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Introduction 

In a comment [1] the author of this paper argued that for the control of static 
deformations of space structures ones does not need to take into account the 
mass of the structure [2]. In the above comment [1] a method for the control of 
the static deformations of space structures without involving the mass of the 
structure was also proposed. A somewhat different method in which the mass of 
the structure is involved was proposed earlier in Refs. 3, 4. 

To find the optimal placement of controls for static deformations of space 
structures one must know in advance the expected distortion from the desired 
shape of the structure [3]. However, usually this is not the case. Hence, a different 
approach is needed [8]. 

Here, a criterion for the robustness of the shape control of space structures 
is proposed. The criterion is based on the characteristic number of a certain 
matrix which plays a major role in the process of the shape control of space 
structures. The criterion is independent of the possible distortions from the  
desired shape of the structure. It is proposed to define the placement of the 
control points by optimization of the measure of robustness. 

Static shape control of space structures 

In what follows, the method for static shape control of space structures, 
without involvement of the mass of the structure, proposed in Ref. 1, is rederived 
with emphasis and explanations of special points connected with the purpose of 
this paper. 

The static behaviour of a free space structure is represented by its stiffness 
matrix K (n x n), usually obtained by using finite element methods, where n is the 
number of coordinates of the free space structure. 

The rank of K is 

rank(K) = n -- r (1) 
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where r represents the number of independent rigid body motions of the struc- 
ture. (For space structures, r = 6.) The stiffness matrix, K, is needed to calculate 
the deformations of the structure constrained in a statically definite way. In this 
case the constrained stiffness matrix, k [(n - r) x (n - r)], becomes nonsingular 
and the deformations of the structure are well defined. 

The rigid body displacements of the space structure are characterized by the 
matrix R(n x r). For convenience, the matrix R can be orthonormalized to 
obtain 

R~R = 1. (2) 

It is clear that the rigid body shapes, R i, are linearily independent. Hence, 

rank(R) = r. (3) 

The distortion from the desired shape of the structure is represented by the 
deformation vector 0(n x 1). The vector 0 is assumed to represent only shape 
distortions. Hence, it is orthogonal to R, 

e t ~/= 0 .  (4) 

Thermal or force controls are applied on the structure to minimize the 
distortion. The vector A T(m x 1) represents the temperature of m heating con- 
trol points on the structure. In the case of force control the forces applied on the 
free structure must be in equilibrium. This means that any particular group of 
control forces can be characterized by one parameter P~. The control forces are 
represented by the vector P(m x 1) where m is now the number of independent 
force parameters. Hence, for the force control, one has to replace A T by P. 

By constraining the structure in a statically definite way, one can calculate 
the deformations caused by applying a separate unit temperature at any one of 
the control points. For force control the independent unit temperature must be 
replaced by the independent unit force parameters. Clearly a mixed temperature- 
force control is possible in principle. The result of the independently applied unit 
temperatures will be a field of displacements represented by the matrix u o (n x m). 
Note that the displacements of the r constrained points are zero. 

Now, a deeper examination of the displacement matrix, uo, is needed. Any 
one of the columns of this matrix is obtained by applying mutually independent 
parameters - unit temperature or unit force parameters. The mathematical 
meaning of this physical observation is that the columns are linearly indepen- 
dent. Hence, 

rank (uo) = m. (5) 

As usual, the angle between any two deformation vectors uoi and Uoj is defined 
by 

HToiUoj 
T cos c~i~ ~ .  ~ o ,  jU ~ (6) 



86 M. Baruch ZAMP 

Clearly, the angle cqj and hence the independence between the deformation 
vectors is a function of the placement of the control points. Intuitively, we would 
like to have independent deformation vectors, hence, to have I cos cqjl (for i + j) 
as small as possible. As explained later the proposed criterion of robustness is 
based on the above observation. 

The displacement vector of the free structure is given by 

u = u o A T +  R f l  (7) 

where f l (r  x 1) represents the amount of any of the rigid body shapes. Now, 
we would like the displacement defined by Eq. (7) to represent only shape 
changes of the structure. Hence, u, like ~, has to be orthogonal to the rigid body 
shapes, R, 

R t u  = R t u o A T +  R t R f l  = 0. (8) 

By substitution of Eq. (2) into Eq. (8) one obtains, 

fi = - R t u 0 A T. (9) 

Equation (7) now becomes 

u = (I  --  R R  T) u o A T .  (10) 

The initial displacement matrix u o (n x m) was calculated by constraining the 
structure in a statically definite way. However, the r constrained points are not 
uniquely defined. The question that arises is: how the choice of the constrained 
points influences Eq. (10)? To clarify this point the relation between two dis- 
placement vectors caused by the same unit control parameter but with different 
constrained points will be examined. 

Let u~i(n x 1) and U~oi(n x 1) be the displacement vectors due to AT i = 1 (or 
P~ = 1). e and 7 designate two different configurations of the statically defined 
constrained structure. It must be emphasized that in both cases the reactions 
in the r constrained points are zero. Hence, no additional forces are introduced. 
It is clear that u~i and u~ differ only by some amount of rigid body displace- 
ments, 

U~oi = u ~  + R 7  (11) 

where 7(r x 1) represents the difference in the amount of rigid body displace- 
ments. 

By multiplication of Eq. (11) by R r one obtains, 

7 = Rr(u~o, - u~,).  (12) 

Substitution of Eq. (12) into Eq. (11) yields, 

(I  - R R  r) U~o, = ( I - -  R R  T) u ~ .  (13) 
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It is clear from Eq. (13) that Eq. (10) is not influenced by the choice of the 
constrained points. More than this. One can choose different configurations for 
any of the unit control parameters. The final result will be the same. However, 
in what follows, for definiteness, we will suppose that the choosen constrained 
configuration is the same for all the cases. It must be noted that although the 
choice of the constrained points does not influence Eq. (I0), the displacement 
matrix Uo, by itself, strongly depends on the choice of the constrained configura- 
tion. It will be interesting to show that the proper choice of the constrained 
configuration depends on a criterion similar to the criterion of robustness of 
control proposed here. 

The total displacements vector caused by the distortion and the controls will 
be given by 

UT = 0 + u. (14) 

To calculate the control parameters it is appropriate to minimize the Euclid- 
ian norm of UT, 

u~- = (6t + u t) OP + u) = ~bt~ + 2 u t 6  + utu. 

N o w  

au 2 

S A T  

OU t ~U t 
- 0 = 2 ~ + 2 ~ u  

= 2Uto[I - R R  T] t~ + 2Uto[I -- R R  T] [I - R R  T] u o A T  

= 2Uto~ + 2 u t o [ I -  R R  T] u o A T  

= 2u~(ff + u) = 2UtoUT 
or  

A A T = q  

where 

A = Uto [I - R R r] u o 

and 

q = - u~O. 

(14) 

(15) 

(16) 

(17) 

g2 = u2 /~02. (19) 

Note that the solution of Eq. (16) depends strongly on the behaviour of the 
matrix A (mx m) of Eq. (17) which has to be inverted. Clearly, all the discussed 
process is controlled by the basic matrix A. An important additional observation 
is that due to Eq. (18), distortions orthogonal to u o can not be corrected by the 
proposed method. This can be done only by properly chosen control points. 
However, to do this one must know in advance the distortion vector ~, which 
is usually not the case. 

Following Ref. 3, one can define an efficient coefficient 
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It is easy to show that 

g2 _ U'rUT A T t q  ~ t u o A - l u t o ~  (20) 
- 1  4, - 1  

Again, to calculate the efficient coefficient defined by Eq. (20) one must  
assume that  the matrix A is invertible and that  the distortion vector ~ is known 
in advance. 

Analysis of the basic matrix A 

In the realization of the proposed shape control method the matrix A from 
Eql (17) was assumed tacitly to be invertible. Is it? Clearly, an analysis of this 
matrix is needed. To do so we will begin with the rigid body shape ma- 
trix R (n x r). 

Following Ref. 5, one obtains from Eq. (3), 

rank (R) = rank (RR r) = rank (R r R) = rank (R r) = r. (21) 

The matrix R R r is symmetric and therefore [6] one can find an orthogonal 
matrix U (n x n) so that, 

U r  R R r  U = v, U r  U = I (22) 

where v is a real diagonal matrix. 
However, it is easy to show that the matrix R R r has the following eigenval- 

ues 

v i = l  i = l + r  
(22a) 

v j = 0  j = r  + I + n .  

It is also easy to show that the eigenvectors connected with the eigenvalues 
v i -- I of the matrix R R t are the rigid body shapes R i. 

Now, we will try to diagonalize the matrix [ I -  R R T] by using the same 
orthogonal  matrix U, 

u T [ I  -- R R  ~] U = I -- UT R R T  U = 1 - -  v ---- ,~ (23)  

o r  

, ~ i =  I - - V i = 0  i = l - - r  
(24) 

2 j = l - v j = l  j = r + l + n .  

For  the matrix [I - R R T] the zero eigenvalues are connected to the rigid body 
shapes. 

F rom Eqs. (23) and (24) it is clear that, 

r a n k [ / -  R R  T] = n - r. (25) 
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The initial deformat ion matrix u o (n x m), was obta ined by constraining the 
structure in a statically definite way  and by applying independent  unit temper- 
ature or force loads. Hence,  the columns of the matrix u o can not  be obta ined 
by any linear combina t ion  of the rigid body  mode  shapes, 

u o c~ • R ql (26) 

for any ct(m x 1) and ff(r x 1) different than zero. 
It will be shown now that the rank of the matrix [I - R R  r] Uo is the same 

as the matrix Uo (Eq. 5). To prove this we will assume the opposite,  that  is, we 
will assume that  the vectors [ I -  R R r] Uoi are linearily dependent ,  

[1 - R R r] u o c~ = 0 ( 2 7 )  

where , ( m x  1) represents the coefficients of linear dependence.  But, as noted 
before, it is easy to show that any combina t ion  of rigid body  shapes is a 
eigenvector of the matrix [I - R R r] with zero eigenvalue. Indeed, 

[ I  - -  R R  T] Rq~ = R ~  - -  Rq~ = 0 .  ( 2 8 )  

To satisfy Eq. (27) the vector  uoe  must  be an eigenvector of the ma- 
trix [I - R R  T] with zero eigenvalue. Then, 

9 
u o a - R ~ (29) 

but  Eq. (29) contradicts  Eq. (26), hence 

= 0; ~ -- 0; (30) 

Equat ions  (27) and (30) show that the vectors [ I -  R R  T] uoi are linearly 
independent ,  or 

r a n k ( [ / -  R R  T] Uo) = rank (Uo) = m. (31) 

F r o m  Eqs. (25) and (27) it follows 

m < n - r. (32) 

N o w  [5] 

rank(A) = r a n k ( u r [ I  - R R  ~] Uo) = rank(u~[I  - R R q  [I - R R  ~] Uo) (33) 

= r a n k ( ( [ / -  R R  ~] UoY ([I - R R  r) Uo) ) = r a n k ( [ / -  R R  r) Uo) = m. 

Equat ion  (33) shows that the basic matrix A ( m x  m) is invertible. More  than 
that. The matrix A is positive definite. To prove this we will in t roduce the 
auxiliary vectors V(n x 1) and X ( m  x 1), 

V =  [I - R R t] Uo x.  (34) 

Due  to Eqs. (27) and (30) 

V 4 : 0  for any xi 4 = 0. (35) 
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Now, 

V t V - -  X t U o [ I  - -  R R  t] [I --  R R  r] u o X  = X t u t o [ l  - -  R R  ~] UoX 

= X t A X  > 0 for any xi  4: O. (36) 

From Eq. (36) it follows that the matrix A is positive definite and then, all 
its eigenvalues are positive. 

Robustness 

It was shown that the matrix A is nonsingular and the control parameters 
can be calculated by applying Eq. (16). However, they will depend on the ability 
to invert the basic matrix A. An accepted measure for this ability is called: "the 
spectral condition number of A with respect to inversion" [6]. For a positive 
definite matrix this condition number is defined by [6], 

J•max K(A) -- (37) 
"~min 

where /~max and )]'min are the largest and smallest eigenvalues of A. 
It is proposed here to define the shape control robustness of space structures 

by utilization of the characteristic of the spectral condition number, 

1 2rain < 1. (38) 
I'~rb -- K(A)  -- /~max -- 

/~rb is the criterion for shape control robustness of space structures, or 
measure of robustness. One can see that in contrast to the efficient coefficient g2 
defined by Eq. (19) the measure of robustness does not depend on the usually 
unknown in advance distortion vector ~. 

For an efficient shape control system of a space structure we propose to find 
the optimal placement of the controls by maximization of the criterion for shape 
control robustness #rb. 

In Ref. 3 it was proposed to find the placement of the control points by 
minimization of the coefficient g2 which can not be done without knowledge of 
the distortion vector ~. However, if some knowledge of the possible distortion 
vectors ~i exists in advance some compromise between the maximization of #,b 
and minimization of g2 must be worked out. 

For the calculation of the initial deformation matrix Uo one has to invert the 
constrained stiffness matrix k [ ( n -  r )x  ( n -  r)]. It is clear now that the con- 
strained points must be chosen so that the #,b coefficient of the stiffness matrix k 
be made as large as possible. 
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Numerical Example 

To demonstrate the usefulness of the proposed criterion for shape control 
robustness of space structures a very simple example was chosen: a free beam is 
modeled as a five degrees of freedom discrete structure. In Fig. 1 one can see the 
structure and two configurations of control forces. The structure is permitted to 
translate in the y direction and rotate in the x, y plane. Hence, r = 2. The 
orthonormalized rigid body shapes are: 

1 2 - 

1 1 

1 
R =  . / ~  0 rank(R) = 2 (39) 

1 1 

1 2 

l 0.6 0.4 0.2 0 - .2j 
0.4 0.3 0.2 0.1 ~ ] 

R R r =  0.2 0.2 0.2 0.2 0.2 . (40) 
0 0.1 0.2 0.3 0.4 

- 0 . 2  0 0.2 0.4 0.6 

Using the Gram-Schmidt orthogonalization process [7] one possible or- 
thogonal matrix [6] is: 

U = 

1 2 1 2 

1 1 2 1 

1 1 4 
0 

1 1 3 
0 

1 2 
0 0 ,/;6 

It is easy to check that 

u T u  = I 

1 

0 

1 

2 

2 

(41) 

(42) 
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Figure 1 CONFIGURATION P 
Structure and control forces. 

CONFIGURATION Q 

and [ 000 1 0 1 0 0 0 
U T R R T U = v  = 0 0 0 0 O .  (43) 

0 0 0  
0 0 0  

The initial deformation matrix u o was obtained by constraining the struc- 
ture at points I and 5 and loading it successively by the different unit control 
forces (Fig. 1). The so obtained displacements were nondimensionalized by di- 
viding any one of them by the quantity 

l 3 
C -  

76.8EI" 

For  the configurations P and Q one obtains, 

(44) 

0.9 1.1 0.9 0.7 
Uop= 11 16 ; Uo(2= 11 11 . (45) 

Using (40) and (45) one obtains 

F1.048, 1.468] 
At, = urp[I  -- R R  T] Uo p = [_1.468, 2.0923 (46) 
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and 

= [1.048, 1.016] (47) 
A~ [_1.016, 1.0481" 

From (46) and (47) it yields, 

"~min 0.012 0.032 
/%e - 2max -- 3.128 -- 0.0038; k%0 -- 2.06~ -- 0.0155. (48) 

From Eqs. (48) it follows that configuration Q has a robustness coefficient 
larger than configuration P and hence it is a better configuration. 

To check this proposition it was decided to generate a distortion vector 0o 
by using a random generator. In this way two distortion vectors were generated. 

6.09 } 8.29 / 
1.91 6.79 / 

~1o = 7.16 ; ~2o = 8.81/. (49) 
8.59 7.76 ] 
0.48 4.95 ] 

The distortion vector orthogonal to the rigid body mode shapes was found 
by using an expression similar to Eq. (10), 

tp = (I - R R  T) ~o 

and then, 

0.336 / 
- 3.390 

2.314 
4.198 

- 3.458 

; 0 2  = 

- 0.172 / 
1.101 | 

+ 1.490/. 
+ 1.011 | 

1.228 J 

~t 1 = 

By using Eqs. (16) and (19) one finds, (see Fig. 2), 

(50) 

(51) 

The initial and final deformations axe shown in Fig. 2. 
One can see that in case 1 the control forces and the efficient coefficient g2 

are smaller for the Q configuration. For case 2 the distortion vector ~, happened 
to be almost a linear combination of the initial displacement vectors Uoe and 
hence the efficient coefficient gZ is smaller for the P configuration. However, even 
in this case the applied control forces Q are smaller than the control forces P. 

and 

{ - 10.006j'13"843~" { _ 5.835~) P2 = 922 = 0.012; Q2 = 7.352"; 9e2 = 0.138. (53) 

{ 44.120~. { 22.173~. 
P~ = - 33.155J' g21 = 0.036; Q1 = _ 25.265J' g~  = 0.014 (52) 
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Figure 2 P 
Two different cases of initial distortion. 

0 

C o n c l u s i o n s  

A criterion for the robustness of shape control of static deformation was 
proposed. It was proposed to locate the control points so that the measure of 
robustness be maximum. A simple numerical example was presented. 
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Abstract 

In the shape control method of space structures a certain matrix plays a major role. It is 
proposed here that the reciprocal value of the characteristic number of this matrix be taken as 
criterion for the robustness of the method. 
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