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The plane turbulent plume in a magnetic field 

By L. J. Crane, School of Mathematics, Trinity College, Dublin 2, Ireland 

I. Introduction 

The motion of stellar atmospheres is set up and controlled by the 
interaction of temperature and magnetic fields. This paper is an attempt to 
understand some aspects of this interaction by constructing a simple two 
dimensional model in which an upwardly moving turbulent plume of 
electrically conducting gas is retarded by a uniform horizontal magnetic 
field, the horizontal direction being chosen for maximum effect on the 
upward flow. 

As far as the author is aware no treatment of such a plume exists in the 
literature; however Gray [ 1] has considered the laminar plume in a magnetic 
field which so varies with height as to produce a similarity solution. 

It is shown that at a comparatively small height above the source the 
flow is that of a simple plume which is unaffected by the magnetic field (in 
the above statement "comparative" means compared~to a unit of height 
which can be constructed out of the basic thermal and magnetic constants 
of the flow); as the height increases the magnetic field gradually retards the 
upward flow till eventually buoyancy and magnetic forces are in almost 
perfect equilibrium; when this occurs the flow is shown to be that of a two 
dimensional turbulent jet. 

2. Equations of motion 

A system of rectangular coordinates (x, y, z) is taken with z-axis lying 
along the horizontal source and x-axis vertically above the source; (u, v, w) 
are the corresponding unsteady velocity components; the magnetic field is of 
constant strength B0 and is in the y-direction. 

In fully developed free turbulent flow viscous stresses may be neglected; 
thus the unsteady vertical momentum equation is: 

Ou ~u ~u c~u 
o-i + ~ Ux + ~ ~y + w ~ = g~O - Ku, (1) 



70 L.J .  Crane ZAMP 

where g is the acceleration due to gravity, fl is the coefficient of volumetric 
expansion, 0 is the excess of temperature over the surroundings and 

aB~ 
X = , (2)  

P 

where a is the electrical conductivity of the fluid and p is the density. The 
basic assumptions underlying the right side of (1) are: 

(i) that density differences may be neglected except in the buoyancy term 
gflO; this is the Boussinesq approximation, 

(ii) that the magnetic field B0 is of sufficient strength to mask the magnetic 
field due to the electric current produced by the motion of the conduct- 
ing fluid. 

The equation of heat transfer is 

80 80 80 80 
8-7 + u ~  + ~  + wN=0; (3) 

in this equation molecular heat transfer has been neglected. 
Finally the continuity equation is 

8u 8v 8w 
8~ +Syy +~-z =0,  (4) 

where, once again, density differences have been neglected. 

3. An exact solution 

Equations (1), (3), (4) are satisfied by 

gflO = Ku 

where u satisfies the equation 

8u 8u 8u 8u 
8~ + u ~  + v ~  + w E =0. (5) 

So far u, v, w, 0 have been instantaneous variables. Take now mean 
values, which are denoted by a bar, then 

g/36 = K~; (6) 

taking the mean value of (5) and noting that the mean flow is independent 
of the z-coordinates gives: 

8~ 8~ 8 8 
a ~ + e 8y - ~ (u') 2 - ~y  ( u ' r  (7) 
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where primes denote fluctuations from the mean; finally the above equation 
reduces to 

c, Yx + ~ ey ~y (u'v'), (8) 

when the boundary layer assumption, namely 

~xx <~ - -  (9) ~y' 

is made. 
In addition to (8) the flow must satisfy the mean continuity equation 

namely: 

~ + ~ = o  (lOt 

and the boundary conditions which are: 

- 0  on y = O  (11) ~y ~y 

and 

tL G ~ 0  (12) 

at the edges of the plume. 
So far no reference has been made to the flow of heat from the line 

source; this may be introduced by considering the mean value of (3), which 
reduces to 

_66 _ ~  ~ - -  
u ~x + v ay ay (v '0"), (13) 

when the boundary layer assumption (9) is made. 
When (13) is integrated over a horizontal section of the plume, and the 

boundary conditions (11), (12) applied, it follows that 

f ~ f~6 dy 
of) 

is constant; this constant may be expressed in terms of the heat flux at the 
source; thus 

gfl ~g dy = b, (14) 
oO 

where the specific buoyancy flux b is defined by 

b - Qo~/~ cpp ' (15) 
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is the specific heat where Qo is the heat flux per unit length of source and Cp 
at constant pressure of the fluid. 

On substitution of ~7 from (6) relation (14) becomes 

p bl 2 dy bp 
o0 K - mo; (16) 

that is, the vertical momentum flux mo is conserved in that flow given by the 
exact solution (6). 

Clearly the flow which satisfies (8), (10), (16) is a plane turbulent jet 
whose momentum flux is m0. This jet solution is an asymptotic flow to which 
the plume approximates far above the source. 

4. An approximate  solution 

In this section an approximate Pohlhausen method will be used to 
determine the height at which the exact solution of section (3) is valid. 

Two internal relations must be satisfied, these are: the heat flux equation 
(14) and the momentum integral equation, namely: 

d ft2dy =gfl  tidy - K  ftdy; (17) 
dx 

this equation is derived from the mean value of equation (1), namely: 

_ ~  _ ~  ~ - -  
+ v ~3y = - t3y (u'v') + g f l f f -  K~, (18) U -~x 

by integration over a horizontal section subject to conditions (11), (12). 
The profiles of velocity and temperature are now taken as: 

= Uo(x) sech 2 ~/ ] 

6 =  Oo(x) sech 2 q l (19) 

_ Y 
n A(x) 

Substituting (19) into (14), (17) gives 

gfl Uo0o A = 3b (20) 

and 

(u a) =  gflOoA -  KUoa. (21) 

One further equation is needed to close the solution; this is found by 



Vol. 40, 1989 The plane turbulent plume 73 

taking the value of equation (18) on the x-axis, i.e. 

dUo I ~ _ f i ~ l  + gflOo_ KUo. (22) 
g o  - axis 

when a coefficient of eddy viscosity eV is introduced, such that 

- 0y [u'v'] = eV~y2,o (23) 

equation (22) becomes: 

dUo 2erUo 
U~ d x  - -  A 2 + gfiOo -- KUO (24) 

Equation (22) may be further simplified by using Reichardt's [2] hypothesis 
for free turbulent flows, namely: that ~r is proportional to the product of the 
axial velocity and the width of the flow; thus: 

ev = cxUoA, (25) 

where e is a numerical constant which is fixed by reference to experiment; 
finally (24) becomes: 

UO dx _dUo 2eU + gflOo - KUo. (26) 

When 00, x are eliminated from (20), (21), and (26) it is found, and after 
some simplification, that 

~-n + 3 n - ~ K x /  P ( 1 - n )  (27) 

where nmo is the vertical momentum flux which is given by 

4 2 nmo = gp UoA, (28) 

when the profiles (19) are used. 
Since m0 is the asymptotic value of the momentum flux, see (15), it 

follows that the dimensionless quantity n ranges from zero at the source to 
unity at large vertical heights. 

The solution of (27) for which 

A = 0  when n = 0 ,  

is 

UoA2 3~ - m~ (29) 
K p  
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where 

f(n) = - n  - log(1 - n) (30) 

From (28), (29) it is readily shown that 

3 n 2 
U3= i ~  b -  f (31) 

and 

b f  
= - -  -- (32) A3 1272 K 3 n '  

while 00 may be found from (19). 
The height x may be introduced by integrating equation (21), thus: 

K fo" 1"l 2/3 dn (33) b 1/3 ( 1 8 ~ ) 1 / 3 x  = (1 - -  n)f 1/3" 

Two cases are of special interest; first close to the source, n is small and 
(31), (32), (20) give: 

'/3 
Uo=k~ ) bl/3, 

A = 3ex, (34) 

=(  1 ~l/3b 2/3 
g Oo x ; 

these correspond to the plane non-magnetic plume. 
Second, when n is close to unity: 

[ 3  m0] '/2 ' 
Vo= 

A = 40~x, (35) 

, ~ 3P ]'/2; 
g~Oo = ~b Lm0~x/ 

equations which correspond to the jet solution of section (3); indeed the jet 
profile 

u = U0 sech 2 A (36) 

with Uo, A given by (35) is the exact solution of equations (10), (18) when 
the eddy viscosity (23), (25) is used; for details see Schlichting [3]. Equation 
(36) is in excellent agreement with the experimental data of F6r thmann [4] 
when the constant ~ is taken to be .033. 
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When this value of 7 is used the approximate solution for small n, 
namely (34), becomes: 

Uo = 2.2b 1/2, 1 

A = .10x, l (37) 

gfiOo = 3.4b2/3x -1. 

Now Chen and Rodi [5] have collected and summarised the published 
experimental data on plane plumes. The experimental values which they 
recommend for the numerical coefficients of U0 and g~Oo in (37) are 1.9 and 
2.4 respectively; they also give the half width of the velocity and temperature 
profiles as .12x and .13x respectively; values which may be compared with 
the theoretical half width calculated from (37) and (19), which is .09x. 

To summarise: the Pohlhausen solution is in excellent agreement with 
the experimental data for the plane jet when ~ is chosen as .033; this 
corresponds to the limit as n tends to unity. At the other extreme, as n tends 
to zero and the flow reduces to a non-magnetic plume, the Pohlhausen 
method: 

(i) overestimates axial velocity by 15%, 
(ii) overestimates axial temperature by 30%, 

and 
(iii) underestimates the width by 30%. 

Table 1 gives numerical values of the approximate Pohlhausen solution in 
dimensionless form. 

Table 1 
Non-dimensional parameters of the flow as calculated by the approximate Pohlhausen method. 

(~)1/3 i/0~',~113 i/0~\113 A K  

0 0 .721 oe 0 
0.1 .050 .704 7.01 0.152 
0.2 .105 .698 4.84 0.318 
0.3 .165 .669 2.22 0.505 
0.4 .232 .646 1.62 0.718 
0.5 .309 .623 1.25 0.964 
0.6 .400 .619 0.96 1.261 
0.7 .512 .566 0.81 1.633 
0.8 .625 .526 0.67 2.142 
0.9 .895 .474 0.53 2.972 

This table gives, in dimensionless form; vertical distance, axial velocity, axial temperature and 
width of the plume corresponding to different values of n (the ratio of momentum flux to its 
asymptotic value). 
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5. Discussion 

Two and only two physical parameters govern the turbulent magnetic 
plume; these are the specific buoyancy flux b, defined by equation (15) and 
the magnetic parameter K defined by equation (2), the dimensions of these 
parameters being (velocity) 3 and (time) -1, respectively. Out of these 
parameters an intrinsic unit of vertical height, namely 

bl/3/K 

may be formed. This unit of height characterises the different regions of the 
flow; when 

x ~ bl/3/K 

the magnetic field is unimportant and the flow is that of a simple plume 
when 

x ,.~ bl/3/K 

a jet type flow occurs. Indeed it may be deduced from (33) that at a height 

b 1/3 
X = 2.7 - -  (38) 

K 

the flow is sensibly that of a two dimensional jet whose momentum flux is 
within 10% of its ultimate value. 

The principal effect of the magnetic field is to retard the upward velocity 
of the plume; the rate of spread of the plume is virtually unchanged in its 
transition from simple plume to jet flow; consequently to ensure a constant 
vertical flux of heat the magnetic plume must be hotter than the simple 
plume; indeed while the axial temperature in the simple plume decays as the 
inverse of the vertical height, the magnetic plume temperature decays much 
more slowly in fact as the inverse square root of the vertical height. 

The author suggests that it should be possible to observe the jet in the 
laboratory by using mercury in a horizontal magnetic field of 1000 gauss, 
the heating being provided by a horizontal source (Qo) of strength 10 W/cm 
length. This would result in a time scale (K -1) of about 1.4 seconds and a 
velocity scale (b 1/3) of about 2 cm/s. 

Moreover it can be deduced from (38) that such a turbulent jet should 
be well established at a height of 7 cm above the source. 
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Summary 

This paper traces the development of a two dimensional turbulent plume in a magnetic 
field from its origin, where it is virtually unaffected by the magnetic field up to its ultimate 
jet-like form. 
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