re plotted against X for various values of 
c~ (aiding case). ~-, o 

various values of e. It is evident from these figures that for a given value of e, 
there is rapid increase in these quantities as X increases along the cylinder, with 
this increase being more pronounced for the larger values of e. 

The effect that the buoyancy forces have on the flow can also be seen in 

Figs. (2 a) and (2 b) in which the graphs of velocity and temperature profiles Of 

and 0 respectively are plotted against q for various values of X for the case when 
= 1. F rom Fig. (2 a) we can see that  close to the leading edge the velocity profile 

approaches the free stream value from below. Further  along the cylinder, where 
the buoyancy forces have had more opportuni ty  to accelerate the fluid near the 
cylinder, a velocity "overshoot" results, with the size of this overshoot increasing 
as X is increased. Also this figure shows that the boundary layer thickness 
increases considerably away from the leading edge. The effect on the tempera- 
ture is also appreciable as can be seen from Fig. (2 b). The temperature profile 
shown for X = 87.4 is quite different to that at X = 0. This has a pronounced 
double structure, with an initial sharp descrease, followed by a long "tail". 

The shapes that the velocity and temperature profiles take as X is increased 
causes a difficulty for the numerical solution. To account accurately for the rapid 
change near the cylinder requires a small step length h in the ~/-direction, while 
the long tail requires the outer boundary conditions being applied at successive- 
ly larger values of ~/. This conflict between the need for a small step length and 
a large range of integration and the need to keep the computat ion time within 
reasonable bounds limits the usefulness of the numerical scheme to moderate 
values of X. The same difficulty has been encountered in a similar problem [14]. 
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0,2 

0,0 

X=87. 4 

I 

Figure  2 a  
Velocity profiles at  va r ious  va lues  o f  X f o r  ~ =  1. 

o 5 1o 

Figure  2 b 
Tempera tu re  profiles at  X = 0 a n d  X = 87.4 for c~ = 1. 

15 20 25 

Also, as we shall show below, the asymptotic solution for large X is attained 
only when log (X/a) >> 1, with this asymptotic solution giving rise to a logarith- 
mic singularity on the cylinder. This renders the use of transformed equations 
based on the asymptotic solution unsuitable for numerical integration. Conse- 
quently the approximate solution is useful in giving estimates for heat transfer 
(and skin friction) over the full range of X needed. 
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1.6 

Nu 

Figure 3 

I 

-2 

0.8 

0.4 

I I I I I 

2 4 6 8 10 

InX 

Nusselt number Nu, evaluated by the approximate method, plotted against log e X (shown by the full 
line). Graphs of Nu obtained from the numerical solution for h = 0.1 (shown by - - - )  and h = 0.05 
(shown by . . . . .  ) and Nu as given by the asymptotic solution, (39), (shown by . . . . . . . .  ). 

In Fig. (3), a graph of Nu against log e X is given for 0r = 1 as obtained from 
(27). Also in this figure are plotted graphs of Nu obtained from the numerical 
solution (again for ~ = 1), using values of h = 0.1 and h = 0.05. From these it 
is apparent that the numerical solution with h - -0 .1  becomes inaccurate at 
about log e X = 3 (X ~ 20) while the solution with h = 0.05 continues to remain 
accurate beyond this point, before finally becoming inaccurate at about 
1Oge X ~ 5 (X ~- 150). In both cases the outer boundary conditions were applied 
at t / =  40. 

Both from the numerical and approximate solutions we can see that in 
the aiding case free convection eventually becomes the main mechanism of 
heat transfer from the cylinder, with forced convection having an increasingly 
less significant effect. This is in line with other mixed convection studies for 
plates [1, 2], but is in contrast to the mixed convection flow past a circular 
cylinder in a saturated porous medium [15], where at large distances along 
the cylinder it was forced convection which again became the most important 
effect. 

To obtain the solution for X >> 1, we follow the solution derived by Kuiken 
[13], for the free convection boundary layer on a vertical cylinder. To do this we 
first put 

x = ~ X ,  u = ~ 7  (30) 
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so that from (5), X and U are independent of the flee stream Uo, with now 
vGr  

x = a Gr 3? and u - . We then put 
a 

H ((, 3?) R 2 
= X F ( ~ ,  X) ,  0 - log~(37)' r - 9 ( 2 ) "  (31) 

When (30) and (31) are substituted into Eqs. (7) and (8) and the functions F ((, 3?) 
and H ((, 3?) expanded in powers of (log g)- t we find that, at leading order, F and 
G satisfy the ordinary differential equations 

2 ~ H "  + (F + 2)H' = 0 

2 ( F " '  + (2 + F ) F "  1-Ft2 - z -  + H : 0  

(primes denote differentiation with respect to 

gZ _ 4 37, from which it follows that 
log g 

g ( X ) = ( 2 X l o g 2 X )  1/2 1 + 0 \  i o g X - ] ] "  

The boundary conditions are that 

provided g(X) 

(32) 

(33) 

satisfies 

(34) 

F ' ~ 0 ,  H - - , 0  as ( ~ o o  (35) 

and on the cylinder 

F = F ' = 0 ,  H = I  on ( g = l .  (36) 

Using (31) and (34), it follows that the free stream gives a contribution of 

0 which is negligible relative to the expansion variable (log g)-1 

and so the effect of the free stream will not be felt in this expansion. From Eq. (32) 
it follows that, for small 

H = A o l o g (  + B o + .. .  (37) 

and satisfying (36) gives A o = - 1. Also we require the solution of (33) not to be 
singular at ff = 0, so that 

F ~ C o(  + . . . .  (38) 

The solution of Eqs. (32) and (33) satisfying (37) and (38) then gives the values 
ofB o and C O as B o = 0.231, Co = 1.436 for Pr = 1 (the results given in [13] were 
for Pr = 0.7). The solution can then proceed to higher order terms. From this 
solution it follows that 

4 
N u  ,,~ log (2 X log 2 X) (39) 
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and comparing this with (29) we can see that the approximate solution estimates 
the heat transfer correctly to leading order. This can be seen from Fig. (3), where 
values of Nu obtained from (39) are also shown. It is also apparent from the form 
for large X of the solution given by (37) why transformation (31) required to 
obtain the asymptotic solution is unsuitable for using in a numerical scheme. 

(b) Opposing case, ~ < 0 

For opposing flows, i.e. c~ < 0, the buoyancy force and the flow are in 
opposite direction. In Figs. 4 (a), (b), (c) and (d), the graphs of wall velocity and 

1 .4  

1 . 2  

1 .0  

/ / 

0.~3 , "  

0.6 

0.4 

0.2 

0 . 0  I 

2 

0o - - -  

-0.2 

Figure 4 

z I i I ~  I 
4 6 ~ 10 12 14 

X 

Graphs o f  wall velocity gradient and temperature gradient (shown by broken line) plotted against 
X for the opposing case. 
Figure 4a. ~ = - 0.1. 

0 , 6  

O. 5 j j  . ~  ~ - ~  ~ - - ~  . . . . . . . . . . . . . . . . . .  - - - "  

0 . 4  

0 . 3  

9 . 2  

0 ,1  

0 . 0  I I I I I ~ -  

O. 1 0.2 0,3 0,4 0,5 
X 

-0. ] Figure 4 b. ~ = - 1. 

] -q 
0,6 0.7 



Vot. 39, 1988 Mixed convection on a vertical circular cylinder 199 
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0 . 3  

0 . 2  

0 ,1  

0 . 0  

Figure 4 c .  ~ = - 5 .  - 0 . 1  

" ~  (~) " 

I I I [ 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 
X 

I 

O. 08 

0 . $  

0 . 2  

0 .1  

- - - -  I 1 4 - - - - - - -  I - -  I - -  | 

0.0| 0.005 0.010 0.015 0.020 0.025 0.030 

I 
X 

Figure 4 d .  c~ = - 1 0 .  -o. I 

O. 0~5 

temperature gradients (~qqq)and (~0) - are plotted against X for various 
0 0 

values of •. These figures indicate that Nusselt number N u  - X ~ / 2  

O 

decreases slowly while the skin friction goes to zero at a finite value of X, X~ 
(say). 

A graph of the values of X s as obtained from the numerical solution 
for various values of e is shown in Fig. (6). Also shown in this figure is a 
graph of Xs, as calculated from the series expansion (15). To derive this we 
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1.0 

x=s.76 ~ ~  

> . 0 . 6  

8 �9 
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0.0 

8 12 16 20 

F i g u r e  5 a 

Ve loc i ty  p r o f i l e s  a t  X = 5.76, X = 10.89 a n d  X = 12.25 fo r  ~ = - 0.1. 

1.0 

O. 8 

w i 0.6, 

~ 5. 76 

~0.4. 

0.2. ~ ~ 

0. o i "\ J 

o 5 6 

F i g u r e  5 b  
T e m p e r a t u r e  p r o f i l e s  a t  X = 5.76 a n d  X = 12.25 fo r  e = - 0 , 1 .  

I I 

9 12 

put  Cf = 0 at X = X s and solved the resulting quadrat ic  equat ion for X:/2 to 
get, for Pr = 1, 

X~/2 = [0.529 + (0.280 + 0.506 (1 + 1.746 lal))1/2]/(1 + 1.746 I~1). (40) 

We can see from Fig. (6) that  the values of X s as given by (40) are in good 
agreement with the numerically determined values at least for the larger values 
of c~. Also, we have from (40) that  Xs ,-- 0.290/1~] for I~1 >> 1. For  I~l >> I the 
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1 . 6 ~  

Figm'e 6 
Separation point X s obtained from the 
numerical solution (shown by full line), 
and obtained from (40) (broken line). 
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effects of curvature will have only a small effect and the flow upto separation will 
be given basically by the plate solution, [1], from which we can deduce that 
I~1 xs = 0.192 for ]~l >> 1. 

Figures 4 (a) and 4 (b) show that, for the smaller values of I~l, Cf approaches 
X~ in a regular way, without the appearance of a singularity, as was reported in 
the plate problem, [1]. With ]~l small the curvature of the cylinder has a signif- 
icant effect on the flow and the numerical solutions suggest that this has the 
effect of inhibiting the square root singularity near separation that arises in 
two-dimensional boundary-layer flows, with the solution being regular at sepa- 
ration (or having such a weak singularity which is not picked up by the numer- 
ical scheme). In fact the numerical solution for c~ = - 0.1 and c~ = - 1.0 contin- 
ued past X~ into a region of reversed flow, where, as expected, it became unstable 
and broke down. 

Velocity and temperature profiles for e = - 0 . 1  are shown in Figs. 5 a and 
5 b respectively. These show that the profiles near separation are dominated by 
curvature effects as can be seen from the two-layer flow pattern, with rapid 
changes near the wall and a long "tail" region before the outer boundary 
conditions are attained. In this respect these profiles are similar to those shown 
in Figs. 2 for the aiding case (though there is no velocity overshoot). The profiles 
(not given) for the larger values of [~l (c~ = - 5 and ~ = - 10) do not show the 
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effects of curvature to any marked degree and are similar to the velocity and 
temperature profiles for the flat plate problem. 

The numerical solution for e = - 0 . 1  was continued well past X~ without 
loss of stability by using the FLARE approximation, [19], (in effect putt ing the 

terms U 8U and U 8 0  in Eqs. (7) and (8) to zero wherever U < 0). Strictly this 
OX OX 

method is the first step in an iterative procedure for calculating flows with 
reversed flow regions. In the model  discussed here there is no mechanism for 
reat tachment downstream of separation and so this approach was not pursued 
further. To proceed in this direction in an at tempt to understand the regular 
behaviour near separation a modification to the model  is required. This is, at 
present, under consideration. 

The possibility of a regular solution at separation in mixed convection 
cannot  be disregarded as was shown by Stewartson [16]. (This analysis was for 
a compressible boundary layer, but the details are the same for mixed convec- 
tion). The modification of the Goldstein expansion, [17], derived by Buckmaster, 
[18], to reatain the singularity was required because the numerical solutions 
indicated strongly that the solution did become singular at separation. For  the 
larger values of I el, the effects of curvature become less important  and the plate 
problem is approached. This can be seen in Fig. 4 (c) and particularly in Fig. 4 (d) 
where a singularity in the skin friction at X = X s is seen. In all cases the heat 
transfer was non-zero at X = X~. 
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Abstract 

The problem of-the mixed convection boundary-layer flow past an isothermal vertical circular 
cylinder is considered in both the cases when the buoyancy forces aid and oppose the development 
of the boundary layer. A series solution is obtained, valid near the leading edge, and this is extended 
by a numerical solution of the full equations, which in the aiding case, becomes inaccurate down- 
stream. An approximate solution is also derived which gives a good estimate for the heat transfer 
near the leading edge and has the correct asymptotic form well downstream. In the opposing case, 
the boundary layer is seen to separate at a finite distance downstream, with, for moderate values 
of the buoyancy parameter, the numerical solution indicating a regular behaviour near separation. 
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