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1. Introduction 

Steady-state solutions of the Navier-Stokes equations are often obtained by numer- 
ical means, either by a Finite Difference, a Finite element or a Boundary Element scheme. 
These numerical methods are difficult to implement on a computer partly due to the 
non-linearity of the Navier-Stokes equations and partly due to the need to satisfy the 
boundary conditions. Even when the solution is separable (in the sense that one or more 
independent coordinates can be eliminated from the governing equations) one is usually 
left with a difficult two-point boundary-value problem. Standard packages to solve 
boundary-value problems are available (e. g. NAGFLIB) but are computer-time consum- 
ing if accurate solutions are sought for. In this Note we report a simple method for 
generating steady state solutions to the flow of a viscous Newtoniau fluid between two 
parallel plates. We will single out two flow configurations which are of interest to the 
lubrication engineers: the porous squeeze-film flow (sometimes called continuous 
squeeze-film flow by rheologists) and the coaxial-disk flow. The former flow configuration 
has been suggested as a basis for a Rheometer [1] and the latter one is commonly known 
as torsional flow, a flow partially controllable in Pipkin's sense [2]. Both flows have been 
well studied. Asymptotic solutions for the porous squeeze-film flow have been provided 
by Terrill and Cornish [3], Rasmussen [4] and Wang [5]. Rasmussen [4] and Wang [5, 6] 
also provided a numerical solution to this two-point boundary-value problem. The 
coaxial-disk flow has a more distinguished history dated back to the momentum integral 
solution of von Kfirmfin [7] and the later works of Batchelor [8] and Stewartson [9]. This 
flow is fully three-dimensional and has a very complicated structuie: it has been known 
that there are at least 19 non-unique solutions at high enough Reynolds number [10]. In 
this paper we are only interested in solution at moderate Reynolds number where the 
uniqueness of von Kfirmfin's solution is guaranteed. 

2. Continuous squeeze-film flow 

In this section we considered the flow of a Newtonian fluid confined between two 
parallel circular disks of infinite extent. The bottom plate is rigid and stationary while the 
upper plate is porous. It is assumed that the flow is generated by the injection of the fluid 
through the upper plate. In the cylindrical coordinate system depicted in Fig. i the 
velocity field is u = (u, O, v) where 

t r 
u =- v ~ f ' ( r  v = -  v f ( r  a -  

(1) 
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Figure 1 
Coordinate system. 
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in which - Vis the vertical velocity of the fluid at the top plate, d is the distance between 
the plates, f (4) is a function to be determined, the prime denotes a derivative with respect 
to 4 where 

4 = z /d  

is the dimensionless vertical coordinate; 4 ~ [0, 1]. Note  that  (1) satisfies the conservation 
of mass identically. The boundary  conditions on f are 

f (0 )  = i f (0)  = i f ( l )  = 0, f (1 )  = 1. (2) 

The conservation of linear momen tum requires that  the steady-state pressure field be 
given by 

V 
q-7 -V * Re f z )  + Po, (3) P =  ~_d3p( r t /  2 - a 2 ) -  a ( f ' + z  

where t/ is the fluid viscosity, a, Po are some constants, Re is Reynolds number,  

QVd 
R e -  

t/ 

and p is a constant  given by (compatibility between OP/~r and ~P/~z) 

p i f ' "  ~ Re 1 ,z = - ( g f  - f f " ) .  (4) 2 a 

If the plates are not of infinite extent but are large compared to the film thickness so that 
edge effects may  be neglected then the above solution will be valid. In that  case a may 
be identified with the common  radius of the plates and Po may  be found by requiring the 
net radial traction to be zero. Then one can show that  the normal  force exerted on the 
top or bo t tom plate is given by 

4d 3 q-0 a2 . (5) 

To 0 (d2/a ~) p is thus the dimensionless lift force. The velocity field f (r is found from (by 
taking the derivative of (4)) 

f iv + Re f f ' "  = 0. (6) 

The asymptotic  solutions of (6) with the boundary  conditions (2) have been well studied 
[3-6]. For  low Reynolds number  one has [5] 

and 

f = 3 4 z -- 2 ~3 + Re ~ + 46 -- 47 + 0 (Re 2) 

P = - 6 ( I + 7 ~ R e + 0 ( R e 2 )  ) .  (7) 
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At high Reynolds number one has [5] 

f=2~-~2+,/~ c(1-02+fo ~ - 2 ~ -  +0(Re- 
and 

= - 6 Re + 0.19 , ~  + 0(1 P (8) 

where C = - 1 . 1 4  and fo ( ' )  is the axi-symmetric stagnation velocity profile, see 
Wang [5]. 

We now show that (6) and (2) admit the following power series solution 

f ( ~ ) =  ~ a , ~ " + l ,  
n = l  

where 

(9) 

a , = l ,  ~ n a , = - l ,  a 3 = 0  (10) 
tl=i n=l 

and 

Re ~ m(m 2 1) 
a"+a = - ( n  + l)(n + 2)(n + 3)(n + 4),,=a - a"a"-"+l '  

n > 0 .  (11) 

Equations (10a, b) arise due to the need of satisfying the boundary conditions at 
= I (the boundary conditions at ~ = 0 are satisfied identically) and (10c) and (11) are 

derived from the equation of motion, (6). The proof of the assertion follows if we can show 
that the series Z nk a, converges, where k = 0, 1, 2, . . .  

n = l  

First, we observed that {ak} is an alternating sequence. This is easily shown by 
induction. For, if {ak} is alternating up to k = n + 2 then if n + 3 = 2 N is even the 
product  am azN_,,_ 2 is positive because there are an odd number of terms 
(=  2 N - 2 m - 1) between a,, and a2N_,, + 2- Thus the convolution sum in (I 1) is positive 
and azN is negative. If n + 3 = 2 N + I is odd then there are an even number of terms 
between a m and azu_m_ 1 and therefore azN + 1 is positive. The possibility of a k of the same 
sign cannot be accepted since it contradicts equation (11). Second, a, decreases in absolute 
value and l ima ,  = 0 as n ~ oo. This is because the main contribution of the convolution 
sum in (11) comes from the upper limit where m ~ n. The absolute value of a, + 3 decreases 
faster than any power of n, provided n is large enough. Thus according to a theorem in 
Calculus the series ~ n k a, converges for a fixed k. In particular the three series (9), 

n = l  
(10a, b) converge (since ~ e [0, 1]). Thus (9) is indeed the unique solution to the governing 
equations (6) and (2). We note that if a 1 and a 2 are known then the rest of the sequence 
{ak} can be computed via the recursive relation (11). 

In the numerical scheme described later we found that an excessive number of terms 
need to be taken to ensure convergence at high Reynolds number (Re > 5). This is 
because there is a boundary layer formed at the bot tom plate. To overcome this we 
rewrite (9) as 

f ( O = l  + ~ b n ( 1 - O  "+l .  (12) 
n = l  
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This series, by virtue of the convergence of (9), also converges to a unique solution. The 
b, satisfy the following 

and 

• b , = - l ,  ~ n b , = l ,  
n = l  n = l  

b3 = �88 Re b2, 

b,+ 3 = R e  ~-~b , ,+2  + 

r a = l  

(n + 1)(n + 2)(n + 3)(n + 4) 

m(m2 - 1 )  bmb~_m+ l} , n > 0 .  

(~3) 

(14) 

(15) 

3. Coaxial-disk flow 

Next, we consider the flow of a Newtonian fluid between two rigid circular disks of 
infinite extent. The lower disk is stationary and the upper disk is rotating at an angular 
velocity of f2, see Fig. 1. For  this flow the velocity field is (von Kdtrm~n's solution [7]) 
u = {u, v, w} where 

u = rdf2h'({), 

v = r f2g({), (16) 

w = -  2 f2dh(~) .  

The no-slip boundary  conditions read 

h(0) = h'(0) = h(1) = h '( l)  = 0, g(0) = 0, g(1) = 1. (17) 

The conservation of linear momen tum requires 

g" - 2 Re (h' g - h g') = 0, (18) 

and 

h 'v + 2 Re (g 'g  + hh") = 0. (19) 

Equat ion (I 8) arises from the axi-symmetry of the problem and (19), from the compatibil-  
ity of ~P/~r and ~P/~z. 

A power series solution to (17-19) is 

h = ~, d, 4" +1, (20) 
n = l  

g = ~ c,, {", 
n = l  

where 

k C n = l ,  
n = l  

and 

~, d, = O, ~ n d , =  0 (21) 
n = l  n = l  

C 2 : C 3 = 0 : d 3 

2 R e  , 1 
- Y~ ( 2 m - n + l )  dmc,_m, 

G+2 (n + l )(n + 2),,=a 

dn+ 3 = 

n > 2  

-- 2Re 
{mcmc._.~+l 

(n + l ) (n  + 2)(n + 3)(n + 4) ~22'_- a 
+ rrt(m 2 -- 1) dmdn_m+z} , 

(22) 

(23) 

n >= 1. (24) 
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Note that (21) comes from the need to satisfy the boundary conditions at ~ = 1 and 
(22-24) are derived from (18-19). 

Again in this flow problem if c~, dl and d 2 are known then the rest of {Ck} and {dk} 
can be found from the recursive relation (23-24). 

4. Numerical results 

Effectively we have transformed a two-point boundary-value problem into solving 
a non-linear equation, viz. in the continuous squeeze film flow we wish to find a 1 and 
a 2 - or b 1 and b 2 - so that (10a, b) - or (13) - are satisfied. Next, the series are truncated 
and in the case of the continuous squeeze-film problem we seek to minimize 

(n~=lan--])2+ (n~=lnan+ l) 2 

with respect to a x and a z. 
This unconstraint minimization problem has received a great deal of attention and 

has been efficiently coded [11]. We used a standard routine (EO4EDF) in the N A G  
Fortran Library. 

For  the continuous squeeze-film problem we found that the series solution (9) is 
slowly convergent when the Reynolds number is large (Re > 5). This is due to a thin 
boundary layer at the lower disk. The series (12) converge much faster and one can obtain 
highly accurate solution with very little computer time. In Table 1 we report the first two 
coefficients of the series and the dimensionless force at different Reynolds number. 
All these figures are accurate to six significant figures. The number of the significant 
figures was determined by increasing the number of terms in the series by 50 to 100 and 
comparing the coefficients. The highest Reynolds number that we can achieve in this way 
is 18. At a Reynolds number of 20 the number of terms required for a solution accurate 
to 3 significant figures is more than 1000 and we do not feel it is justified to push the 
method any further. It is noteworthy that both the perturbation solution (when Re ~ 1) 
and the asymptotic solution (when Re >> 1) predict the dimensionless load well. Wang [5] 
has suggested that the dimensionless load be given approximately by 

- p  = 6(1 + 0.176 Re). 

His formula is accurate to within 4% for the whole range of Reynolds number con- 
sidered in Table 1. All computing was done on a Cyber computer in single precision 

Table 1 
The first two coefficients in the series (12) and the dimensionless normal 
load. N is the number of terms required to achieve 6 significant figures. 
Exponents of 10 are given in parentheses. The CPU time ranges from 
1 sec to 1000 sec for Re = 1 and Re = 18, respectively. 

Re b a bz - p  N 

1 --2.71037 1.36414 6.80278 50 
5 --1.96457 0.239885 10.5425 100 

10 --1.58270 0.192510(--1) 15.8847 200 
15 --1.42820 0.123804(--2) 21.4267 500 
18 - 1 .39339  0.242526(-3) 25.0817 750 
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Figure 2 
Velocity profile (f) for the 
continuous squeezing flow. 
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mode which retains 13 to 14 significant figures. The velocity profile (f)  is given in 
Fig. 2. 

For  the coaxial-disc flow problem we minimize the unconstraint  function 

with respect to the first three coefficients cl,  dl and d 2. The problem is now three- 
dimensional but we have no problem obtaining solution accurate to six significant figures 
for Re < 18. The results are tabulated in Table 2. Of interest to the experimentalists is the 
dimensionless pressure gradient per radius: 

d 2 8P 
- h'" - Re (h '2 - g2 _ 2 h h " )  = constant.  (10) 

P -  rlg2r Or 

At low Reynolds number  it can be shown that p = ~ Re + 0(Re2). This prediction 
is quite accurate at low Reynolds number  (Re < 5). At Re = 18 the perturbat ion 

Table 2 
The first three coefficients in the series (20) and the dimensionless gradient/radius. N is the number 
of terms required to achieve 6 significant figures. Exponents of 10 are given in parentheses. The C P U  
time ranges from 3 sec to over 2000 sec for Re = 1 and Re = 18, respectively. 

Re c 1 d 1 d 2 p N 

1 0.998734 -0.332603(--1) 0.498727(-1) 0.299236 50 
5 0.970244 -0.158119 0.235168 1.41101 50 

10 0.899309 -0.275956 0.401679 2.41007 100 
15 0.818088 -0.346083 0.490256 2.941536 250 
18 0.769588 -0.366367 0.514351 3.086106 900 
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Figure 3 a, b 
Velocity profile (g and h) 
for the coaxial-disk flow. 
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prediction overestimates the true value to 75%. The velocity profiles (9 and h) are given 
in Fig. 3 a - b .  

Clearly the power series method will work when one has a combination of the above 
two flows, e.g. coaxial-disk flow with suction or injection, or even coaxial-disk flow with 
sliding and suction or injection. We are currently investigating the applicability of this 
method in solving corresponding non-Newtonian flow problems. 



Vol. 35, 1984 On the steady flow of a Newtonian fluid 919 

Acknowledgement 

This research has been supported by an Australian Research Grant  Scheme (ARGS). 

References 

[I] D. R. Oliver, R. C. Ashton and G. D. Wadelin, Appl. Sci. Res. 34, 25 (1978). 
[2] A. C. Pipkin, Quart. Appl. Math. 26, 87 (1968). 
[3] R. M. Terrill and T. P. Cornish, Z. Angew. Math. Phys. 24, 676 (1973). 
[4] H. Rasmussen, Z. Angew. Math. Phys. 21, 187 (1970). 
[5] C-Y. Wang, ASME J. Lab. Tech. 97, 642 (1975). 
[6] C-Y. Wang, Z. Angew. Math. Phys. 30, 773 (1979). 
[7] Th. Von Kfirmfin, Z. Angew. Math. Mech. 1, 244 (1921). 
[8] G. K. Batchelor, Quart. J. Mech. 4, 29 (1951). 
[9] K. Stewartson, Proc. Camb. Phil. Soc. 49, 333 (1953). 

[10] H. B. Keller and R. K.-H. Szeto, unpublished manuscript. 
[11] P. E. Gill and W. Murray, SIAM J. Num. Anal. 15, 977 (1978). 

Summary 

We show that the steady flow of a viscous fluid of moderate Reynolds number between two 
parallel disks has an exact solution which takes the form of a power series. Employing this exact 
solution the two-point boundary value problem for this class of flow is reduced to a nonlinear 
algebraic system which is then solved by a standard optimization method. Results are given for two 
particular cases, the continuous squeezing flow and the coaxial-disk flow. 

Zusammenfassung 

Wir zeigen, dab die st/indige Strbmung einer viskosen F1/issigkeit yon m/il3iger Reynoldszahl 
zwischen zwei paralMen Scheiben eine exakte LSsung hat, die die Form einer Potenzreihe annimmt. 
Wenn wir diese exakte L6sung anwenden, wird das Zwei-Punkte-Grenzwertproblem ffir diese Art 
von Str6mung reduziert auf ein nichtlineares algebraisches System, das dann dutch eine Optimie- 
rungsmethode gel6st werden kann. Angegeben werden Resultate ftir zwei Einzelf/ille: die konti- 
nuierliche Quetschstr6mung und die Str6mung f/.ir Koaxialscheiben. 
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