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1. Introduction 

According to Bradshaw and Wong [1], the flow of a thin boundary layer 
over a backward-facing step involves two "overwhelming" perturbations. The 
first is the perturbation of a boundary layer into a mixing layer and the second 
is the conversion of the attached mixing layer back to a boundary layer. As a 
result of these perturbations, the flow behind the backward-facing step becomes 
very complicated and embodies a wide variety of complex turbulent flows. For 
example, it involves streamline curvature because the new mixing layer is curved 
toward the wall to form a recirculation region (Fig. 1). The new mixing layer 
bifurcates at the reattachment point with one branch develops as a new 
boundary layer after the reattachment point and the other branch forms the 
recirculation region. Therefore, the flow undergoes rapid distortion in the region 
surrounding the reattachment point and subsequent relaxation downstream of 
this point. It is precisely because of these complexities that the flow becomes a 
classic example for researchers to model and calculate. If a turbulence model can 
reproduce this flow correctly, then the possibilities that the model is equally 
successful with other types of turbulent flow are greatly increased. 

Various boundary-layer calculation methods have been developed to calcu- 
late this flow [2]. However, they are not very successful in the prediction of the 
recovery region downstream of the reattachment point. The main reason is that 
the turbulence length scale downstream of the reattachment point is closely 
related to that in the mixing layer before reattachment and is substantially larger 
than that in a turbulent boundary layer determined from local-equilibrium 
arguments [1, 3]. This implies that the near-wall turbulence length scale f is no 
longer given by Y = icy, where K = 0.42 is the von Karman constant and y is the 
normal coordinate measured from the wall. Instaed, ~ = Ky, where K ~ 1 
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Figure 1 
Pictorial representation of flow over a backward-facing step. 

[3]. Therefore, boundary-layer methods based on local-equilibrium arguments 
are inadequate. 

Numerous elliptic methods, where the Reynolds equations of motion are 
solved rather than the boundary-layer equations, have also been proposed [2, 
4-6].  The turbulence closures proposed range from simple mixing-length mod- 
e•s to full Reynolds stress models, where the transport equations of the Reynolds 
stresses are solved simultaneously with the Reynolds equations of motion. In the 
case of mixing-length models, the assumption, ~ = x y D, is invariably invoked, 
where D is the van Driest damping factor used to account for viscous effects near 
a wall. As for the other models, the closure assumptions are based on high- 
Reynolds-number turbulence arguments and are not applicable near a wall 
[4-6]. Consequently, near-wall flow models or wall functions have to be pro- 
posed in order to link the flow at the wall to the flow in the fully turbulent region 
away from the wall. Different wall functions have been tried [4, 6]. However, they 
are essentially based on the local-equilibrium arguments. Some typical examples 
of the application of these methods to calculate flows over a backward-facing 
step are provided by Sindir [5] and Celenligil and Mellor [6]. Four closure 
models are examined by Sindir [5] and these are the k - e and algebraic stress 
models and their modifications to account for streamline curvature. Only the 
modified algebraic stress model is found to give good agreement with the data 
of Kim et al. [7], including the skin friction (cs) prediction in the recovery region 
downstream of the reattachment point. On the other hand, Celenligil and Mellor 
[6] solve the unsteady governing equations and model the flow with a full 
Reynolds stress closure. Their calculations are in good agreement with the 
measurements of Kim et al. [7] and Westphal et al. [8]. 
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Up to now, no attempts have been made to calculate the flow without 
invoking the conventional wall function assumption. Since the flow downstream 
of a backward-facing step embodies a wide variety of complex turbulent shear 
flows (Fig. 1), the nearwall turbulent flow may not be in local equilibrium. This 
is especially true of the flow in the vicinity of the reattachment point, where 
viscous effects are dominant. Consequently, the wall function assumption for 
near-wall flow may not be applicable. The present objective is to evaluate the 
validity and extent of the wall function assumption for the calculation of flow 
over a backward-facing step. This is accomplished by developing a low- 
Reynolds-number turbulence model for the flow behind a backward-facing step 
where the calculation is carried out directly to the wall. The model is verified by 
comparing the calculations with measurements and the validity and extent of the 
wall function assumption is assessed by a detailed comparison of the two models' 
performance with experimental data. 

A good review of two-dimensional sudden-expansion flows up to 1980 is 
given by Eaton and Johnston [9]. Since then, detailed velocity measurements of 
flow over a backward-facing step using laser Doppler techniques are available. 
A good example of these measurements is provided by Stevenson et al. [10]. 
However, most of these experiments do not include data on c s and the velocity 
measurements are not made close enough to the wall to allow c s to be interpret- 
ed from the velocity gradient at the wall. Consequently, they cannot be used to 
validate the turbulence model applied to calculate c s. The two experiments that 
provide c I measurements are those given by [1] and [8]. Since the detailed 
velocity field measurements of [8] are reported in [9], the present calculations are 
compared with the measurements of [1], [8] and [9]. 

2. The governing equations 

For stationary, incompressible, isothermal turbulent flow over a backward- 
facing step, the governing Reynolds equations can be concisely written in Carte- 
sian tensor notation as 

- o ,  (1)  
ax i 

- -  v - -  ) ( 2 )  
exj ~ ~x, + Uxj~, ~x~ u, uj , 

where Uj and uj are the jth components of the mean and fluctuating velocity, 
respectively, P is the mean pressure, ~ and v are the fluid density and kinematic 
viscosity and xj  is the jth component of the coordinates. The transport of uiuj 
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is given by the Reynolds stress equations, which can be written symbolically as 
[11]: 

u ~  uj r Uk~xk -- Di~ + Dij + Pij + ~ i j -  ~ij , (3) 

where Di~ and D~ represent the viscous and turbulent diffusion of u~ u j, respec- 
tively, P~j is the reproduction of u~ .  by mean shear, 4~j is the redistribution of 
uz uj by the fluctuating pressure and eij is the dissipation of u~ uj by viscosity. Of 
the five terms on the RHS of (3), only D~ and Pzj are expressible in terms of u~ uj 
and OUJOxj. The others either involve higher-order correlation of u~, correla- 
tions with the fluctuating pressure p or correlations with the gradient of u~. If 
Eqs. (1)-(3) are to form a closed set of equations for U~, P and u~. ,  then 
turbulence models have to be proposed for D~, ~ij and e~j. The present study 
attempts to solve (1)-(3) with appropriate models for D~, ~zj and e u for the flow 
over a backward-facing step. 

3. The turbulence closures 

Conventional full Reynolds stress closures are developed for high-Reynolds- 
number turbulence, while a wall function approximation is applied to the region 
very close to the wall. Therefore, in actual computations, the first grid point is 
located outside the viscous wall layer so that the high-Reynolds-number closure 
is valid and the wall function [4] is used to link the conditions at the wall to the 
first grid point. A typical example of such a closure is that due to Launder et al. 
[11]. In this closure, Di~ is neglected while Di~ is modelled according to the 
suggestion of Hanjalic and Launder [12], cbij is modelled with mean-strain effects 
[11] and eij is given by the locally isotropic model of Kolmogorov [13]. There are 
numerous other full Reynolds stress closures. Some are tailored to model a 
particular type of flow; for example [14] where the model for 4~j is modified to 
account for streamline curvature and swirl effects. In spite of this development, 
little advance has been made toward the development of a low-Reynolds-num- 
ber full Reynolds stress closure for complex turbulent flows. 

Recently, two low-Reynolds-number full Reynolds stress closures are put 
forward and validated against periodic flows [15] and shear flows [16]. The two 
models are quite similar, in that they only modify the model for e~j to account 
for viscous effects near a wall and retain D~ in (3) and the conventional high- 
Reynolds-number models for 4~zj and Di~. A comparison of the performance of 
these two closures has also been made by So and Yoo [16] and they find that, 
if the models for D~ and ~b u are maintained the same, the two eij models give 
essentially the same predictions of wall shear flows. Later, So and Yoo [17] apply 
the model of [16] to calculate shear flow with wall transpiration and find good 



Vol. 39, 1988 Low-Reynolds -number  modelling of  flows 17 

agreement with measurement,  while the conventional wall function approach 
gives results that are at variance with the measured wall pressure distribution. 

The calculations of [11] and [14] show that the modelling of ~bCj is fairly 
important  to the overall predicitions depending on the type of turbulent flows 
considered, while the results are not too dependent  on the models for Di r.  
Therefore, it is clear that, for the present investigation, the effects of ~ j  modelling 
have to be examined in addit ion to the effects of near-wall flow modelling. In 
view of this, three different ~bCj models are investigated. These are the models of 
Rotta [18], Gibson and Younis [14] and Launder  et al. [11]. Two near-wall flow 
models are studied. These are the wall function approximation [4] and the 
low-Reynolds-number model  of So and Yoo [16]. A summary and labelling of 
these different closures is given in Table 1. 

Table 1 
Labelling of different turbulence closures. 

Closure Di~ 4),j e~s Wall 

Hanjalic Rotta  Launder,  Gibson  So Ko lmogorov  function 
and [18] Reece and Younis and 5(oo [13] assumpt ion  
Launder  and Rodi [14] [16] 
[121 [111 

AI X X - - X - N O  
A2 X - X - X - N O  
A4 X - - X X - N O  
H - A 1  X X - - - X YES 

The modelling of Di r, ~bis and e~s introduces yet another unknown;  namely, 
the dissipation rate e of the turbulent kinetic energy k. Consequently, an addi- 
tional equation governing the transport  of e is required. Consistent with the 
approach of [16], the modified e equation of Chien [19] is used. This can be 
written as: 

-- eXk V +  ~ + C,I  ~ P - C~2 f  l k x 2 , (4) 

- - ~ U i  , 
where P = - ui Uk ~X k 

k 2 
V t = Cu ~ f 2  , 

2 f l  = 1 - ~ e-(k2/6 w)2 

f 2  = I - -  e - C 3 u ' ~ x 2 / v  , 

(5) 
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X 2 is the normal coordinate measured from the wall, u~ = U o (Of~2) U2 is the wall 
friction velocity, U o is the uniform inlet velocity and a~, C~1, C~2, C u, Ca and C4 
are model constants. The values of these and other model constants introduced 
through Di r, ~ii and ~ij are given in [14] and [16] and are used in the present 
calculations without change. 

Finally, a low-Reynolds-number k - ~ closure, designated as L - k - e, is 
also investigated and its performance compared with the full Reynolds stress 
closures. The L - k - ~ chosen is the one proposed by Chien [19]. Therefore, 
altogether four low-Reynolds-number and one high-Reynolds-number closures 
are used to calculate the backward-facing step flow. 

4. Solution technique 

The boundary conditions for the backward-facing step flow are no slip 
conditions at both the step and no step walls. All turbulence quantities, u~uj and 
e, are taken to be zero at the walls. At the inlet, experimentally specified condi- 
tions are used while at the outlet, the condition O7"/Sx = 0 is invoked, where 
7' is any flow variable except pressure and x is the stream coordinate measured 
from the step. 

The coupled Eqs. (1)-(4) and boundary conditions are solved numerically 
using either hybrid or quadratic upwind finite differencing and staggered grids. 
A fixed pressure field is assumed and the momentum equations are solved 
iteratively using the SIMPLE algorithm of Patankar and Spalding [20]. After 
each sweep over the solution domain, adjustments are made to the pressure field 
to satisfy continuity along each line of cells. Transport equations for ui uj and 
are then solved using the calculated velocity field. Iterations are carried out until 
the momentum and continuity equations are simultaneously satisfied. An accu- 
racy criterion of relative mass and velocity residuals < 1% is stipulated. 

5. Choice of grids 

Non-uniform computational grids are used to resolve the flow in the region 
of interest. Previously, So and Yoo [16] have examined the effect of grid spacing 
in the normal or ~r on the near-wall flow calculations. They found that 
a minimum of 10 grid points are required between the wall (y = 0) and the grid 
point just outside the viscous sublayer. For more complicated near-wall flows, 
up to 15 grid points are necessary to resolve the flow in this region. Based on 
this guideline, 15 grid points are specified near the step wall and 10 grid points 
are specified near the top or no step wall. Consequently, the low-Reynolds-num- 
ber calculations are carried out with 66 grid points specified in the ~-direction. 
This is reduced to 41 points for the high-Reynolds-number closure. As for grid 
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spacing in the stream or x-direction, a numerical experiment is carried out to 
determine the effect of grid spacing on the calculated flow properties. The 
calculations are carried out over the backward-facing step geometry of [9] and 
assuming the flow to be laminar. Three different inlet flow Reynolds numbers 
(Re = U o W / v  where W is the inlet width) are specified and these are Re = 200, 
500 and 1000, respectively. Also, three different grids are tested; these are given 
by 50 x 66, 78 x 66 and 93 x 66. Therefore, the y-direction grid spacings are 
kept constant, while the x-direction grid spacings are varied from 50 to 93. The 
results, shown with U, the stream velocity, normalized by the maximum stream 
velocity, (_/max, for the case Re = 500 are plotted in Fig. 2. It can bee seen that 
the U velocity is grid independent when the number of grid points in the 
x-direction is > 78. Identical results are also obtained for the Re = 200 and 
1000 cases. Therefore, the flow over a backward-facing step should be carried 
out with a grid of 78 x 66. The layout of this grid is shown in Fig. 3. 
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_2 

2 



20 R .M.C.  So, Y. G. Lai and G. J. 5 (oo  ZAMP 

6. Discussion of results 

The primary objective of the present study is to develop and validate a 
low-Reynolds-number turbulence model for the flow behind a backward-facing 
step. This means that the model should be able to describe the flow in both the 
recirculation region and the relaxing flow downstream of the reattachment 
point, x,. Besides, the present study also addresses the question of @ij modelling 
and its importance in the prediction of the overall behavior in complex turbulent 
flows. 

Calculations of the backward-facing step flows [1], [8] and [9] are carried out 
with the closures listed in Table 1 plus the L - k - e closure. All the calculations 
are carried out with the grid shown in Fig. 3. Comparison with the data of [9] 
are shown in Figs. 4 - 7  and organized in the following manner. Each plot is 
divided into a top and a bottom part and each part shows the complete back- 
ward-facing step geometry. The coordinates x, y are normalized with respect to 
the step height h, and the velocity data are normalized with respect to the 
uniform inlet velocity U o. Each part shows the comparison of two closure 
calculations with data; A] and A2 are shown on the top while H - A I  and A4 
are shown on the bottom. This presentation allows the differences between 
various closures to be clearly displayed. The L -  k -  e mean and turbulence 
field calculations are poor compared to measurements and other closure results. 
Therefore, they are not shown in Figs. 4 - 7  for comparison. However, the 
L - k - e results for x, and c I are comparable to other low-Reynolds-number 
model calculations and are also shown in Figs. 8 and 9 for comparison. A sample 
stream function plot is shown in Fig. 10. Finally, a comparison of the calculated 
c s behavior downstream of the reattachment point with measurements [1, 8] are 
presented in Fig. ] 1, and a comparison of the pressure distribution, Cp - (Cp)min, 
on both walls is shown in Fig. 12, where Cp is the pressure coefficient defined 
with respect to U o. 

U/U  o 

I 1 . 0 - -  CALC.  L A 2  . . . .  
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Comparison of the calculated and measured mean velocity. 
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As far as the velocity field predictions are concerned, models A2 and A4 give 
essentially the same results; incorrect prediction of U near the wall in both the 
recirculation and recovery regions and along the central core (Figs. 4 and 5) and 

over-predictions of u-v (Fig. 6) and u' = x / ~  (Fig. 7) in the recirculation region. 
On the other hand, model AI and H - A 1  calculations are in excellent agreement 
with measurements. This comparison, therefore, shows that the benefit of mean- 
strain modelling in ~ j  is minimal, at least for the flow over a backward-facing 
step. The same conclusions has also been deduced by So and Yoo [16] in their 
studies of simple wall shear flows. One drawback of the Rotta return-to-isot__ropy 
model for ~bzj is that it gives equal distributions for the normal stresses v 2 and 
w :, while the models of Gibson and Younis [14] and Launder et al. [11] do not. 
However, the simplicity of the Rotta model makes it very appealing for complex 
turbulent flow calculations. 

Further evidence that the performance of A2 and A4 is not as good as AI 
can be found in the comparison of the calculated U -- 0 locus behind the step 
(Fig. 8). Of all the closure calculations presented in Fig. 8, the predictions of the 
U = 0 locus by A2 and A4 closures lie farthest away from the measured data, 
and are in close agreement with the predictions of the L -  k -  e closure. In 
general, the best result is given by A1 and H - A I .  Once again, this shows that 
the benefit of mean-strain modelling in ~ j  is minimal for the flow over a 
backward-facing step. 

The predictions of cf in the region x/h < 3.0 (Fig. 9) by A1, H-A1 ,  A2 and 
A4 are about the same and are slightly lower than the measurements of [8]. As 
far as the L - k - e prediction of cf is concerned, it is way too low compared 
to the other results and the measured data. This and the incorrect predictions 
of the velocity field preclude the L - k - e closure as a viable closure for the flow 
over a backward-facing step. The fact that the results of A1, H-A1 ,  A2 and A4 
are in good agreement with data and with each other in the recirculation region 
suggests that the near-wall flow in this region is indeed in local equilibrium and 
can be represented by the wall function approximation. It also shows that the 
low-Reynolds-number full Reynolds stress closures are capable of reproducing 
this behavior in the recirculation region. 

All closures considered predict two Cy = 0 locations (Fig. 9); one very close 
to the step and another further downstream. This suggests the existence of a 
secondary recirculation near the corner of the step. A normalized stream func- 
tion (~/~o) plot based on the A1 calculation is shown in Fig. 10, and it clearly 
shows the presence of the secondary recirculation region. The size of this sec- 
ondary recirculation region is about hi3 in both the x and y directions and does 
not seem to depend on the low-Reynolds-number closures used to calculate the 
flow. 

Experimental measurements of Westphal et al. [8] show that cf goes to zero 
at x/h -- 8. If this is taken to be the reattachment point, then all closures fail to 
give a correct prediction of xr/h. The worst performer is A2, followed by A4, 
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L - k - e, A1 and H - A I  (Fig. 9). Since the reattachment point oscillates with 
time, perhaps a better prediction of x, /h  could be obtained by solving the 
unsteady equations. This is indeed the case, as demonstrated by the calculations 
of Celenligil and Mellor [6]. 

The predictions of cf  by all the closures considered are grossly in error 
compared to the measurements of [8]. This is in part due to the incorrect 
prediction of x~. In order to take out the dependence on xr, the cf's downstream 
of xr are plotted versus (x - x~)/h in Fig. 11. Shown in this plot are the measure- 
ments of [1] and [8] and the model calculations of L - k - e, AI and H - At. 
The results clearly show that the behavior of c: downstream of x, is correctly 
predicted by H -  A1 and is erroneously calculated by L -  k -  e, even at a 
distance far downstream of x~. On the other hand, Al 's prediction of c: is way 
too large in the region 0 < (x - x l ) /h  < 15. The reason for this discrepancy 
could be due to the slow response of the closure to a rapid change in streamwise 
pressure gradient. As shown in Fig. 12, the pressure gradient is largest around 
the reattachment point. The fact that the experimental measurements agree with 
H - A1 predictions indicates that the flow recovers quickly from the perturba- 
tion and the turbulence field in the reattached boundary layer is again in local 
equilibrium shortly after x~. Apparently, this fast recovery to equilibrium flow 
cannot be correctly predicted by AI and suggests that the low-Reynolds-number 
model of [16] should be modified to account for large pressure gradient effects. 
Similar remarks also apply to the L - k - ~ closure. 

Finally, the comparison of calculated and measured Cp - (Cp)mi n is shown 
in Fig. 12. Only the calculations of A1, H - AI and L - k - e are shown togeth- 
er with the measurements on both the step and no step walls from [9]. The 
calculated curves are shifted to the left because of the under-prediction of x~. If 
the predicted minimum of Cp - (Cp)mi n is shifted to coincide with the measured 
minimum, then the H - A 1  calculations give the best overall agreement with 
measurements. 

7. Conclusions 

The following major conclusions emerge from this study: 
1. The L - k - e closure is not applicable to the flow over a backward-facing 

step. It gives incorrect predictions of the flow in every region downstream of 
the step. 

2. The low-Reynolds-number turbulence closure of So and Yoo [16] reproduces 
the flow properties behind a backward-facing step very well in both the 
recirculation region and the recovery region downstream of xr, but fails to 
predict correctly the c: behavior in the region 0 < (x - xr)/h < 15. 
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3. The wall function approximation mimics the flow near the wall very well, 
especially in the region downstream of the reattachment point. Consequently, 
c s in this region is predicted correctly. 

4. The inability of the low-Reynolds-number full Reynolds stress closures to 
predict c I correctly in the recovery region is because the near-wall model fails 
to account for the large pressure gradient effects in this region. 

5. Of all the models considered for ~ij, the Rotta return-to-isotropy model is 
found to give the best overall results. 

6. None of the closures considered is able to predict xr correctly. Perhaps, the 
reason is the application of a steady formulation to an intrinsically unsteady 
problem. 
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Abstract 

The complex turbulent flow behind a backward-facing step is modelled using a full Reynolds 
stress closure. In order to develop a closure model that can resolve the complex near-wall flow in 
the recirculation region and in the recovery region downstream of the reattachment point, the 
performance of a low and a high Reynolds number version of the full Reynolds stress closure is 
examined and compared. Furthermore, the effects of redistribution modelling on the calculated flow 
is studied by comparing the performance of three redistribution models: one return-to-isotropy 
model and two with mean-strain effects. The results are grid independent and show that the flow 
downstream of the step is best described by a low-Reynolds-number model that does not depend 
on the conventional wall function assumption. However, the skin friction behavior is correctly 
predicted by the stipulation of a wall function. Of the three redistribution models examined, the 
return-to-isotropy model gives results that are in excellent agreement with measurements. Finally, 
the calculated results are adversely affected by refining the redistribution models to include mean- 
strain effects. 
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