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1. Introduction 

In this paper we study the bifurcation of subharmonic solutions for periodic 
time-reversible systems depending on a real parameter, of the form 

=f ( t ,  x, 2). (1.1) 

Here we take x c N", while f :  N x N~" x IR ~ IR" is a smooth mapping satisfying 
the following assumptions: 

(H1) (i) f ( t  + 2n, x, 2)= f ( t , x ,  2), V(t, x, 2); 
(ii) f ( t ,  0, 2) = 0, g(t, 2); 

(iii) f ( - -  t, Sx, 2) = - S f (t, x, A), g(t, x, 2), 
where S e ~,r (P,") is such that S 2 = I. 

Of course we can replace the period 2 n in (i) by any T > 0. The condition (iii) 
is called a time-reversibility condition, since it implies that if x (t) is a solution of 
(1.t), then so is ~ (t):= S x ( -  t). We may without loss of generality assume that 
S is orthogonal; then it is also necessarily symmetric. An example of a system 
satisfying (Hi) comes from second order scalar equations of the form 

+ g (t, x, 2) = O, (1.2) 

where g: N3 ~ IR is smooth, even and 2 n-periodic in t, with g(t, O, 2) = 0 for all 
(t, 2). Bringing (1.2) in the form of a first order system it is easy to see that (HI) 
is satisfied with S e ~<o (N2) given by 

0) 
A particular case of (1.2) was recently studied by Loud [3]; he considers scalar 
equations of the form 

+ h (z) = )~p (t), (1.4) 
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where h: R ~ R and p: R ~ R are smooth, with p even and 2 n-periodic. He 
makes the assumption that (1.4) has for each 2 E IR an even 2 n-periodic solution 
z o (t, 2), depending smoothly on 2. Putting z = z 0 (t, 2) + y one obtains an equa- 
tion of the form (1.2) for y, with 9 (t, y, 2) given by 

9 (t, y, 2) = h (z o (t, 2) + y) - h (z o (t, 2)). 

The results which we will present in this paper generalize the results of Loud, 
although the method which we use is quite different: Loud uses normal form 
theory, while we will use a Liapunov-Schmidt reduction. 

Now consider the variational equation of (1.1) at the equilibrium solution 
x = 0; we get 

= A (t, 2) x, (1.5)4 

with A(t, 2) :=  D~f(t, 0,2) 2re-periodic in t; moreover, the time-reversibility 
(HI) (iii) implies that 

A ( - t ,  2)S = -  SA(t, 2), V(t, ~.). (1.6) 

As we will see in Sect. 2 it follows from (1.6) that if # e r is a characteristic 
multiplier for the 2 n-periodic linear system (1.5) 4, then so is #-1. Consequently 
the characteristic multipliers of (1.5)z come in pairs: the two elements of such 
pair are either both real, with one inside and one outside the unit circle, or they 
are complex conjugate and both on the unit circle. In particular the second 
situation will interest us further on; more precisely we will assume: 

(H2) The equation (1.5) has for 2 = 0: 

(i) a pair of simple characteristic multipliers (#o, rio) with, 

~o = exp (2 n ip/q), 

p,q  ~ N ,  p # 0, q > 3, and such that p and q have no common 
divisors; 

(ii) no other characteristic multipliers # e r for which / d =  1 (non- 
~'csotlatlCe). 

Under the hypothesis (H2) the equation (1.5) o has a two-dimensional space of 
2nq-periodic solutions. It is then natural to ask whether the equation (1.1) has 
for small 2 some 2 ~q-periodic solutions. We will show that there is indeed 
bifurcation of such subharmonic solutions at ~. = 0 when a further condition is 
satisfied; this condition can be formulated as follows. It follows from (H2) and 
our remarks concerning the characteristic multipliers of (1.5)4 that (1.5)4 has for 
all sufficiently small 2 a pair of simple characteristic multipliers (/~* (2), ~ *(2)), 
with #* (2) = exp (i~ (2)) for some smooth ~: R ~ R satisfying ~9 (0) --- 2np/q. 
Our third condition then takes the form 

(H3) (0 ) ,  o. 
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We will show that under the hypotheses (H1)-(H3) at least 2q branches of 
2~q-periodic solutions of(1.1) bifurcate at 2 = 0 from the trivial solution x = 0. 
These 2 q branches of subharmonic split into two groups, each consisting of q 
branches, and such that two branches in the same group can be obtained one 
from the other by a phase shift over an appropriate multiple of 2 re. Also, the 
subharmonic solutions from one group are unstable, while those from the other 
group are stable in a very weak sense (see further). The following remarks are 
intended to put this result in perspective. 

Remark 1. In the usual treatments of bifurcation of subharmonic solutions 
(see e.g. Iooss and Joseph [2], Vanderbauwhede [4]) it is assumed that a pair of 
simple characteristic multipliers of (1.5) z crosses the unit circle transversally at 
exp (+  2~ip/q). Here the time-reversibility prevents such transversal crossing: 
the characteristic multipliers stay on the unit circle. The hypothesis (H3) gives 
transversality along the unit circle; this condition is generically satisfied for 
one-parameter families of time-reversible systems. 

Remark 2. Our result states that for generic one-parameter families of time- 
reversible systems there is bifurcation of subharmonic solutions. This is quite 
different from what happens when there is no time-reversibility: then there is 
generically no bifurcation of subharmonic solutions when q > 5. 

Remark 3. When (H2) and (H3) are satisfied at 2 = 0, then similar hypothe- 
ses (with different values of p and q) are satisfied at an infinite number of 
parameter values near 2 = 0. Hence there will be an infinite number of bifur- 
cations of subharmonic solutions (with increasing period) near 2 = 0. This 
complex bifurcation behaviour for subharmonic solutions will be reflected in 
the dynamics of (1.1), which can be described by the period map for (1.1). 
For  a discussion of what happens in the case n = 2 we refer to Sect. 5 of Loud's 
paper [3]. 

Remark 4. The subharmonic solutions bifurcating at 2 = 0 will have a pair 
of characteristic multipliers near + i, with product equal to 1. Our earlier 
statements about  stability or instability of the bifurcating subharmonic solutions 
refer to this pair of characteristic multipliers. If they are real (and not both equal 
to 1), then the subharmonic solution is unstable, with an instability of saddle- 
type. The situation is much less clear in the other case, when both multipliers 
near I are nonreal and on the unit circle. The discussion given by Loud [3] 
indicates that the subharmonic solution is then stable in some weak sense. In this 
paper we will not analyze the stability question any further; when we say that 
the subharmonic solutions are stable we just mean that its characteristic multi- 
pliers near I are nonreal and on the unit circle. 
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Our analysis will be based on an abstract equation which we define as 
follows. Let Yq be the Banach space of 2rcq-periodic continuous mappings 
y: P,. --, P,", equipped with the supremum norm. By Xq we denote the subspace 
of all x ~ Xq which are of class C1; Xq is a Banach space when equipped with the 
Ca-supremum norm. We define M: Xq x R ---, Yq by 

M(x, 2)(t):= - 2 ( t ) + f ( t , x , ( t ) , 2 ) ,  V t e N ,  V(x, 2)E X q x N .  (1.7) 

In order to find the 2zq-periodic solutions of (1.1) we have to solve the 
equation 

M (x, 2) = 0 (1.8) 

for (x, 2) e Xq x 1t. 
The rest of the paper is divided as follows. In Sect. 2 we discuss the linear 

variational equation (1.5); in Sect. 3 we apply a Liapunov-Schmidt  reduction to 
(1.8) and obtain a normal  form for the bifurcation equation. The main results are 
proved in Sect. 4, while in Sect. 5 we consider certain perturbations of the 
equation (1.1). 

2. The variational equation 

Fix some 2 ~ IR and denote by ~(t,  2)~ ~ ( R " )  the transition matrix for 
(1.5)~, i.e. x(t) = cI)(t, 2)x o is the unique solution of (1.5)~ satisfying x(0) = x o. 
Then C (2):= �9 (2 re, 2) is a monodromy  matrix for the 2 n-periodic equation 
(1.5)a, the eigenvalues of C (2) are the characteristic multipliers of (1.5)a, and we 
have 

q0 (t + 2 n, 2) = �9 (t, 2) C (2), V (t, 2) ~ R 2 . (2.1) 

Remark that  det �9 (t, 2) > 0 for all (t, 2), and hence also det C (2) > 0. 

Lemma 1. Assume (H1). Then we have 

det C (2) = 1, V 2 e ~ .  (2.2) 

Moreover, if # etE is an eigenvalue of C (2) and ~ s 112" a corresponding eigen- 
vector, then also #-1  is an eigenvalue of C (2), and S ~ a corresponding eigen- 
vector. 

Proof From (1.16) and the uniqeness of solutions of (1.5)~ with given initial 
value one easily obtains 

S ~ (--  t, 2) = ~ (t, 2) S,  V (t, 2) e R 2 . (2.3) 

Taking t = - r c  in (2.1) gives then 

C (2) = S ~ (Tr, 2)-1 S �9 (re, 2), V 2 e P-, (2.4) 
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and 

C(2) -1 = S C ( 2 ) S ,  V 2 e ~ .  (2.5) 

The lemma now follows immediately from (2.5), using (det S) 2 = I (since S 2 = I) 
and det C (2) > 0. 

In the s tatement  of the next result we use the inner product  on ~"  defined 
by 

(a, b) : = ~. ai b~, V a, b ~ ~" .  (2.6) 
i = 1  

Lemma 2. Assume (HI)  an (H2)(i), and let C o : =  C (0).Then we can find 
~o ~ II;"\{0} and 4" ~ C"\{O} such that: 

(i) N (C O - #o I) = span {4o}, N (C T - / 2 0  I) = span {~*}; 
(ii) (4~, 40) = 2, ( ~ ,  ~-o) = 0; 

(iii) S 4o = ~-o, S ~  = ~-*. 

P r o o f  (H2) (i) says that  #o = exp (2 n ip /q)  is a simple eigenvalue of Co; then 
/2o is a simple eigenvalue of Co r,  and we can find vectors 4o and 4" satisfying (i). 
(Remark that all subspaces considered in this p roof  are complex subspaces of 
tE".) We also have 

and 

r  = x (Co - #o i)  | R (Co - #o I) (2.7) 

R ( C  O - #o I) = N (C~ - / 2 0  I) l = {b ~ r  [ (4~, b) = 0}, (2.8) 

by (i). It follows that (4~, 40) :4: 0, and hence we may normalize 4o and 4~ such 
that (r 40) = 2. Moreover  we have N (C o - / 2 0  I) = span {~-o}, while (2.7) and 
#o +/20 imply that N (C o - / 2 0  I) ~ R (C o - #o I); it follows then from (2.8) that  
(~*, ~-o) = 0. Since/20 = #01 it follows from lemma 1 that also S ~o belongs to 
N (Co - / 2 o  I); hence we have $4o --- a ~-o for some 0r ~ ([I. Using the fact that S is 
real and S 2 = I one easily sees that  [a] = 1, i.e. a = exp (2 i ~p) for some q~ ~ R .  
Replacing 4o by e i~~ ~o we see that we can choose 4o such that $4o --- ~-o. A 
similar argument  shows that $4"  --- fl~-* for some fl ~ •; but  then we find from 
(ii) that 

2 = (4~, S~-o) = ($4~, ~-o) = fi(~-~, ~-o) = 217, 

i.e. we have fl = 1. This proves the lemma. 
N o w  we return to the opera tor  M defined in the introduct ion;  M is 

a smooth  operator ,  and M ( 0 , 2 )  = 0 for all 2 e lR.  The opera tor  
L: = D x M (0, 0) e ~ (X~, Yq) is explicitly given by 

(Lx )  (t) = - ~ (t) + A (t, O) x (t), V t ~ ~,,. (2.9) 
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We know from classical Floquet theory that L is a Fredholm operator with zero 
index; we want to describe N(L) and R(L). To do so we will need an inner 
product on the complexification yqc of Yq defined by 

1 27rq 
(u , v ) ' -2 rcq  ! (u(t),v(t))dt, Vu, v~ Yq c. (2.10) 

With respect to this inner product the operator L has a formal adjoint 
L* e s (Xq, Yq) given by 

(L*x)(t)=X(t)+ A(t,O)Tx(t), V t e R ,  VxeXq; (2.11) 

L* is associated with the adjoint equation 

= - A(t, O)Tx. (2.12) 

This is again a linear 2 re-periodic equation; its transition matrix is (q~ (t, 0)T) - 1, 
and its monodromy matrix (C r ) -  1 has the same eigenvalues as C o, by lemma 1. 
Finally we define ~:~,. ~ t12 n and (*: R ~ ~" by 

~(t) := ~(t ,  0)~o, (* (t) := (q~ (t, 0)r) -1r  V t ~ R .  (2.13) 

The space U : = N (L) consists of all 2 rc q-periodic solutions of (1.5) o. It is 
easy to see from #q = 1 and from the nonresonance condition in (H2) that U is 
two-dimensional, and spanned by ~ := Re ( and ~2:= Im ~. The mapping 
Z: 112 ~ U defined by 

X (z) (t): = Re (z ~ (t)), V t ~ IR, V z ~ 112 (2.14) 

is a linear isomorphism when we consider 112 as a two-dimensional real vector- 
space. We will use the complex number z to parametrize the elements of U. 

It follows in a similar way that N (L*) is two-dimensional, and spanned by 
if* := Re (* and ~2"= Im if*. Then we know from Floquet theory that 

R(L) = {y~ Yq] (u*, y )  = 0, Vu* e N(L*)} 

and hence 

n(L) = {y ~ Y~ I (~*, Y) = 0}. (2.15) 

We can summarize our result as follows. 

Lemma 3. Assume (Hi) and (H2), let L: = Dx M (0, 0) e ~LP(Xq, Yq) and define 
P e ~: (Yq) by 

P y : =  Re ((~*, y)  ~) = ;( ((~*; y)),  V y ~ Yq. (2.16) 

Then P is a projection operator, with 

R(P) = U : =  N(L) and N(P) = R(L). (2.17) 
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Proof The fact that/9 is a projection follows easily from lemma 2 (ii), while 
(2.17) follows from Z (II2) = U and from (2.15). 

3. The Liapunov-Schmidt reduction 

We want now to solve the equation (1.8) for (x, 2) near the origin in Xq x R. 
However, before doing so it is important to realize that the operator M, as 
defined by (1.7), has some symmetry properties, which we can describe as follows. 
We define linear operators ~ e 5~(Yq) and o- ~ ~(Yq) by 

(7y) (t):= y(t + 2re), (oy)(t):= S y ( -  t), V t ~ R ,  Vy~ Yq. (3.1) 

It is then easy to verify that 

M (7 x, 2) = 7 M (x, 2), V (x, 2) ~ Xq x N~ (3.2) 

and 

M (o- x, 2) = -- a M (x, 2), V (x, 2) ~ Xq x IR. (3.3) 

We have 7 q = a 2 = identity and o- 7 = y-1 a; it follows that the operators y and 
a generate a finite group F c 5~(Yq), having 2 q elements and isomorphic to the 
dihedral group Dq (the symmetry group of a regular q-polygon). So (3.2) and (3.3) 
imply that M is Dq-equivariant. 

In order to solve (1.8) we will use an equivariant Liapunov-Schmidt method, 
as explained for example in [4]; the main tool needed in the application of this 
method is the projection operator P given by lemma 3. In order to preserve the 
equivariance when making the reduction P needs also to be Dq-equivariant. 

Lemma 4. The projection/9 defined by (2.16) is Dq-equivariant, i.e. we have 

/9 7 = 7/9 and 19 o = a P. (3.4) 

Proof. It follows easily from the definitions of 7 and o- that 

(u,  ~ v)  = ( ~ -  1 u, v ) ,  V u, v ~ ~c (3.5) 

and 

(u,  ~ v)  = ( ~  u, v ) ,  V u, v ~ ~c.  

We have also from (2.1), (2.3) and lemma 3 that 

~Z = #o( ,  ~'(* = ~o(* 

and 

G~ = ~-, ~ *  = ~-,. 

(3.6) 

(3.7) 

(3.8) 
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From this (3.4) follows directly. We remark  that  (3.7) and (3.8) also imply that  

7 Z (z) = Z (#o z) and ~r Z (z) = Z (2), V z e •. (3.9) 

We now return to the equat ion (1.8) in which we write x e Xq as 

x = u + v, u = P x  e U,  v = (I - P ) x  ~ V : =  Xq c~ R ( L ) .  

Then we can rewrite (1.8) as the system: 

(I --  P)  M (u + v, 2) = 0,  (3.10.a) 

P M ( u  + v, 2) = 0. (3.10.b) 

The equat ion (3.10.a) can be solved for v = v* (u, 2), by the implicit function 
theorem; bringing this solution into (3.10.b) we obtain the bifurcation equat ion 

F(u ,  4 ) ' =  P M ( u  + v*(u,  2),2) = O. (3.11) 

Using the isomorphism X: I~ ~ U this equat ion is equivalent to the complex 
equat ion 

G(z ,  2 ) . = z - 1 F ( z ( z ) , 2 ) = ( ~ * , M ( z ( z ) + v * ( ) ~ ( z ) , 2 ) , 2 ) } = O .  (3.12) 

To each solution (z, 2)6 112 x lR of (3.12) there corresponds the solution (x, 2) 
= (X (z) + v* ()~ (z), 2), 2) of (1.8), and conversely: if (x, 2) ~ Xq x R is a solution 
of (1.8) and sufficiently near (0, 0), then (z, 2 ) =  ((~*, x ) ,  4) is a solution of 
(3.12). 

In the next lemma we summarize the properties of the mappings v*, F and 
G; the proof  is easy and is essentially based on the uniqueness part  of the implicit 
function theorem (see [4] for the details). We also emphasize again that  II~ is 
considered as a two-dimensional  real vectorspace, and that smoothness of a 
complex function of a complex variable means smoothness as a mapping 
between real Banach spaces. 

L e m m a  5. The mappings v*: U x R  ~ V,F: U x I R  ---> U and G:II; x ]R--->II; 
are defined and smooth  in a ne ighborhood of the origin, and satisfy there the 
following properties: 

(i) v*(0,2) = 0, F(0 ,2)  = 0, G(0,2) = 0, V2; 
(ii) D.v*(O,O)  = 0, D.F(O,O)  = O, D~G(O,O) = 0; 

(iii) v* (7 u, 2) = 7 v* (u, 2), v* (a u, 2) = o v* (u, 2) ; 
(iv) F (7 u, 2) = y V (u, 2), V (a u, 2) = -- a F (u, 2); 
(v) G(#oZ, 2) = #o G(z, 2), a(5,  2) = -- G(z, 2). 

Our  further analysis of the bifurcation equat ion (3.12) will be based on the 
proper ty  (v), which expresses the Dq-equivariance of the bifurcation function G. 
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We remark  that  since #o -- exp (2 rc ip/q) with p and q having no c o m m o n  
divisors, (v) implies that  

G (~ z, 2) = ~q G (z, 2), 

where 6q:= exp (2 rc i/q). The following lemma gives a normal  form for smooth  
Dq-equivariant functions. 

L e m m a  6. Let A be Banach space, and let G: C x A ~ ~ be a smooth  
mapping such that 

G(6qZ, 2) = (~qG(z, 2) and G(2, 2) = - G(z, 2), V(z, 2). (3.13) 

Then there exist unique smooth mappings gi: C x A ~ IR(i = 1, 2) such that:  

G(z,  2) = iOl (z, ,~)z + ig2 (z, ;..)2 ~-1 (i) 

and 

(ii) gi (cSq z, 2) = 9i (2, 2) = gi (z, 2), i = 1, 2. 

Proof. Define H: C x A ~ IR by 

H (z, 2) : = Re (G (z, 2) 2), V (z, 2) ~ IE x A.  (3.14) 

Then H is a smooth  mapping,  satisfying 

I-i(,~qz, 2) = H(z ,  2), U(~,  2) = - 1-I(z, ~), V(z, 2). (3.15) 

It follows that  H(z, 2 ) = 0  if I r a 2  q = 0 .  The set { z = x + i y e l E l I m / q = 0 }  
consists of q distinct lines through the origin, given in cartesian coordinates (x, y) 
by the equations 

0, 

Now, if (p: N 2 ~ N is a linear functional and h: N 2 ~ IRa smooth  function 
such that  h(x, y ) =  0 if q~(x, y ) =  0, then there exists a smooth  function 
f f : N  2 ~ I R  such that h ( x , y ) =  (p (x, y) /T(x, y); if (p is nontrivial then ff is 
even uniquely determined. Applying this result a finite number  of times on 
the function H we see that  there is a unique smooth  func t ion /7 :  IR 2 x A ~ P, 
such that  

,) H ( x + i y ) , 2 ) =  q~j(x,y /7(x, y, 2). (3.17) 

A similar result holds for the function Q (x, y ) : =  I m ( x  - iy)q; but since Q is a 
homogeneous  polynomial  of degree q the factor (~ (x, y )mus t  be constant,  i.e. we 
have 

q--1 
Im(x  -- iy) q = Cq 1-I q)j(x, y), (3.18) 

j=O 
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with cq e IR\{0} depending only on q. Combining (3.17) and (3.18) we conclude 
that there is a uniquely determined smooth function 92: I~ x A ~ ~ such that 

n (z, 2) = - 92 (z, 2) Im iq, V (z, 2); (3.19) 

it then follows from (3.15) that 92 satisfies the condition (ii) of the lemma. 
Next we define G: 112 x A ---, ~ by 

(7 (z, 2) = d t (z, 2) -- i G2 (z, 2)" = G (z, 2) - i 92 (z, 2) ~q-1 ; 

the function G has the same symmetry properties (3.13) as G, and it follows from 
(3.14) and (3.19) that 

Re (G (z, 2) ~) = 0, V (~, 2). (3.20) 

Expressing (3.20) in cartesian coordinates we see that G1 (x + i y, 2 ) =  0 if 
y = 0 ;  hence we have ( r l ( x + i y ,  2 ) = - 9 1 ( x + i y ,  2)y for some smooth 
91" C x A --* R. This function 91 is uniquely determined, and (3.20) implies then 
that 

G(z, 2) = i91(z, 2)z, V(z, 2). (3.21) 

This proves (i), while (3.21) and the symmetry properties of G imply that 91 also 
satisfies (ii). 

Remark 5. A result similar to lemma 6 is valid when the mapping G is only 
C~-equivariant, that is when we have only G (6q z, 2) = 5q G (z, 2). In that case one 
has to allow the functions 91 and 92 in the formulation of the lemma to be 
complex-valued. One can prove this by applying lemma 6 to the mappings 

G 1 (z, 2) :=  G (z, 2) - G (~, 2) and G 2 (z, 2): = i(G (z, 2) + G (~, 2)). 

Using lemma 6 the bifurcation equation (3.12) takes the form 

91 (Z, ~,) Z "~- 92 (Z, ,~) Zq- 1 = 0 ,  (3.22) 

where 91: II; x ~ --, ~ and 92:(12 x ~ --, R are smooth functions, satisfying the 
condition (ii) of lemma 6, and uniquely determined by the relation 

(~*, M (Z (z) + v* (Z (z), 2), 2)) = i gl (z, 2) z + i g 2 (z, 2) e q- 1, 
(3.23) 

V(z, 2)eCxR. 

The following lemma describes the lower order terms in the Taylor expansion 

of 91 (z, 2). 

Lemma 7. Let 01 (z, 2) be defined by (3.23); let ~k (2) be as in (H3) and let 
r -  - - i  

| q -  1 | .  Then there exist a neighborhood co of 2 = 0 in IR and smooth 
L 2 d  
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functions Az: co ~ IR (l = 0, 1 . . . . .  r) such that  

gl(z,  ,1) = E A~(,1)lzlZt + 0(Iz[ q) 
l=0 

uniformly for 2 e co. Moreover  we have 

as z ~ 0 ,  

465 

(3.24) 

A o ( 0 ) = g l ( 0 , 0 ) = 0  and D z A o ( O ) = D z g l ( O , O ) = ~ ( O  ). (3.25) 

Proof. Since gl (z, 2) is smooth  we have 

g t (z, ,1) = 2 B~,,, (,l) z ~ ~ + 0 (I z [q) as z --, 0, 
O<l+m<q 

uniformly for ,1 in a sufficiently small ne ighborhood co of 2 = O; the functions 
Bt,m(,1 ) are  smooth  and complex-valued. Since gl is real-valued it follows that 

Bz,,, (,1) = B,,,, (,1). (3.26) 

Also, the symmetry  properties of gl given by lemma 6(ii) imply that 

Bi, m (2) exp [i (l - m) ~ l  = B~,m (,1 ) (3.27) 

and 

BI, m (,1) = Bm, l (,1)" (3.28) 

Since we restrict to values of 1 and m for which 0 __< l + m < q it follows that  
Bl,,,(2 ) = 0 except when l =  m and 0 _ < l <  r; in that  case Az(2):= Bz, l(,1 ) is 
real-valued. This proves (3.24). The fact that  gl(O,O)= 0 follows from 
lemma 5 (ii). It remains to calculate D~ gl (0, 0). 

We take z = ~ ~ IR in (3.23) and differentiate at Q = 0; since q > 3 this gives 

i g 1 (0, 2) = (~*, D x M (0, 2). (~1 + D, v* (0, 2). ~1)), (3.29) 

with ~1 = Re ~. Differentiating again and using (2.15) gives 

iDzg 1 (0, O) = (~*, D~D~M (O, 0). ~ ) .  (3.30) 

Next we use some of our results from Sect. 2. For  each 2 near 0 let ~ (2) ~ ([;" 
be an eigenvector of the m o n o d r o m y  matrix C (2), corresponding to the eigen- 
value ~* (2) = exp (i ~ (2)); we can choose ~ (2) to depend smoothly on 2 and such 
that  ~(0) = ~o. We define ~'(,1): N ~ C" by 

l 1 
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One  can easily check t h a t  ~(2) is  2nq-pe r iod ic  (i.e. we have ~'(2)~X~), that  
5(0) = ~ and that  

D x M (0, 2) ~(2)" = ~ 0 (2) - ~(2), V 2. (3.32) 

Pu t t ing  ~1 (2 ) :=  Re ~'(2) and  ~z (2) :=  Im 5(2), and  taking the real par t  of (3.32) 
one obta ins  

Dx M (0, 2) ~1 (2) = - 2 ~  0 (2) - ~2 (2), V 2. (3.33) 

N o w  differentiate at 2 = 0; since 0 (0) = 2 zcp/q this gives 

1 dO 
D~DxM(O,O). ~ + LDx~ 1(0) = 2re ~ (0)~2" (3.34) 

Tak ing  the inner p roduc t  with ~* and compar ing  with (3.30) gives the desired 
expression for Dx 91 (0, 0). 

4 .  B i f u r c a t i n g  s u b h a r m o n i c s  

We now re turn  to the task of solving the bifurcat ion equa t ion  (3.22); to do 
so we will use polar  coordinates ,  i.e. we write z ~ ~ in the form z = ~ exp (i 0). 
We also write 91 (0, 0, 2) for 9i (~ exp (i 0), 2), (i = 1, 2). Fo r  nontr ivial  solut ions we 
can mul t ip ly  (3.22) by ~ and  then divide by ~2; the result  is the equa t ion  

91 (0, 0, 2) + 0q-2 02 (Q, 0, 2) e -'q~ = 0.  (4.1) 

Split t ing into real and  imaginary  par t  we obta in  

h (0, 0, 2) : = 9a (Q, 0, 2) + ~q- 2 02 (Q, 0, 2) COS q 0 = 0 (4.2) 

and  

02 (0, 0, 2) sin q 0 = 0.  (4.3) 

F o r  arbi t rary (0, 2) the equa t ion  (4.3) has the solut ions 

2~  
m . _  �9 . .  1 (4 .4)  O = O q , j . - j - - ,  j = 0 , 1 ,  . , q -  

q 

and  

n 2 n  
0 = 0 ~2)." = - + j - - ,  j = O, 1, q -- 1 (4.5) v q ,  j . . . .  ~ 

q q 

If we assume tha t  9z (0, 0, 0) = g2 (0, 0) # 0 these are the only solut ions of (4.3) 
for sufficiently small (0, 2). 
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Fo r  0 = 0~i)j. (i = 1, 2; j = 0, I , . . . ,  q - 1) the equa t ion  (4.2) reduces to 

ht~ (0, 2) : = h (0, 0~~ 2) = 0; (4.6) 
q,d'  

the fact that  this equa t ion  does not  depend  on the value o f j  is a consequence  of 
l emma 6 (ii), which implies that  

2re, ) 
h ~ , 0 + - -  2 =h(o,O, 2)=h(Q,-0 ,2) .  

q 
(4.7) 

We also have 

h ( -  8, 0 + To, Z) = h (~, 0, 2), (4.8) 

while (3.25), (H3) and q > 2 imply that  

1 dO 
h (0, 0, 0) = gl  (0, 0) = 0 and Dz h (0, 0, 0) = 2 ~  d-2- ( 0 ) .  0. (4.9) 

Using (4.9) and  the implicit  funct ion theorem the equa t ion  (4.6) has a unique  
solut ion branch  2 = 2i~(0 ) (i = 1, 2), with ~o:  ~ ~ IR defined and  s m o o t h  near  
the origin, and  with )'~o (0) = 0. By (4.8) we have 

)~o ( _  0) -- )'~(o (~) (i --- 1, 2), if q = even, 

and  

)~1) ( _  0) = )'~2) (Q) if q = odd.  

We can use l emma 7 to get more  details on  the functions )T (1) (0) and  3~(2~ (~o). 
It  follows from this l emma that  hm(o ,  2) = h(2)(O, 2) + 0 ([ff[~ and hence 

2~)(0) = Z(2)(o) + O(to/r as o - '  O. (4.10) 

We also have: 

(a) f o r q = 3 "  

,FI~ (~) g~ (o, o) 
- ~ + o ( q 2 ) ,  

A; (0) 

~ (e) _ g 2  (o ,  o )  
A; (0) e + o (~);  

(4.11) 

(b) f o r q = 4 :  

s (~ )  = _ 

A, (0) + g2 (0, 0) q~ + 0(~3), 
A; (0) 

A l (0) - g2(0 ,0)  Q2 + 0(03); 
ao (o) 

(4.12) 
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(c) f o r q > 5 :  

)Y(~)(0) = A 1 (0) 02 + 0(03), i = 1, 2. (4.13) 
A~) (0) 

Fur ther  on we will make  the following non-degeneracy assumptions, which are 
inspired by (4.11)-(4.13). 

(S4) g2 (0, 0) :~ 0, and 

(i) IAo(0)[ 4: Ig2(0,0)l if q = 4 ;  
(ii) A1(0) 4 :0  if q > 5 .  

We have then the following result. 

Theorem 1. Under  the hypotheses (H1)-(H3)  there is at 2 -- 0 a bifurcation 
of at least 2 q branches of 2 n q-periodic solutions of (1.1). These solution bran- 
ches have the form 

{(TJ2(i)(Q),;~i)(Q))I0<Q<Qo}, i = 1 , 2 ,  j = 0 , 1  . . . . .  q - - I  (4.14) 

for some 0o > 0, with ;T t~ (Q) given as the solution of (4.6), and with 2"): R ~ Xq 
a smooth  function, satisfying y(o (0) = 0 and 

i _n 
(~* ,  X(J)(Q)) = 0,  (~* ,  2(2) (Q)) = 0 e q, V0. (4.15) 

If g2 (0, 0) 4 :0  then there are no further bifurcating 2 rc q-periodic solutions. 

If (H4) holds then: 

(a) for q = 3 there are 3 subcritical branches and 3 supercritical branches;  
(bl) for q = 4 and if ]A 1 (0)[ < [g2 (0, 0)] there are 4 subcritical branches and 

4 supercritical branches;  
(b2) for q = 4 and if [A 1 (0)] > [g2(0, 0)[ all 8 branches are subcritical or all 

supercritical, depending on the sign of A 1 (0)A o (0); 
(c) for q > 5 all 2 q branches are subcritical or all supercritical, depending on 

the sign of A1 (0)A~)(0). 

Proof. We first remark  that  multiplication with 6q = exp (i 2 z~/q) in ~ corre- 
sponds via ;( with the operator  ?" on U, where m ~ N is such that  p m = 1 
(mod q) (see (3.9)). Since p and q have no c o m m o n  divisors it follows that  
{viral 0 < j < q} = {TJ[0 < j < q}. This gives the 2 q solution branches 

{(?J t~(~ (0), ~(i) (0)) [0 < ~ < 0o}, i = 1, 2, j = 0, 1, . . . ,  q -- 1, 

for (3.11), with 5 (0 (0) := X (0 exp (i 0~%)). We take 0 > 0 in order  to avoid double 
counting. Via our equivariant  Liapunov-Schmidt  reduct ion we then obtain the 
2 q solution branches (4.14) for the equat ion (1.8), with 

y(o (0) = 5(~)(0) + v* (1/(~ (0), ,~(~)(0)). (4.16) 
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Together with the expressions (4.11)-(4.13) for )7(0(~) this proves the theorem. 
Remark  also that  we have 

~ ~(~)(~) = ~(~)(Q), ~(~)(Q) = ~(~(~) 

and 

(4.17) 

])m O-b/(2) (~) = /~(2) (O), ~mo'y(2)(Q) = 5(2)(0 ). (4.18) 

We now turn to the problem of obtaining some information on the stability 
properties of these bifurcating subharmonic  solutions. First consider a general 
solution (Xo, 2o) e Xq x N of (1.8), i.e. x o (t) is a 2 rc q-periodic solution of (1.1) for 
2 = ,t-o. Let  v o = exp (2 rc q %) e C\{0} be a characteristic multiplier of this solu- 
tion, which means that  v o is a characteristic multiplier of the 2 rc q-periodic linear 
variational equat ion 

2 = D ~ f ( t ,  x o (t), 2o)x.  (4.19) 

Let r be the transit ion matrix for (4.19). Then v o is an eigenvalue of the 
m o n o d r o m y  matr ix ~9 (2 rc q), say with eigenvector % ~ C"\{0}. It is now easy to 
see that  the mapping 2: IR ~ ~ "  defined by 

i f ( t ) := e-~~ r (t)r/o , 

belongs to X~, and that  

D~M(xo,  20)" x = ~02" 

Vt~]R, 

(4.20) 

Conversely, if (4.20) holds for some % ~ C  and for some 2 ~ X;\{0}, then 
v o = exp (2 rcq %) is a characteristic multiplier for (4.19). We conclude that  the 
characteristic exponents of (4.19) are precisely the eigenvalues of D x M (Xo, 20). 

Using this result we have to s tudy the eigenvalues of the operators 
D x M (~ ~(i) (Q), ~(i) (0)), for i = 1, 2, j = 0, 1 . . . . .  q -- 1 and Q > 0 sufficiently 
small. It  follows from the equivariance properties of M that  

D x M (yJ x, 2). 7 j = 7 ~ D x m (x, 2), 

and hence the eigenvatues of Dx M (7 j x, 2) are independent  ofj .  So it is sufficient 
to consider the eigenvalues of the operators 

L(o (~):= D~M(X(~)(Q), ~(o (Q)), i = 1, 2. (4.21) 

It follows from (4.17) and (4.18) that  

/31) (~) a = - aL(1)(Q) and L(2)(~o)7" a = - 7" aL(2) (0) . (4.22) 

This implies that  if ~ e C is an eigenvalue of L (i) (~), then so is - ~ .  

Lemma 8. Assume (HI)-(H4) .  Let ~o = • be an open neighborhood of 0, 
such that  

{e ~ o9 [ exp (2 rc q cz) ~ o- (Cg)} = {0}. (4.23) 
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Then there exists a Oo > 0 such that  for i = 1, 2 and for 0 e (0, 0o) the operator  
/(i) (0) has in c~ precisely two simple eigenvalues e(i)(0) and - e ( o  (0), with 

c~(~)(0)z = 30292(0,0)  2 + 0(Q3), if q = 3; 

- 8 O 4 92 (0, 0) cos (q O~i!o) (A x (0) + 92 (0, 0) cos (q 0~i,)o) ) + 0 (05), 

if q - - 4 ;  

= 2qQqa2(0,0)  Al  (0) cos (q 0~)o) + 0(Qq+l), if q > 5. (4.24) 

Proof. We will use the results of the papers [6] and [7]. The eigenvalues of 
L = D x M (0, 0) are those a ~ 112 such that  exp (2 rc q ~) is a characteristic multi- 
plier of (1.5)o, when we consider this equat ion as a 2 7c q-periodic equation. As 
such (1.5)o has the m o n o d r o m y  matrix C~, and hence exp (2 ~ q ~) is a character-  
istic multiplier iff it is an eigenvalue of C~. Now (H2) and (4.23) imply that  zero 
is a semi-simple eigenvalue of L, with multiplicity two, and that  L has no other  
eigenvalues in o). We may  also assume that  o) is symmetric,  i.e. ~ e co implies 

The general  results of [6] and [7] then imply that  for each (u, 2) E U x P, in 
a sufficiently small ne ighborhood of the origin the sum of the algebraic multiplic- 
ities of the eigenvalues of D x M (u + v* (u, 2), 2) which belong to co equals two; 
moreover ,  these eigenvalues coincide with the eigenvalues of an operator  
�9 (u, 2)~ ~~ which has the form 

~b (u, 2) = t/(u, 2) D, F (u, 2), (4.25) 

where F (u, 2) is the bifurcation mapping given by (3.11), while t/: U x N ~ ~ (U) 
is a smooth  mapping with 

t/(0, 0) = I U, Du t/(0, 0) = 0, D a t/(0, 0) = 0. (4.26) 

We will apply this result for (u, 2) = (a "~ (0), Zr (q)). If we can show that  

det D~ F (a")(0), X{i)(Q)) = B")O k + 0 (O k+ ~) (4.27) 

for some k ~ N and some B ~~ :~ 0, then (4.25) and (4.26) imply that 

det cb (~o (Q), ~ )  (O)) = B~~ Ok + 0 (O k+ 1). (4.28) 

F r o m  this it follows that  for 0 > 0 sufficiently small zero is not  an eigenvalue of 
( ~i(~ (0), 2~~~ (O)), and hence also not  of L r (O). Since these eigenvalues come in 

pairs {~, - ~ } ,  it follows that  L (~ (O) has in co two simple eigenvalues ~) (~)  and 
_ ar (0), whose product  is given by 

- -  ~(i) ( 0 ) 2  = B(i) ok ...[_ 0 (O k+ 1) .  (4.29) 

This proves the lemma, on condit ion that  we show (4.27) and calculate B (~ and 
k explicitly, in order  to get (4.24) from (4.29). 

Suppose that  F (Uo, 20) = 0 for some (Uo, 20) e U x ~ ;  this means that  u o is, 
for 2 = 20, an equilibrium of the au tonomous  equat ion 

ti = F (u, 2). (4.30) 
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Let now Wo c ~2, and let W: p2  ~ U be a mapping with W(wo) = Uo and such 
that W is a diffeomorphism from a neighborhood of w 0 in ~2 onto a neighbor- 
hood of u o in U. The transformation u = W(w) then brings the equation (4.30) 
in the form 

= o W(w) v (W(w), =: f ( w ,  ;0. (4.31) 

This equation has for 2 = 20 the equilibrium Wo, and we have 

D,,,ff (Wo, 20) = D W(wo) -1 D,F (uo, 2o)D W(wo); 

it follows in particular that 

det D,F(uo, 20) = det Dwff(Wo, 20). (4.32) 

We will use this to calculate det D, F(~7(~ We transform (4.30) 
using the mapping 

W: R 2 ~ U, (Q, 0) --, W(~, 0) := Z (P ei~ (4.33) 

which is a diffeomorphism for ~ ~ 0. The easiest way to obtain the transformed 
equation is by putting z = Q e ~~ in the complex equation 

= G (z, 2) (4.34) 

which is equivalent to (4.30) via the linear transformation Z: II; ~ U. Using 
lemma 6 we find 

O~ = Qq- 1 g2 (Q, 0, /~) sin q 0, 

0 = h 0, 
(4.35) 

Since W - l ( g  ~i)(Q)) = (Q, O~i!o) we have to calculate the Jacobian (in (~, 0)) of 
the right hand side of (4.35) for 0 = 0(qi!o and 2 = 3~(0 (Q). Using (4.7) and (4.32) 
we find 

det D~, F (ri ~i) (Q), )~i) (O)) 
8h ~i) 

= _ q ~q- 1 cos (q 0~qi)o) g2 (~, 0~~ )T~i)(~)) (~, ,~i)(~)). (4,36) 

Assuming (H4) it is then straightforward to calculate the first nonzero term in 
the Taylor expansion of this expression; comparing with (4.27) and (4.29) then 
gives (4.24). 

We recall from the introduction (remark 4) that we say that a bifurcating 
subharmonic solution is stable if its two characteristic multipliers near 1 are 
on the unit circle, and unstable if these characteristic multipliers are real. 
Using the notation of lemma 8 this means that we have stability if ~r (~o)2 < 0, 
and instability if ~i)(~)z > 0. From (4.24) we then obtain the following con- 
clusion. 
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Theorem 2. Assume (H1)-(H4). Then all bifurcating subharmonic solutions 
given by theorem 1 are unstable if q = 3 or if q = 4 and [A 1 (0)[ < [g2 (0, 0)]. If 
q > 5 or ifq = 4 and IA1 (0)] > ]92(0, 0)] then the subharmonic solutions along 
the q branches with i =  1 are stable if q2(0,0) Al(0)<0 and unstable if 
g2 (0, 0)A1 (0) > 0; for the q branches with i = 2 the opposite holds. 

R e m a r k  6. It follows from theorem 1 and 2 that under the hypotheses 
(H1)-(H4) the equation (1.1) has for fixed and sufficiently small 2 ~= 0 the follow- 
ing nontrivial subharmonic solutions with period 2 n q near x = 0: 

(i) no such solutions i fq > 5 and 2A1 (0)A~(0) > 0, or i fq  = 4, 
IA1 (0)1 > ]g2(0, 0)l and 2A~ (0)A', (0) > 0; 

(ii) q such solutions if q = 3 or if q = 4 and ]AI(0)] < ]q2(0, 0)[; these q sub- 
harmonic solutions are obtained one from the other by phase shifts over 
multipliers of 2 re, and they are all unstable; 

(iii) 2q such solutions if q > 5 and 2A1 (0)A{)(0) < 0, or if 
q = 4, ]A 1 (0)] > [g2  (0, 0)[ and 2 A1 (0)A{~ (0)< 0; q of these subharmonic 
solutions are stable, the other q are unstable; the stable ones are related to 
each other by phase shifts over multipliers of 2 re, and the same holds for 
the unstable ones. 

For 2 = 0 the equation (1.1) has no nontrivial 2rcq-periodic solutions near 
x - - 0 .  

R e m a r k  7. The coefficients A 1 (0) and g2 (0, 0), which determine the direction 
of the bifurcation and the stability properties of the bifurcating solutions, can be 
calculated from higher order coefficients in the Taylor expansion of f (x, 0). In 
particular, the expression for A1 (0) involves terms up to third order, while that 
for g2 (0, 0) involves terms up to order (q - 1). The hypothesis (H4) (as well as 
(H3)) is generically satisfied for one-parameter problems satisfying (HI) and 
(H2). 

5. Perturbations 

One of the conclusion of section 4 was that ifg 2 (0, 0) =t = 0 there is bifurcation 
of precisely 2 q branches of subharmonic solutions; these bifurcating subharmon- 
ics have a particular symmetry (see (4.17) and (4.18)), and there are no other 
2 n q-periodic solutions of (1.1) near x = 0 and for small 2. To see what happens 
if g2 (0, 0) = 0 we consider in this section two-parameter equations of the form 

Sc = f ( t ,  x, 2, e). (5.1)~ 

In this equation we consider 2 e R as the bifurcation parameter, and e e ]R as a 
(small) perturbation parameter; this means that we look upon (5.1)~ for e ~= 0 as 
a perturbation of (5.1) o, which is supposed to satisfy the hypotheses (H1)-(H3), 
but with g2 (0, 0) = 0. 
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More precisely we will assume that f is smooth and satisfies (HI) for all (2, ~) 
and (H "~ at (2, e) = (0, 0). Then the equation (1.5) will also depend on e, as will 
its characteristic multiplier #* (2, e) = exp (i ~ (2, e)). We have ~ (0, 0) = 2 top~q, 
and we replace (H3) by 

e0 (H3)' ~ (0, 0) 4: 0. 

Using a redefinition of the parameters we may then without loss of generality 
assume that 

(0, ~) = 2 np/q,  V e. (5.2) 

(We will only work with small values of e.) We can then carry through the 
analysis of the foregoing sections, with this difference that now everything de- 
pends also on e. It follows from (5.2) that Dx M (0, 0, e) has a two-dimensional 
nullspace, spanned by vectors of the form (1 + wl(e) and (2 + w2(e), with 
w~(e)e V. It then follows easily that wi(e ) = D,v*(O, 0, e). (i(i = 1, 2); the for- 
mula for gl (0, 2, e), similar to (3.29), then shows that 

Ao(0, ~) = 0, VE. (5.3) 

We still find that for each fixed e there is at 2 = 0 bifurcation of at least 2 q 
branches of 2r~q-periodic solutions of (5.1),; of course the precise form of the 
branches, described by 2 = )~")(0, e), will depend on e. We now make the follow- 
ing assumption for the function gz (z, 2, e): 

(H5) g2 (0, 0, 0) = 0 and ~ e  2 (0, 0, 0) + 0. 

Restricting to the case q > 5 we see from (H5) and the results of section 4 that 
the stability properties along the 2 q branches will change as e crosses zero; 
therefore we may expect some further bifurcation to take place. 

Until now we have only considered solutions of the bifurcation 
equation (4.1) for which sin q 0 = 0. However, when (H5) holds then we can find 
other solutions of (4.1) by solving the system 

g~ (~, 0, 2, ~) = 0 
9~ (~, o, ~, ~) = o. (5.4) 

From (5.3), (H3)' and (H5) we have 

91 (0, 0, 0, 0) = 92 (0, 0, 0, 0) = 0 

and 

t~176176176 ~g2 (o, o) ~ -  (o, o, o ) .  o. 
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Hence we can solve (5.4) by the implicit function theorem, and obtain (2, e) 
= (2* (0, 0), e* (Q, 0)), with 2* (0, 0) = e* (0, 0) = 0, 

2. (Q, 0 + ~ )  = 2.(0, o) -- 2.  (o, - 0), (5.5) 

and similar properties for e* (Q, 0). Using a result similar to lemma 7 it follows 
that  2* (Q, 0) and ~* (Q, 0) will have the form 

2* (0, 0) = ~ c~ 0 2~ + 0 (~q), 
l= 1 (5.6) 

e* (O, O) = ~ dzQ 2t + O(oq). 
t = 1  

Using the uniqueness of the solutions as given by the implicit function theorem 
one also has 

2* (0, 0(qi?j) = ,~0 (Q, e* (Q, 0~',~)), i = 1, 2; j = 0, 1 . . . .  , q - 1. (5.7) 

Assuming for example that d 1 > 0 this gives the following bifurcation pic- 
ture. For  fixed e < 0 we have precisely 2 q branches bifurcating at 2 = 0 from 
x = 0. For  ~ > 0 we still have these 2 q branches,  but  now there is also a closed 
curve of 2 rc q-periodic solutions of (5.1),, given by 

{(x* (~, 0), 2* (o, 0))15" (o, o) = e), (5.8)~ 

with x* (Q, 0) = Z (Q el~ + v* (Z (# ei~ 2* (Q, 0), e* (0, 0)). These addit ional solu- 
tions have no part icular  symmetry,  and because of (5.7) the curve of solutions 
(5.8), connects the 2 q branches bifurcating from x = 0. Hence we have second- 
ary bifurcation, and at e = 0 we see the onset of  this secondary bifurcation. 
Figure 1 shows the projection of the solution set on the two-dimensional  space 
U = N (D x M (0, 0, 0)) for the cases e < 0 and e > 0 respectively, while Fig. 2 
shows the corresponding curves in a (2, Q)-diagram. 

We conclude this paper  with a brief discussion of what  happens when the 
per turbat ion parameter  e in (5.1) breaks the time-reversibility; that  means that  
we suppose that  (5.1), is for e + 0 no longer time-reversible. We assume that  

Figure 1 
Projection of solution set of (5.1), 
onto U. 
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P # 
Figure 2 0 )~ 
Bifurcation diagram for (5.1)~. E ~< 0 
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(H1) (i) and (ii) is satisfied for all (2, e), while (H1) (iii) holds only for e = 0. We 
also assume that (H2) holds at (2, e )=  (0, 0). The characteristic multiplier 
/~* (2, e) will no longer be on the unit circle for e 4= 0, and hence ~ (2, e) may take 
complex values for e 4= 0. In fact we will assume that 

(H3)" ~ -  (0, 0) 4= 0 and Im ~-e (0, 0) 4= 0. 

The abstract equation (1.8) is then replaced by the equation 

M (x, 2, e) = 0 (5.9) 

with 

M(?x, 2, e)=vM(x,X,e), V(x, 2, e)eXqxlR 2 (5.10) 

and 

M(o'x,  2, 0) = -- a M (x, 2,0), V(x, 2) 6Xqx]R. (5.tl) 

This means that M is Dq-equivariant for e = 0, but only Cq-equivariant for e + 0 
(Cq is the group generated by the rotation in the plane over an angle 2/q). 

We can again apply the equivariant Liapunov-Schmidt  reduction of 
section 3 to solve (5.9) near the origin; the result is the bifurcation equation 

G(z, 2~, e) = O, (5.12) 

where G inherits the equivariance properties (5.10) and (5.l J) of M; so we have 

G(#oZ, 2,~) = #o G(z, 2, e), V(z, 2, e)E (E x R  2, (5.13) 

and 

G(i, 2, 0) = -  G(z, 2, 0), V(z, 2) s C  x]R. (5.14) 

As we already pointed out in remark 5 this implies that G (z, 2, e) has the form 

G(z,  2, ~) = ig 1 (z, 2, e )z  -t- i gz(Z , 2, e )~q -  1 (5Z15) 

with 9F IE x •2 ~ C smooth, and such that 

gi(6qz, 2,~)=gi(z, 2, e)=gi(~,2, e), i =  1,2. (5.16) 
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It follows from (5.14) and lemma 6 that 

Img i ( z ,  2 , 0 ) = O  , V(z, 2) elE x N .  (5.17) 

As in section 4 we put z = ~ exp (i 0) in (5.12); for nontrivial solutions this 
equation is then equivalent to 

gl (~, O, ~., ~) ~- ~q- 2 92 (Q, O, 2, e) e-iqO = O. (5 .18)  

We have gi (0, O, O, O) = O, and a calculation as in the proof  of lemma 7 shows 
that  

1 
(0, 0, 0) = (0, 0); (5.19) 

it follows that 

(Re gl,  Im 91) (0, 0, 0, 0) - 1 ~ (0, 0). Im 8~ 
(2, (2 82 (0, 0), 

which is different from zero by (H3)". Hence we can split (5.18) in its real and 
imaginary part, and solve by the implicit function theorem for 2 and e; we obtain 
(2, ~)=  (X(Q, 0), g(~, 0)), with smooth functions ~-(0, 0) and g(2, ~) satisfying 
~-(0, 0) = g (0, 0) = 0 and 

X(Q, 0 + 2 rc/q) = 2(Q, 0), g(Q, 0 + 2 ~/q) = g(o, 0). (5.20) 

It also follows from (5.17) and the analysis of section 4 that 

g(Q, 0~i!j) = 0, VQ, i = 1, 2; j = 0, 1, . . . ,  q - 1. (5.21) 

The function g~ (z, 2, ~) has again the form (3.24), but now with functions 
A/(2, s) which depend also on e, and which may be complex for e :t = 0. It follows 
that for q > 5 we have 

r--1 
X(~, O) = ~, b/p 2 + 0(Q q-2) as ~ --. 0. (5.22) 

t=1  

with certain coefficients b/c  IR; g(Q, 0) has a similar form. Now the equation (5.1) 
has nontrivial 2rcq-periodic solutions in a neighborhood of x = 0 for 
those parameter values (2, e) which belong to the range of the mapping 
(~, 0) ---, (X(0, 0), g(q, 0)). By (5.20), (5.21) and (5.22) this range forms a cusp-like 
region along the k-axis, with width of the order d ~q- 2)/2 at a distance d from the 
origin (see Fig. 3, (i)). Taking as a new (complex) parameter the characteristic 
multiplier/~ =/~* (2, e) (this is allowed by (H3)") this region transforms into the 
so called "Arnold tongue" for the system (5.1) [1] (see Fig. 3, (ii)). Here the tongue 
has the peculiarity of being tangent to the unit  circle, instead of "licking" the 
unit circle, as is tho case when the unperturbed system is not time-reversible (see 
Fig. 4; a brief discussion of this case can be found in [5]). 
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Figure 3 Figure 4 
The Arnold tongues for (5.1). A "generic" Arnold tongue. 

We conclude with the remark that (H3)" implies that (H2) will be satis- 
fied (for different values of p and q) at an infinity of parameter values ()~, 0) 
near the origin; we will also have an infinity of Arnold tongues along the 
unit circle, each tongue corresponding to subharmonics of different periods 
2 rc q (see also Remark 3). Hence a multi tude of subharmonic solutions will 
coexist for certain small values of (2, 5). It is beyond the scope of this paper 
to try a description of the resulting complicated dynamic behaviour of the 
system (5.1). 
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Abstract 

We study bifurcation of 2 ~ q-periodic solutions in one-parameter families of 2 ~-periodic 
time-reversible systems. We obtain generically satisfied conditions which imply the bifurcation of 
2 q branches of such subharmonic solutions. When q > 5 the solutions along q of these branches are 
unstable, while the solutions along the other q branches are stable in a weak sense. Special re- 
sults hold for q = 3 and q = 4. We also describe a situation in which there is secundary bifur- 
cation and give a brief discussion of  what happens under a perturbation which breaks the time- 
reversibility. 
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Zusammenfassung 

Wir untersuchen die Verzweigung von 2 n q-periodischen L6sungen in einer einparametrigen 
Familie von 2 ~z-periodischen reversiblen Differentialgleichungssystemen. Wir erhalten Bedingun- 
gen, welche die Verzweigung von 2q solcher subharmonischer L6sungen garantieren und die 
generisch erfiillt sind. Ffir q > 5 sind q L6sungen instabil und q L6sungen (linear) stabil. Spezielle 
Resultate gelten fiir q = 3 und q = 4. Wir untersuchen auch einen Fall in dem sekund/ire Verzwei- 
gung eintritt und diskutieren kurz die Wirkung einer St6rung, die die Reversibilit/it zerst6rt. 
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