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I. Introduction 

Convection rolls in a horizontal fluid layer heated from below represent one 
of the most intensively studied solutions of the basic equations of fluid dynamics. 
Analytical solutions valid at small amplitudes of motion as well as numerical 
solutions for large Rayleigh numbers have been obtained in numerous publica- 
tions. The common property of these solutions is the spatial periodicity de- 
scribed by the wavenumber ~ and the reflection symmetry for the vertical veloc- 
ity w, 

1 provided the boundary conditions at z -- _ ~ are symmetric and no asymmetries 
with respect to the midplane z -- 0 are introduced by the fluid properties. Here 
and in the following dimensionless variables are used based on the layer thick- 
ness d as length scale, d2/~c as time scale, where x is the thermal diffusivity, and 
T 2 - T t as scale of the temperature, where T 2 and 7"1 are the temperatures of the 
lower and upper boundaries, respectively. 

A class of two-dimensional solutions which do not exhibit the symmetry 
(1.1) has been derived by Segel [8] and by Knobloch and Guckenheimer [5] in 
the case of stress-free boundaries. This class of solutions corresponds closely to 
the subharmonic solutions which have been found [1, 3, 6] in the Taylor vortex 
problem. We shall call this type of solution which describes the transition from 
a double roll to a single roll the transition solution. It possesses vertical planes 
of symmetry such that 

w (x  - Xo,  z)  = w (Xo - x ,  z) (1.2) 

is satisfied for selected values of Xo. 
In this paper we derive a new class of solutions which does no longer possess 

either of symmetries (1.1) or (1.2). The new kind of solution, called the mean 
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component solution, exhibits the same bifurcation properties in lowest order as 
the transition solution. Thus it is found that it is usually unstable except possibly 
for low Prandtl numbers. But this new type of solution is of interest from a more 
general physical point of view. First, there are unusual properties associated with 
this solution as, for example, a mean vorticity component. Secondly, because the 
new solution appears in two dual versions, it is likely to persist under more 
complex physical conditions for which one or the other version may be stable 
for a wide range of the parameter space. 

The mathematical analysis presented in this paper is divided into two parts. 
First a general analytical theory of mixed solutions will be described in Sect. 2. 
The transition solutions of [5, 8] and the mean component solutions evaluated 
explicitly in this paper are but special examples of the general class of mixed 
solutions that is derived in Sect. 2. Properties of higher order are considered in 
Sect. 3 and the stability properties of the solutions are outlined in Sect. 4. The 
second part of the paper starts in Sect. 5 and describes a numerical analysis 
based on a Galerkin scheme for both the mean component and the transition 
solution. The paper ends with some concluding remarks in which related pre- 
vious work is discussed. 

2. Small amplitude analysis 

For the description of two-dimensional convection it is convenient to intro- 
duce a streamfunction, w = a~ ~, u = - ~ ~b, where u is the velocity component 
in the horizontal x-direction and ~ denotes the partial derivative with respect 
to z. The nondimensional equation of motion for ~k and the heat equation for 
the deviation 0 from the temperature distribution of the static state can be 
written in the form 

g4~t + RSxO = P-1( 5 ~) ~ - ez~,ex + e: ,00 v 2 0  (2.1 a) 

(~ ) V 2 0 + e ~ b  = ~ 7 - a ~ 0 a x + a ~ 0 a z  0 (2.1b) 

where P 

Without 
the form 

g' = 0o + + 4'2 + 

0 = 0  o + 0 1 + 0 2 + - . -  

R - - R  o + R  a + R  2 + - . -  

is the Prandtl number. The boundary conditions are 

1 (2.2) ~=~, = 0 = 0 at z =_+ ~. 

introducing a formal expansion parameter we seek steady solutions of 

(2.3) 
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where 00, 00 and R 1 are linear in the amplitude of convection; Oi, 0t and R 2 

are quadratic and so on. 
The linearized version of Eq. (2.1) for which the right hand sides vanish 

admits the solutions 

00 = [A s in ,  x + B sin (fix + Z)] sin rc (z + �89 - A ~(1) + B I~t (2) (2.4) 

0o = Ro 1 [A (re 2 + ,2)2 CZ - 1 COS " X 

+ B( 7r2 +/~2)2/~-i cos(/~x + X)] sin rc(z + �89 -- AO ~) + BO (2) 

(2.5) 
provided that the wavenumber s ,  and fl satisfy the condition 

Ro = (7-C2 ..~ ~2)3 ~ - 2  = (~2 _[_ ~2)3 / ~ - 2 .  (2.6) 

For example in the case /~ = 202 this condition yields a cubic equation for 

20 (ci/rc) 6 + 12 (c~/Tc) 4 = I (2.7) 

the positive root of which gives the approximate value 

c~ = 1.5501534. (2.8 a) 

The corresponding value of R o is given by 

/~ -- 769.234 (2.8 b) 

and exceeds the critical value obtained for "c = z~/x/~ by about 17%. But in 
general ~ and/~ do not have to be commensurate and R o may approach the 
critical value closely. 

In order to determine the dependence of the amplitudes A and B on the 
Rayleigh number, the higher orders of Eqs. (2.1) must be considered. We obtain 
the solvability conditions for the inhomogeneous linear equations for ~1, 0~ by 
multiplying (2.1 a) by 0(") and (2.1 b) by - R  o 0 (") adding the equations and 
averaging them over the fluid layer for n = 1, 2. Here ~O ~"), 0 (") with n = 1, 2 
represent the functions defined in expressions (2.4) and (2.5). For reasons of 
symmetry the three solvability conditions are trivially satisfied with R 1 = 0. The 
solution for 01, 01 is given by 

Oi = ~A1 B r c s i n Z n ( z  + �89 _ . 2 )  

�9 {sin[(, + f l)x + z]D+ [a2/[1 - a2/ ,  + p - 1  (fl _ , )b+] 

- s i n  [(fl - , ) x  + Z] D_ [aZ/fl + a~/ ,  + P - l ( f l  + ,)b_]} (2.9 a) 

0 l = - s i n 2 r c  + ~  ( A 2 a ~ + B 2 a  2)+ ABrcs in2n  + 

�9 {cos [(/~ + e) x + X] D+ [b2+ (/~ - ~) R o i (a2/[~ _ a2/,)  + p -  1 (/~2 _ . 2 ) 2 1  

-- cos [(fi -- .)  x + Z] D_ [b 2_ (fl + .)  Ro  1 [a~/fl + a2/.] 

+ p - 1  (f12 _ .z)z]} (2.9b) 
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where the following definitions have been used 

al ___ ~z2 + ~2, a2 ~ T~2 _~ ~2,  b + --= 4 ~z z + (fi + a)2, 

b _ - 4 ~ 2 + ( f i - a ) z ,  D+ =-[b3+--R o(f i+a)2]-a ,  

D_ - [b 3_ - Ro( fl - ~)2]-1 (2.9c) 

After inserting the expressions for t91, 01 on the right hand side of Eqs. (2.1) 
the solvability conditions for the equations for t~2, 02 can be obtained, 

R2 (~ b(~) ~x 0o} 

= _ R o (0 t"), ( e x ~  1 ez --  e z ~  10x )00  "-~ ( e x ~ o e  z - ~z~lo~x)O15 

+ (~,("~,(G ~1G - G ~ I G ) v 2  % + ( G G o ~  - G ~ o G ) V 2  ~1).  (2.~0) 

The evaluation of this equation for n = 1, 2 yields two equations for A and B, 

- , q -  (c~ - a ) -  fo A2 - [ o o  + L ( P ) ] B  ~ A ---0 (2.11a) 

{ 8R~ B 2 } R - R - ~ -  ( f i - f i ' ) - g  o - [ f o + g l ( n ) ] A  2 B = 0 .  (2.11b) 

In writing these equations we have neglected terms of higher than third power 
in the amplitude and we have allowed for small differences between ~, fl and ~, fi, 
where the latter symbols refer to the specific values for which relationship (2.6) 
holds with fi > & The constants fo and go are given by 

f o = l  2 1 2 fi2)2 ~(rr + ~2)2, go =~(zc + 

while the functions ft  (P) and 91 (P) are given in the Appendix. In the special case 
fl = 2 ~, f ,  and 91 are of the order 50 and 20, respectively, at large Prandtl 
numbers and grow like - P -  2 and P - 2, respectively, for small Prandtl numbers. 
f l  (P) changes sign at P = P ~ 0.397, while gl (P) increases monotonically with 
p - 1  

Besides the normal convection solutions of (2.11), 

A 2 = ( R - R o ) / f o ,  B = 0  and S 2=(R-Ro) /go ,  A = 0  (2.12a, b) 

there exists a third solution of Eqs. (2.11), 

A2= N - I  {(R--I~)fl  + ( ~ - f o  ~R~ ~ ~R~ t a. g o - ( ~ -  ~) ~ ~(g~ + A) 

(2A 3 a) 

B 2 = N -1 (R --/~)gl + (fl -- fi) f o  -- (o~ -- ~) ( f o  + gl) 

(2.13b) 
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where the function N (P) is defined by 

N(P) - gogt + fofl + ftga. (2.14) 

Periodic solutions of the form (2.13) with fl = r c~, where r is a rational number, 
exist in the interval 

SI(R - / ~ )  <> ~ -- ~ ~ S 2(R - / ~ )  
N > 0  

for N < 0  and P>Pa (2.15) 

where the functions S~ and $2 are given by 

~r ~Ro 8 R o  )1-1 
S~ - ~  k Oc~ i,~f~ (fo+g~ 

s2 - A L e~ I~g~ - e~ ,~(g~ + f l  �9 

They satisfy the relationship 

'--F 

(2.16a) 

(2.16b) 

(2.17) 

In the special case r = 2 the functions S 1 and $2 are plotted in Fig. 1 as a function 
of the Prandtl number. $2 is negative for P > Pz ---- 0.397 and solution (2./3) 
exists for ~ > ~ in this regime. The interval (2.15) decreases as S 2 approaches $1 
for decreasing Prandtl number and vanishes at P ~ 0.296 where S 1 equals S 2 
and N (P) changes sign. For  P < 0.296 the interval of existence rapidly increases 
as S 2 tends to infinity. This divergence of $2 occurs at P = Pd ~- 0.234 and 
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indicates that the interval of existence is no longer bounded towards small values 
of cz as P decreases even further, 

< 0~ - S 1 (R - / ~ )  for P < Pa. (2.18) 

It must be remembered, of course, that the small amplitude analysis requires 
l a i -  c~ I ~ 1 and the lower bound for ~ must be obtained from different consider- 
ations. We shall return to this point in later sections of this paper. 

The solution (2.13) bifurcates from solution (2A2a) on the left side of the 
interval (2.15) and joins solution (2.12b) on the right hand side of the interval 
(2.15). In the special case )~ = 0, r = 2 solution (2.13) thus describes the transition 
from a double roll pair within the region 0 -< x _< 2 7r/c~ at the right side of the 
interval (2.15) to a single roll pair at the left side of (2.15). We shall call this 
solution the transition solution for this reason. 

In the case of solution (2.12) a change of the sign of A and B does not lead 
to a new solution; it just corresponds to a horizontal translation by half a 
wavelength. If, however, in the case of solution (2.13) the signs of B or A or of 
both are changed, then new solutions are obtained. The number of solutions is 
reduced only in special cases. For example in the case/~ = 2 e, a new solution 
is obtained only by a change of sign of B since a change of sign of A corresponds 
to a translation by rc/e. These two solutions exhibit the reflection symmetry (1.1) 
with respect to each other, 

w(x,z) = -  w* (~  x,-z) (2A9) 

where the asterisk* refers to the solution obtained by a change of sign B. This 
property which holds for all orders of the expansion (2.3) depends, of course, on 
the basic symmetry of the convection layer that we are considering. Once asym- 
metries such as a temperature dependent viscosity appear, the symmetry (2.19) 
disappears and the two conjugate solutions will differ in their gross physical 
properties such as the convective heat transport. 

As we have shown in Sect. 2 the analysis for the general form (2.4) of 
the solution is essentially identical up to second order terms with the analyses 
of Segel [8] and of Knobloch and Guckenheimer [5] in the special case )~ = 0, 
fl = (k + 1) c~/k. This property continues to hold for the stability analysis which 
is outlined in Sect. 4. 

3. Higher order properties 

The relationships that have been discussed so far hold independently of the 
phase angle )6 In the case of periodic solutions however the phase angle may 
enter explicitly the solvability conditions of higher order. We consider this 
problem in this section by focussing the attention on the special case fl = 2 ~. 
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In contrast to solutions (2.12) a finite mean component ~ must be expected for 
solutions of the form (2.13). By taking the x-average of the equations of motion 
we obtain as equation for t~ 

3 -- p - 1  = (3 .1 )  

where the bar indicates the average over the x-dependence. Integration of (3.1) 
yields 

2 - -  m l  (3.2) 

The constant of integration vanishes because of the assumption of stress-free 
boundaries. A non-vanishing contribution to ~7 can be obtained first in third 
order, 

~2~2 = P-~  (~zOO~zOl + 8x01 ~z~o). (3.3) 

The evaluation and integration of this relationship yields 

~2 = -  P -1 A 2  Bs inz  - 
144 

" [ 3 6 s i n r c ( z + ~ ) - s i n 3 r c ( z + ~ ) l ( a 2  p -1  9 o~ 2 + 3 a~/2 + 3 a 2) D_ . 

(3.4) 

In the case of the transition solution, ~ = 0, the mean component of ~ vanishes. 
This property must be expected on the basis of the symmetry property (1.2). 
For finite X modulo ~ this symmetry no longer holds and the two dual solu- 
tions corresponding to the two signs of B exhibit a mean component t~. The 
nonlinear interactions which give rise to a finite ~2 may also lead to restrictive 
solvability conditions in higher order unless ;~ is an integer multiple of n/2. This 
is suggested by the numerical analysis in which solutions within the interval 
0 < X < n/2 have not been obtained. The solution for X = n/2 which maximises 
the mean component ~2 will be called the mean component solution in the 
following. 

Although a finite ~ describes a mean flow in the sense of the averaged 
velocity field, it does not imply that fluid particles move arbitrarily long 
distances given enough time. The streamline pictures for the transition solution 
and the mean component solution shown in Figs. 4 and 5 show that both solu- 
tions correspond to closed streamlines. But anticlockwise vorticity dominates in 
Fig. 5 corresponding to a positive value of B in expression (3.4) with sin X = 1. 
The figures also indicate the property that the mean component solution does 
not possess a vertical plane of symmetry while the transition solution obeys the 

relationships ~ ( x ) = - ~ ( - x ) a n d  ~ ( x + ~ ) = - ~ ( ~ - x ) .  
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4. Stability analysis 

The simultaneous existence of solutions of the forms (2.12), (2.13) for given 
values of R, a,/3 suggests that most of them are unstable and only one is possibly 
stable. A restricted stability analysis can be accomplished readily by an exten- 
sion of the analysis of Sect. 2. 

After superimposing infinitesimal disturbances onto the steady solutions, 

A + A exp (a t), B + /~  exp (a t) 

we obtain the following equations for A and/~  in analogy to Eqs. (2.11) 

a M l . 4  = [(R - R1) - 3fo A2 - (90 + f l )n2]  ~ - 2(9o + f l ) B A B  (4.1 a) 

aM2/~ = [(R - R 2 ) -  39o B2 - (fo + g 0 A 2 ] / ~ -  2(fo + 9t) A B ~  (4.1b) 

where the definitions 

M1 _= ~2 (1 + P-1),  M 2  --  fi2 (1 + P-1)  

= /~ q- (0r - -  O ~ ) ~ 0  R2 = / ~  + (/3 __ fl~)8Ro R1 
t~ 

have been introduced. The condition that the determinant of the coefficient 
matrix for the system (4.1) vanishes yields a quadratic equation for the growth- 
rate a. In the case of the three solutions (2.12 a), (2.12 b), (2.13) the conditions for 
stabilitiy assume the following forms 

-- fo (R2 - -  R1) - -  9 1  (R - R1) < 0 for 

- g o ( R 1 - R a ) - f l ( R - R 2 ) < 0  for 

N (P) < 0 for the mixed solutions. 

A 2 = (R -- R1)/fo, 

B 2 = (R -- R2)/go, 

B = 0 (4.2a) 

A = 0 (4.2b) 

(4.2c) 

Since the expressions on the left hand side of the inequalities (4.2 a) and (4.2 b) 
are identical to the wavy brackets of expressions (2.13 b) and (2.13 a) except for 
the sign, the expected connection between instability and the bifurcation of a 
new solution is evident. 

We now return to the special case /3 = 2 ~ which we use as an example. 
For P > Pz the bifurcation is relatively simple. The diagrams for e > ~ and ~ < 
are shown in Fig. 2. Because N (P) is positive the mixed solutions are always 

Figure 2 
Bifurcation diagrams in the case P > Pz 

for ~ > ~ (left) and for e < ~ (right). 
Dashed lines correspond to unstable 
branches. The mixed solutions (2.13) 
are unstable everywhere. R t R 2 R R 2 R 1 R 
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Figure 3 
Bifurcation diagrams for P < Pz in 
case N > 0 (left) and in the case 
N < 0 (right). Dashed lines indicate 
unstable branches. The bifurcation 
point R A moves to the left of R 1 as 
the Prandtl number decreases be- 
low 0.28. 
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unstable. More interesting features appear when P is less than Pz. Since the 
existence of the mixed solutions is restricted in this case to the region e < c~ or 
R 2 < R 1 the interval (2.15) also defines a finite interval of existence in terms of 
the Rayleigh number for a given value of c~. Fig. 3 a describes the bifurcation 
diagram for N > 0; Fig. 3 b indicates the changes that occur when N changes 
sign. In between the domain of existence of the mixed solution vanishes as N 
approaches zero. The bifurcation point R a actually drops below R 1 as f l  de- 
creases below - go which happens at P -~ 0.280; for even smaller Prandtl num- 
bers R A approaches R 2 . We thus find that a solution with a finite value of A exists 
below the Rayleigh number for onset of convection with the wavenumber e. For 
a general discussion of the bifurcation problems described by equations of the 
form (2.13) we refer to Golubitsky and Schaeffer [4] where the diagrams of Figs. 2 
and 3 are included as special cases. 

5. Numerical analysis 

The numerical analysis complements the analytical theory in that it yields 
results in the high Rayleigh number domain where the expansion (2.3) looses 
validity. On the other hand it becomes more difficult to extract the parameter 
dependence from the computed solutions which is directly available from the 
explicit expressions (2.13). The numerical method which resembles the analytical 
treatment most closely is the Galerkin method in which the dependent variables 
are represented by the same set of functions which also appear in the perturba- 
tion approach, 

= y'(f i l ,  cosnc~x + Dl. s innc~x)s in lrc(z  + �89 (5.1 a) 
l ,n  

0 = ~( /h .cosnc~x + b t . s i n n ~ x ) s i n l ~ ( z  + ~). (5.1 b) 
l ,n  
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Figure 5 

Streamlines ~ = const of the mean component solution for R = 5000, P = I, ~ = 1.5. 
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After inserting this representation into Eqs. (2.1), multiplying them by 
cos m ~ x sin k rc (z + �89 and sin m ~ x sin k n (z + �89 and averaging them over the 
fluid layer, we obtain a system of nonlinear algebraic equations for the un- 
knowns gtkm, (tkm, bkm, [Jkm" In order to reduce the number  of terms we have 
restricted the attention to periodic solutions and specifically to those with 
/3 = 2 c~ among them. The simplest solution corresponds to solution (2.12 a) and 
is characterized by the symmetry properties 

a l , = 0  for all l ,n,  a l l . = 0  for l + n = o d d  
(5.2) 

b t . = 0  for l + n = o d d ,  ~;z,=0 for all l ,n .  

An infinite number  of solutions of the form (5.1) can be obtained from solution 
(5.2) by a translation. Since we are only interested in physically different solu- 
tions we shall ignore this degeneracy of the problem. The convection field 
described by a solution of the form (5.2) can also be described by a different set 
of coefficients when ~ is replaced by ~ = o~/rn in representation (5.1) where m is 
an integer. It is thus important  to distinguish between these sets of mathematical 
solutions which describe the same physical solution and those which describe a 
physically different solution. 

The transition solution and the mean component  solution represent novel 
solutions which are physically distinguished from solutions of the form (5.2). The 
transition solution in its simplest form is characterized by 

a l , = ~ t , = 0  for all l ,n 
~even (5.3) 

a t , =  +a~,, and b l , = - ~ z *  for l + n = ( o d d  

where the symbol * refers again to the conjugate solution. The mean component  
solution is characterized by 

a z , = ~ z , = 0  for l = e v e n ,  

al,A + ~* and bl,=+V*bl, for n =  ~~  
= _ a t n  _ l eve  n 

a l ~ = b l . = O  for l = o d d ,  

az. + "* and b l , = - b * ,  n = ~even 
= - az" ( o d d  

(5.4) 

Other representations can be obtained, of course, by shifting the solution by a 

rc The quarter of a wavelength, as in the case of expression (2.4) for )~ = ~. 

transition solution and the mean component  solution continue to bifurcate 
at the same value ~2. But away from the bifurcation point their amplitudes 
differ in contrast to the conclusion based on the solvability condition in the 
third order. Figure 6 shows the dependence of the dominant  coefficients on ~. 
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15.0, 

Figure 6 
Bifurcation diagram as a function of c~ 
for R = 3500, P = 1. Curves A and B 
describe the coefficients 61~ and a12 cor- 
responding to the symmetric solutions 
(2.12). The lines C and D give the coeffi- 
cients aH and a~2 for the mean compo- 
nent solution, while the dashed lines E 
and F describe d~ and dr2 for the transi- 
tion solution. The dashed lines are ex- 
pected to join the solid lines at a point of 
bifurcation on the left side. But the 
numerical solution ceased to converge in 
the neighborhood of the left bifurcation 
point. 
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Figure 7 
The coefficient dlo of the mean compo- 
nent solution (left scale) and the Nusselt 
numbers (right scale) for the symmetric 
solutions (A, B), for the mean compo- 
nent solution (C), and for the transition 
solution (E). All curves have been com- 
puted for R = 3500, P = 1.0. 
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P r o b l e m s  of  numer i ca l  c o n v e r g e n c e  have  p r even t ed  us to comple t e  the curves  

for  the t r ans i t i on  so lu t ion  nea r  the  p o i n t  o f  b i fu rca t ion  c~ = cq. A p p a r e n t l y  the 

so lu t ion  o v e r s h o o t s  sl ightly in to  the r eg ion  e < e l  before  r each ing  the bifur-  

ca t ion  p o i n t  at  e = e l .  A r m b r u s t e r  [pr ivate  C o m m u n i c a t i o n ,  1986] has  s h o w n  

t h a t  h igher  o rde r  terms cause  a difference be tween  the b i fu rca t ion  po in t s  cq for  

the t r ans i t ion  so lu t ion  a nd  the m e a n  c o m p o n e n t  solut ion.  I n  the same  analysis  

he a lso  shows  tha t  the lat ter  so lu t ion  is s table  while  the  fo rmer  b e c o m e s  un-  
s table for  N < 0. 

6 .  C o n c l u d i n g  r e m a r k s  

T h e  p h e n o m e n o n  of  mixed  so lu t ions  ar is ing f rom the co inc idence  o f  the  

e igenvalues  o f  two  l inear  e igenmodes  has  been  s tud ied  in the  case o f  the T a y l o r  
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vortex instability [1, 3, 5, 6]. But the asymmetry of the external conditions in 
that case and the use of rigid boundaries have prohibited an entirely analytical 
solution, even when the limit of small amplitudes was adopted [1]. As has been 
noted in [4] the transition solution for a stress-free convection layer corresponds 
closely to the mixed solutions studied in the Taylor vortex case. The analogon 
of the mean flow solution has not been studied in the Taylor vortex case because 
a symmetry assumption has usually been made which corresponds to assump- 
tion (1.2) in the case of convection. The general axissymmetric Taylor-Couette 
problem is equivalent, of course, to two-dimensional convection in a layer with 
asymmetries. Only in the limit of a small gap and nearly corotating cylinders 
does the Taylor-Couette problem coincide with the problem of two-dimensional 
convection considered in this paper after stress-free boundaries have been re- 
placed by rigid ones. The transition solution and its conjugate solution begin 
to differ in their physical properties such as the heat transport as soon as 
asymmetric properties are introduced in the convection layer. Moreover, they 
can no longer be distinguished from the "symmetric" solution (2.12a) by sym- 
metry properties. The comparison with the results of [6, 7] indicates that the 
bifurcation point where these three solutions come together disappears just as 
a pitchfork bifurcation disintegrates into two separate branches when imper- 
fections are introduced. On the other hand, the bifurcation point where the two 
transition solutions join the solution (2.12b) separates into two bifurcation 
points. In fact, it is appropriate to distinguish two solutions of the type (2.12 b) 
which differ by a translation of ~/2 e in the x-direction. The qualitative change 
introduced by an asymmetric property in the bifurcation diagram as a function 
of the wavenumber has been sketched in Fig. 8. It appears that the imperfect 
pitchfork bifurcation gives rise to the fold which is typically observed in the 
Taylor vortex case [6, 7]. 

The mean component solution has not been considered in the previous 
work since it does not possess the symmetry property (1.2). Undoubtedly it 
exists in the Taylor-Couette problem as well as in the problem of convection. 

Figure 8 

2 / 

" B / \ \  ~'%,,, . / /  

Qualitative sketch of bifurcating solutions. Dependence of A (solid lines) and B (dashed lines) on 
the wavenumber ct is shown for a symmetric layer (left side, treated in this paper) and for a 
asymmetric layer (right side, Taylor vortex case). As asymmetries are introduced the pitchfork 
bifurcation at e = % (left) disintegrates and the bifurcation point  at e ~ e2 splits into two separate 
bifurcation points at c~ = e2, ~* (right). 
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Its most interesting property is the dominance of one sign of vorticity over the 
other. Situations where vortices of one sign are much stronger than those of the 
other sign have been observed as spiral vortices in the original experiments by 
Taylor [9]. Taylor remarks that they are likely to be induced by a basic large 
scale circulation in the apparatus. But it seems more likely that such a weak 
circulation may be important only indirectly in that it stabilizes one of the two 
mean component solutions of the problem. 

An even simpler problem, where the phenomenon of mixed solution can be 
established is the problem of convection in a porous medium. However, porous 
medium convection lacks the advantage of an additional parameter, such as the 
Prandtl number. As has been demonstrated in [5, 8], this parameter influences 
the structure of the bifurcation diagram in an interesting way and raises the 
possibility of stable mixed solutions in an horizontally infinite layer. The limited 
stability analysis carried out so far does not prove general stability, of course. 
Even when two-dimensionality of convection is enforced by the application of 
a homogeneous magnetic field parallel to the axis of the convection rolls, there 
are still instabilities such as the Eckhaus instability that have been ignored so far. 
The latter instability is inhibited when convection in a finite box is considered 
as was actually done by Knobloch and Guckenheimer [5]. But the imposition of 
realistic rigid side walls instead of periodic ones is likely to change the properties 
of the mixed solution significantly, while only small quantitative differences must 
be expected when the stress-free horizontal boundaries are replaced by rigid 
ones. 

The lower degree of symmetry of the mixed solutions does not offer any 
physical advantage in the case of the symmetric convection layer considered in 
[5] and in this paper. This situation may well change once layers with asymmetric 
properties are considered. Since the two pairs of conjugate solutions that corre- 
spond to the transition solution and to the mean component solution acquire 
different properties in that case, one of them may be especially adjusted to 
the external asymmetries and thus may become stable. An analogous, though 
physically different process occurs in the competition between hexagonal con- 
vection cells and convection rolls [2]. The search for suitable asymmetric proper- 
ties thus seems promising. 
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A p p e n d i x  

Using the definitions (2.9 c) with ct, fl, R 0 replaced by 6, fl,/~, respectively, the 
function f l  (P) and 01 (P) can be written in the form 

]'1 (P) = ~ + [c_ + P -~ (fl -- 6) b +1 (fl - ~) (fiE _ ~ 2 )  

�9 [--a216fl + p - '  l~(a 2 -- b+)la 21 

+ D_ [c+ + p - I  (fl + 6) b_] (fl + a) (f12 _ 62) 

�9 [a2/6fl + p -1  l~(a2_b_)/a 2] 

--  D+ [b 2 (fl - 6) c_  + P - 1  ~ (~2 __ ~2)2] ]~ - -  6 
6 

+ D_[b2_(fl + 6)c+ + P-1/~(fl2- 62)2] ~ - ~  ~} 

g ~ ( P ) = i ~  + [ c _ + P , ~ ( ~ - 6 ) b + ] ( ~ - 6 ) ( ~ 2 - 6 2 )  

�9 [a~ /6 f l  - P - ~  ~ ( a ~  - b+) /a~]  

+ D_ [c+ + p -1  (fl + 6)b_] (~ + 6)(~2 _ 62) 

�9 [ -  a~/6  fl - p - 1  I~ (a~ - b _ ) / a ~ ]  

+ D + [ b  2 ( f l - a )  c_ +P-11~(f12--62)21 fi 

+D_[b 2_ ( f i + 6 ) c+ +P - 1 / ~ ( ~ 2 - 6 2 ) 2 ] ~ }  

where the following definition has been used, 

c + -- + t 2)2/t  + ( .2  + 62)2/6. 

The solvability condition (2.10) permits an additional contribution to f l  (P) 
when the relationship fl = 3 6 holds. But this contribution is vanishing because 
it is proportional to 3 6 - ft. 
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Summary 

A new class of steady solutions is derived describing convection rolls which do not reflect the 
symmetry of the physical conditions of the convection layer. As does the class of mixed solutions 
considered by Segel (1962) and by Knobloch and Guckenheimer (1983) the new class arises from 
a wavelength doubling bifurcation. The new class is distinguished by a tilt of the convection rolls 
which gives rise to a finite mean horizontal component of vorticity. An analytic theory is derived 
for small amplitudes of motion in the case of stress-free boundaries. The theory is extended to higher 
amplitudes by numerical computations. The new solution shares with the solution of Segel, 
Knobloch and Guckenheimer the property that it is unstable for large Prandtl numbers P with 
respect to disturbances which tend to establish the wellknown symmetric solutions, but becomes 
stable with respect to these disturbances for Prandtl numbers P < 0.296. 

Zusammenfassung 

Eine neue Klasse von Lrsungen wird abgeleitet, welche Konvektionsrollen beschreibt, die 
nicht der Symmetric der physikalischen Bedingungen der Schicht entsprechen. Ebenso wie die von 
Segel (1962) und von Knobloch und Guckenheimer (1983) abgeleitete Klasse von gemischten 
Lrsungen geht die neue Klasse von Lrsungen aus einer Verzweigung mit Wellenl/ingenverdopplung 
hervor. Die neue Klasse zeigt eine Schr/igstellung der Rollen, die zu einer endlichen gemittelten 
horizontalen Komponente der Wirbelstfirke fiihrt. Eine analytische Theorie wird ffir den Fall 
kleiner Amplituden der Bewegung bei spannungsfreien Randbedingungen abgeleitet. Durch 
numerische Rechnungen wird die Theorie zu hrheren Amplituden hin erweitert. Die neue L6sung 
hat mit der Lrsung von Segel, Knobloch und Guckenheimer die Eigenschaft gemeinsam, dab sic 
instabil ist fiir groge Prandtlzahlen P gegeniiber Strrungen, welche zu den bekannten symmetri- 
schen L6sungen ffihren; fiir Prandtlzahlen P N 0.296 ist sic aber stabil gegentiber diesen Strrungen. 
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