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On the regularity of optimal controls 
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1. The regularity problem 

In any mathematical theory which deals with problems whose solutions 
are functions, the issue of the regularity of solutions ranks together with those 
of existence and uniqueness as one of the most basic questions. Usually, exis- 
tence is proved by working on a very large space F, which contains very patho- 
logical functions. (Often, F has to be taken to be so large that the elements 
of F are not even ordinary functions, and can only be regarded as functions 
in a "generalized" sense.) It then becomes important to find conditions under 
which the solutions can be proved to be better than just an arbitrary member 
of F. 

In the particular case of Optimal Control Theory, there are two types of 
solutions one is interested in; namely, 

(i) "open loop" controls, and 
(ii) "closed loop" (i.e. feedback) controls. 

In each case, it is natural to ask whether the solutions necessarily have to 
possess some nontrivial regularity properties. We could also be less demanding, 
and only ask that, whenever a solution exists, it should follow that a solution 
with extra regularity exists as well. The latter is, in our view, the better question 
to ask, since there are degenerate problems where every admissible control is a 
solution, and therefore the solutions can be as pathological as any arbitrary 
control. (For instance, suppose x, y evolve according to 2 = 1, 3~ = u, and 
the control u satisfies [u[ < 1. If we want to steer (0, 0) to (1, 0) in minimum time, 

1 
then any control u( .): [0, 1] ~ [ -  1, 1] such that ~ u(t)dt = 0 will be a solution. 

o 
Such controls can be very pathological, e.g. with a set of positive measure of 
discontinuities. However, one particular solution is u (t) - 0, which is obviously 
very regular.) 
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So we formulate the general regularity question as follows: 

Given a class d of "admissible controls" and a collection ~ of problems, such 
that each P ~ ~ gives rise to a set S (P) = d of solutions of P, find "interesting" 
classes ~ ~ d such that, whenever P ~ ~ and S (P) ~= O, then S (P) r ~ 4= O. 

(That is, find regularity conditions such that, whenever a problem in N has 
a solution, then it has one that  satisfies the regularity conditions.) An N with the 
above property will be called sufficient for solving ~ in d .  

A classical example is provided by linear, t ime-optimal control. For  a system 

2 = A x  + Bu,  x ~ N  n, u E K  ~ ]R m, (1) 

where K is a polyhedron and A, B are matrices of the appropriate sizes, one can 
easily prove a bang-bang theorem with bounds on the number of switchings, which 
says that  there exists an integer N > 0 such that, whenever a point x 1 can be 
steered to a point x2 in time T by means of some measurable K-valued control, 
then xa can be steered to x 2 in time T by a control  which is bang-bang (i. e. with 
values in the set of vertices of K) and has at most  N T  switchings. Here we may  
let sr K denote the class of all measurable K-valued controls defined on [0, T] for 
some T, and we may  let ~A,B,K be the class of all ~A,B,k,x,y,t, where PA,B,K,x,y,t is 
the problem of finding, for given A, B, K, x, y, t, a control  that  steers x to y in 
time t. Or we may  take )A,B,~: to be the class of all PA,B,K,x,y, where PA,B,k,x,y is 
the problem of steering x to y in min imum time. (So ~A,B,K is a class of "reacha- 
bility" problems, and )A,B,K consists of "opt imal  reachabili ty" problems.) We let 
NN, ir denote the class of those u ( . )  e ~r such that, if u ( .)  is defined on [0, T], 
then u (-) is bang-bang with at most  N T  switchings. Then the theorem says that  
for every A, B, K there is an N such that  NN, r is sufficient for solving ~A,B,~ in 
~r~. Since every solution of/~,B,r,~,r  is a solution of PA,n,K,x,y,t for some t, we 
see that  NN, K is also sufficient for solving ~A,B,K in J K .  

2. Feedback controls 

We now give two examples that  involve feedback controls. We define a 
feedback control  as follows. Suppose X is a control system 

2 = f ( x , u ) ,  x 6 M ,  u ~ U  (2) 

for which a class ~ of "admissible controls" is specified. A feedback control on 
a subset s of M is a mapping u (.):  f2 ~ U with the property  that  for every x ~ f2 
there exists an e > 0 such that, on the interval 0 < t < e, there is a unique 
solution t ~ x (t) 6 f2 of the initial value problem 

2 ( t ) = f ( x ( t ) ,  u(x(t))), x ( 0 ) = x .  (3) 
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It then follows that, if u (-) is a feedback control on (2, then for every x ~ O 
there exists a maximal trajectory for u ( .)  starting at x, i.e. a solution t ~ x (t) ~ O 
of (3), defined for 0 __< t < T(x) ,  such that  every solution of (3) is the restriction 
of this one to a subinterval of [0, T (x)). A feedback u ( . )  steers (2 to a point 2 ~ M 
if lim x ( t ) = 2 f o r e v e r y x ~ f 2 .  

t ~ T ( x )  - 

In that  case: 
(a) if T(x)  = + oo for all x e f2, we say that  u(.)  asymptotically steers f2 to 

2; (b) if, for every x ~ O, T(x)  is the optimal time for steering x to 2, we say that  
u ( .)  is a time-optimal feedback on f2 with target {2}. 

Our first example of a regularity result for feedback controls involves the 
problem of stabilizing a system. We first quote the classical result for linear 
systems. Let tin, m be the class of all maps u ( .)  from lR n - {0} to IR m. Let A, B 
be an n x n and an n x m matrix, respectively. Let PA s, B be the problem of finding 
a stabilizing feedback for (A,B),  i.e. a u ( . ) e  d , , , ,  which is a feedback that  
asymptotically steers p n _ {0} to 0, for the linear system 2 = A x + B u. 

If we let L , , , ,  denote the class of linear maps from P,," to N" ,  then we 
know that  pS has a solution if and only if (A, B) is stabilizable, in which case A , B  

pS has a solution in L n ,,. So L n ,, is sufficient for solving ~.s in d n ,,, where A , B  , , n , m  , 

~ s  s . I I  n • R "  
n , m  = {P3,B" A e B e • 

This shows that, for linear systems, the stabilization problem has the best 
possible regularity properties: if a solution exists at all, then there is one which 
is actually a linear map. For  nonlinear systems the situation is much worse. An 
example was given in Sussmann [10] which shows that, for a completely control- 
lable real analytic sytem, a continuous stabilizing feedback may fail to exist. The 
example of [10] is of a global nature. (Essentially, the reason for the nonexistence 
of a continuous feedback is that  there is an "obstacle" near the target, which 
every trajectory from a point x to the target 2 necessarily has to avoid.) More 
recently, Brockett  [4] obtained a necessary condit ion for the existence of a 
continuous stabilizing feedback which implies, for instance, that  no such feed- 
back exists for the system 

2 = u ,  ~ = v ,  2 = u y - v x .  (4) 

Brockett 's results have the remarkable feature of being purely local in nature. 
On the other hand, it was proved in Sussmann [10] that  a piecewise analytic 

stabilizing feedback always exists, for a controllable analytic system. Sontag [8] 
has proved the existence of pieeewise linear feedbacks. 

Four  our second example, we let U be a polyhedron in p m, and we let d n (U) 
be the class of all U-valued maps on Rn. We let prO be the problem of finding A , B , U  

a time-optimal feedback for the system 2 = A x + B u, u E U, with target 0. 
s P  T~ A s JR" • B ~ N" • m}, there is a It can be proved that, for N r ~  = t A,B,V, 

sufficient class R S r ~  (U) that  consists of the U-valued maps on N" that  are 
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bang-bang C ~ regular syntheses. (A map is bang-bang if it takes values in the set 
of vertices of U. A C ~ regular synthesis is a map u (-) which is "piecewise real 
analytic" in a sense which will not be described in detail here. Roughly, it means 
that there is a locally finite partition 5 P of N" into embedded real-analytic 
connected submanifolds, such that u ( .)  is real-analytic on each S ~ 5C For a 
complete definition, cf. [11].) This result is essentially due to P. Brunovsky, who 
only considered systems that satisfy an extra normality condition (cf. [5]). How- 
ever, Brunovsky's proof can be generalized so as to do away with the normality 
requirement. Moreover, Brunovsky's method yields other regularity results as 
well. The main idea is as follows. Suppose we prove a regularity result for 
optimal trajectories, which gives a family Y of trajectories, 7 ", parametrized by 
a finite-dimensional parameter ~ in some set A such that, whenever a point x can 
be optimally steered to x', then x can be optimally steered to x' by means of one 
of the 7~. Suppose A is a subanalytic subset of some C ~ manifold N. Moreover, 
assume that the 7~ depend analytically on a, in the sense that 7~ is defined on 
[a (e), b (c0], and the map u: c~ --, (a (e), b (a), 7 (a (~)), 7 (b (e)), J (7~)) is proper and 
real-analytic. (Here J (7~) is the cost of 7, .) Let a target point ~ be fixed. It then 
follows from a simple application of the theory of subanalytic sets that the graph 
of the Bellman function V is a subanalytic set. Under some extra technical 
conditions, one can actually prove the existence of a regular synthesis. The 
crucial point is the analyticity of u and the finite-dimensionality of c~. Typically, 
this is established by first showing that the optimal trajectories can be taken to 
be finite concatenations of pieces that are trajectories of vector fields in some 
family X that depends analytically on a finite-dimensional parameter. The finite- 
dimensionality of ~ then follows if the number of pieces that occur in the 
concatenations is uniformly bounded. That is, one has to prove results on 
piecewise regularity with bounds on the number of  switchings (PRBNS). Therefore 
the study of PRBNS results is important not only because of its intrinsic interest, 
but also as a tool for proving regularity theorems for Bellman functions and 
optimal feedback controls. 

3. Time-optimal control for a single-input system 

We study the problem of time-optimal control for a system 

Z : 2 =  f ( x ) +  ug(x),  lul__<l, Xe~'~ n, Ue~'~ 

where f and g are smooth (or analytic) vector fields. (Admissible controls are 
measurable functions with values in [ -  1, 1].) The aim is to characterize the local 
structure of  time-optimal trajectories near a reference point p through the Lie 
bracket configuration at p. In particular we are interested in conditions which 
guarantee that time-optimal trajectories are finite concatenations of bang and 
singular arcs near p with a bound on the number of pieces. 
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It turns out that even for this most simple class of nonlinear processes the 
problem is anything but easy. Therefore the approach taken was to study the 
low-dimensional systems first and try to develop a set of techniques and tools 
which might be applicable to higher dimensional systems as well. 

In [12, 13] smooth systems in the plane were considered and a classification 
of the local structure of time-optimal trajectories for a generic system was given. 
For analytic systems a complete trajectory analysis was carried out in [14] and, 
except for certain "degenerate cases", it followed that every point p e R 2 has a 
neighborhood U such that time-optimal trajectories lying in U are finite concat- 
enations of bang and singular arcs with a bound on the number of switchings. 
This was the key step in the proof of the following 

Theorem (Sussmann, [15]): Let Z be an analytic system in the plane (of the 
form (5)). Let p be a point where the following "nonexplosion condition" holds: 

for every T > 0 there exists a compact subset 

K = K ( T )  of IR 2 such that, if y: [a, b] ~ R 2 is a trajectory of Z with 

7 (b) = p  and b - a < T, then 7 is entirely contained in K. 

Then the problem of reachingp in minimum time admits a regular synthesis. [] 

One of the major problems in carrying out the trajectory analysis is to 
eliminate the optimality of bang-bang trajectories with too many switchings. 
What has to be considered too many switchings is not quite evident, but it is 
clear that it should somehow depend on the dimension n of the space and the 
degree of degeneracy that the Lie bracket configuration at p has (cf. [12]). As 
measure for the latter the "codimension" seems an appropriate tool to use. In a 
nontechnical sense the codimension is roughly the number of independent Lie 
relations which hold at p. For a nondegenerate situation, i.e. when there are no 
relations whatsoever imposed at p (codimension 0), the number of switchings 
should not exceed n -  1, since then we have n parameters describing time- 
optimal bang-bang trajectories and heuristically one can expect that they fill up 
a whole relative neighborhood of p in the time T reachable set. In general 
however this is not an easy result, but requires a sophisticated analysis going 
beyond a simple application of the standard necessary conditions for optimality. 

For systems in the plane it was shown in [12] that in a nondegenerate 
situation bang-bang trajectories with 2 switchings are not time-optimal. The 
argument uses Stokes Theorem and therefore is limited to dimension 2. The first 
such result in dimension 3 is due to Bressan [3]. Combining a local approxima- 
tion procedure in which f and g are approximated by vector fields which 
generate a nilpotent Lie algebra [1] with a newly developed finite optimality 
condition [2], he proved: 

Theorem (Bressan, [3]): Let Z be a (smooth) system (of the form 5)) in N. 3 
with f (P0) = 0. Suppose the vectors g, If, g] and [f, [f, g]] are independent at Po 
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and the coefficient k 3 defined by 

[g, If, g]] (po) -- k~ 9 (po) + k2 If, 9] (po) + k3 [f, If, 911 (p0) 

satisfies I k 31 4: 1. Then there exists a neighborhood V ofpo such that every time- 
optimal trajectory steering Po to a point p e U is of the type BBB or BSB (bang- 
bang with at most 2 switchings or a concatenation of a bang arc, a singular arc 
and another bang arc), where some of the pieces may be absent. 

We now briefly describe the ideas behind two techniques which have proven 
useful in the study of time-optimality for bang-bang trajectories in dimension 3. 
The first one is based on the analysis of "conjugate points" ([16]). If F is a 
bang-bang extremal in IR n, then n points q l , . . . ,  qn are called conjugate (or 
a conjugate n-tuple) if F has switching-points at q l , . . . ,  q, in the sense that 
(2 (ti), g (qi)) = 0 where t i is the corresponding time. Since 2 is non-trivial, the 
vectors which we get when we transport all g's along F to one and the same time 
must be dependent. This gives an equality constraint as necessary condition for 
optimality of F, which we call a "conjugate point relation". We briefly outline 
now (without giving proofs) how this concept can be used in the study of 
trajectories. (For a systematic treatment we refer to [16]). We assume n = 3 and 
let X = f - g, Y = f + g; suppose we have an extremal F of the type Y X Y w i t h  

times %, zl and f2 along Y, X and Y respectively. In a nondegenerate situation, 
for any such YX'-concatenation, i.e. for any pair (fo, fl), there exists a unique 
multiplier 2 such that the necessary conditions of the Maximum Principle hold. 

Po P2 

Y ' % / ~ x , ~ ,  /~ / r  s 

 c,V 

This then defines the time "~2 along Y up to the next switching point. Now vary 
(%, zl) near (%, -~1) to obtain a 2-parameter family of YXY-ex t remals .  The third 
switching points, defined via 

p e~OY e~lX e~2(~o,~l)Y 

describe a surface S, which we call the "conjugate surface". (Here t - ~  p e 'x 

denotes the point obtained by following the integral curve of X starting at p for 
time t. We let the diffeomorphisms act on the right, since in this way the formal 
calculations involving the Campell-Hausdorff formula come out right.) If S 
contains a trajectory of the system Z through P2, it is possible to construct a 
family of trajectories which all steer/~ to P2 and all take exactly the same time 
as F. If for instance X and Y point to opposite sides of S, then S contains a 
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trajectory of S (a convex combination of X and Y is tangent to S) and if F is 
optimal ,  this trajectory is in fact a singular arc. So we get a family of 

Y X Y S - t r a j e c t o r i e s  which steer/5 to P2 and take the same time as F. If we can 
exclude the optimality of one of them (for instance if singular arcs or singular 
junctions can be excluded) this implies that F is not time-optimal. 

So basically 3 conditions are needed for this to work: 

i) the conjugate surface must exist 
ii) X and Y should point to opposite sides of the conjugate surface at P2 

iii) there should be some reason that implies that the trajectories with which 
we compare F are not optimal. 

It turns out that all this works very smoothly in a nondegenerate situation 
in 11l 3 and we can prove (cf. [16]): 

Proposition: Let Z be a (smooth) 3-dimensional system (of the form (5)). 
Suppose that each of the triples (f, g, [f, g]), (g, [f, g], [ f  + g, [f, g]]) and (g, [f, g], 
[ f  - g, ~ g]]) is a triple of independent vectors at p. Then p has a neighborhood 
U such that bang-bang trajectories that lie in U and have more than 2 switchings 
are not time-optimal. [] 

This result can also be obtained by a more algebraic procedure (cf. [6, 7]). 
Suppose now F is a Y X Y X - t r a j e c t o r y .  We would like to exclude the optimality 
of F beyond its third switching point P2. It is reasonable to compare this 
Y X Y X - c o n c a t e n a t i o n  to a Y X Y - t r a j e c t o r y  (i.e. a trajectory with one less 

Y f'~ P2 PoA ' b_k 

~ \  / / Y ,  fa 

Pl 

switching, which does exactly the same, i.e. steers/~ to a point on F just after P2. 
In a nondegenerate situation such a Y X Y - t r a j e c t o r y  exists: if X, Y and [X, Y] 
are independent at a reference point p, then the equation 

Po e~'X e~2r e~Sx = Po e~l r e~X e~3 r (6) 

can be solved by smooth functions t i = ti(s; z 1, z2), i = 1, 2, 3. The difference in 
the time is given as 

A: = t 1 4- t 2 4- t 3 - ~ 1  - ~ 2 - ~ 1 s  
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and it turns out that necessary conditions for optimality of F are 

(I) A (0; 271, "82) = 0 

(II) ]1"(0; ~ ,  %) > 0 

where ,  denotes differentiation with respect to s. Asymptotic expansions for (I) 
and (II) can be computed using Lie-algebraic formulas and so this can be turned 
into an applicable criterion. From this the proposition follows easily as well 
(cf. [6]). 

With a little bit of extra effort one can then actually prove 

Theorem: Let Z be a (smooth) 3-dimensional system (of the form (5)) 
and suppose that each of the triples (f, g, ~ g]), (g, If, g], [ f  + g, [f, g]]) and 
(g, [f, g], [ f  - g, [f, g]]) is a triple of independent vectors at p. Then there exists 
a neighborhood U ofp  such that time-optimal trajectories of Z that lie in U are 
of type BBB or BSB. [] 

For analytic systems this implies as a 

Corollary: Let Z be an analytic 3-dimensional system (of the form (5)). Then 
there exists an analytic subset A of positive codimension such that every p ~ A 
has a neighborhood U with one of the following two properties: 

(a) time-optimal trajectories that lie in U are of the type BBB or BSB 
(b) whenever q2 ~ U is reachable from ql ~ U time-optimally in time T within 

U, then there exists a bang-bang trajectory with at most 2 switchings which 
steers ql to q2 in U in time T. [] 

Case b) has to be included to cover degenerate cases when every trajectory 
is time-optimal (cf. also [9]). It says that in such a case we can still make a 
selection of time-optimal trajectories which is nice, i.e. BBB. 

The conjugate surface method and the Lie-algebraic approach are clearly 
related: (I) is exactly the conjugate point relation and (II) relates to the condi- 
tions which come up when one wants to check that X and Y point to opposite 
sides of the conjugate surface. The exact relationship between the two methods 
has however not been investigated yet. 

The conjugate point technique has the advantage that the computations are 
much simpler than the complicated Lie-algebraic procedures which give the 
approximations for A and ]f. On the other hand, the conjugate point method 
seems to apply in a straightforward manner only in nondegenerate situations, 
whereas the asymptotic expansions are the same also for more degenerate situa- 
tions (such as g A [f, g] /x [ f  _+ g, ~ g]] = 0 at p), even though in degenerate 
cases their application may be delicate. Using them we can show 

Theorem (Sch/ittler, [7]): For a (smooth) 3-dimensional system Z (of the form 
(5)), which is generic within the class of systems that satisfy f / x  g/x [ f, g] 4= 0, 
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every point p has a neighborhood U such that bang-bang trajectories that lie in 
U are not time-optimal if they have more than 7 switchings. [] 

The generic statement for arbitrary systems in ~ 3  is still an open 
problem. Also it is not known at the moment how to fit singular junctions 
in the picture. If we assume that in addition to f / x  g/x [f, 9] # 0 also 
g/x [f, g] /x If  + g', [f, g]] + 0 or g/x [f, g]/x [ f  - 9, [f, g]] 4:0 holds, then ge- 
nerically every point has a neighboorhood U such that time-optimal trajectories 
that lie in U are concatenations of bang and singular arcs with at most 6 pieces 
([7]). But even in the case when we still assume that f, g and [f, g] are indepen- 
dent, it is currently not known what type of concatenations between bang and 
singular arcs can occur generically. 

Finally we remark that both techniques are conceptually not restricted to 
dimension 3. The conjugate surface method is actually quite general and applica- 
ble for a broad range of problems (cf. [16]). But both methods seem to have their 
limitations in the computational complexity which increases rapidly with the 
dimension. If these problems can be overcome, maybe general results in IR" can 
be obtained and this would yield quite a bit of qualitative information about the 
structure of time-optimal controls for single-input nonlinear systems. 
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Abstract 

We outline some recent results on the regularity of optimal controls. We formulate the general 
regularity problem for open-loop and closed-loop controls, and explain how results for the open- 
loop case have implications for the closed-loop case as well. We then describe a number of results 
on the regularity of open-loop controls. 
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