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E a r t h q u a k e  P red ic t ion  as a D e c i s i o n - m a k i n g  P r o b l e m  

G. M. MOLCHAN ~ 

Abstract--In this review we consider an interdisciplinary problem of earthquake prediction 
involving economics. This joint research aids in understanding the prediction problem as a whole and 
reveals additional requirements for seismostatistics. We formulate the problem as an optimal control 
problem: Possessing the possibility to declare several types of alerts, it is necessary to find an optimal 
strategy minimizing the total expected losses. Losses include costs both for maintaining alerts and for 
changing alert types; each successful prediction prevents a certain amount of losses; total expected losses 
are integrated over the semi-infinite time interval. The discount factor is included in the model. 
Algorithmic and exact solutions are indicated. 

This paper is based on the recent results by MOLCHAN (1990, 1991; 1992). 

Key words: Earthquake prediction, prediction objective, prediction error diagram, hazard function, 
Bellman equation. 

I. Introduction 

Earthquake prediction is usually understood as a physical prediction, that is, 
deterministic localization of future strong events in time and space. At the same 
time, practical applications in intermediate-term and short-term predictions are 
based on stochastic features. This is reflected in statistical characteristics of predic- 
tion as well as in methods of interpretation of alarms (KEILIS-BOROK and ROT- 
WAIN, 1990; KEILIS-BOROK and KOSSOBOKOV, 1990; NISHENKO, 1989). Therefore 
practical use of prediction constitutes an important part of the general problem. 

In AKI'S (1989) opinion, the general problem of prediction, including decisions 
and practical actions, must be considered separately by geophysicists and users (for 
example, economists). Similarly, these two parts of the problem were separated by 
KANTOROVICH and KEILIS-BOROK (1977; see also for short version in SADOVSKY, 

1986). Unfortunately, we deal in practice with a number of prediction methods 
(algorithms) that are not of a very high quality. The number of such algorithms 
grows with time, complicating the situation. In fact, these algorithms are decision 
functions calling (or not calling) an alarm at a given point or in a region. In this 
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situation, two nonequivalent methods can lead (and do lead) to contradictory 
results. It is impossible to avoid this difficulty by choosing "the best" method in the 
frame of prediction physics (see below). Moreover, it is important to understand 
objective principles in prediction algorithms. These principles are vague because 
they are not clearly realized by the authors themselves or are based on artificial 
efficiency criteria (see below). Thus an expert is compelled to work with a system of 
ready (perhaps contradictory) decisions in no way associated with applications. 
Finally, in splitting the prediction problem, geophysicists do not know whether 
their results are sufficient for applications. 

Here we make an attempt to develop a qualitative analysis of the prediction 
problem as a whole. The principle notion in this analysis is the prediction objective. 
The multiplicity of predictions turns from an obstacle to a favorable base to choose 
the best decision. Below we investigate two models of loss functions. The first model 
is important for most practical prediction algorithms; it is useful in the research 
stage of prediction (we are now just in this stage). The second model roughly 
simulates prediction economics. In both cases we find the structure of predictions 
that optimizes loss functions under conditions of prediction information g(t) of a 
very general nature. We found that in complicated cases optimal prediction is based 
on two entities: first, the conditional (relative to g(t)) earthquake flow rate and 
second, the matrix of transition probabilities for the states of information g(t) in 
consecutive time intervals. Most recent investigations involve evaluation of the first 
entity, using combinations of predictors. As far as we know, the second entity has 
not yet been studied, though numerous descriptions of preparatory processes before 
strong earthquakes can constitute a base for their study. 

This paper reviews recent results by the author (MOLCHAN, 1990, 1991, 1992). 
In the first section we consider the academic prediction type with two alert states, 
yes/no. The second section presents the analysis with an arbitrary number of alert 
states. Optimizing mean (discounted) losses associated with prediction, we obtain a 
Bellman-type equation. This part of the paper helps to clarify which statistical 
parameters are useful in the problem of prediction as a whole. 

2. The Simplest Prediction Problem 

2.1. Prediction Errors Diagram 

Recently the author (MOLCHAN, 1990, 1991) presented the problem of compar- 
ing prediction methods for stationary point processes (that is, a sequence of strong 
earthquakes in a region). The problem was solved using two prediction parameters: 
h, the rate of failures-to-predict (the number of missed events divided by the total 
number of events in the time interval T >> 1), and i, the rate of time alarms (the 
total time of alarms divided by T when >> 1). 
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Figure 1 
Error set (h, ~) for prediction strategies based on the same information. (A) Optimist strategy. (B) 
Pessimist strategy. (AB) Results of  a random guess. (C) The center of  symmetry; n and n -  are a forecast 
and its antipodal forecast. F is the diagram of optimal prediction errors. Arrows indicate a better 
forecast relative to the strategy s0. Dashed lines are contours of  the loss function y = max(h, "0. Q* are 

errors of  the minimax strategy, h = "L Dash-dotted lines are contours of  losses v = ~/(1 - h ) ,  

Let us agree on the type of  information J ( t )  available at the moment  t for the 

prediction of events in the point process. In practice J ( t )  can include catalogs of 

events of  various magnitudes in the region under study, data on physical fields, and 

data on predictors in some time intervals (t - ti, t - z;), where z; is the delay of the 
ith data type. In the simplest case the observer uses information J ( t )  and makes the 

decision re(t): to declare or not to declare an alarm in the time interval (t, t + A) 
where A can equal the period of information renewal. The set of  decisions 
{re(t)} = rc is called the prediction strategy. In practice the strategy is defined by the 
method or by the prediction algorithm. It  is useful to consider class n of  strategies 
where decisions can be made with some probabilities, that is, after an additional test 
of coin-tossing type with outcome probabilities (p, 1 - p )  depending on J ( t ) .  In 
practice deterministic solutions are usually preferred, where p = 0 or p = 1. 

Any two strategies ~z~ and re2 of  the type considered can be combined into a new 
strategy that independently uses ~z~ or ~2 with probabilities q and 1 - q in each time 
interval A. This leads to a mixture of  parameters (h, ~)~ of  initial strategies with the 
same weights q and 1 -  q. Hence the set G = {(h, ~)~ } of  errors corresponding to 
various strategies is convex if these strategies are based on the same information 
J ( t )  (Figure 1). 
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By definition, the set G belongs to the unit square (0 < h, ~ < 1). It contains 
points (1, 0) and (0, 1) and, by convexity of G, the diagonal h + ~  = 1. The first 
point stands for the widespread optimist strategy in which an alarm is never 
declared. The second point corresponds to the total pessimist strategy in which the 
continuous alarm is kept. Points on the diagonal h + 4 = 1 correspond to the 
strategy of a random guess in which an alarm is declared with probability p 
independent of J ( t ) .  

The set G has the center of symmetry (1/2, 1/2), because every prediction 
corresponds to the antipodal predition g where an alarm and not-an-alarm change 
places and errors (~, 4) are replaced by (1 - h, 1 - ~). Therefore all points of G 
above the diagonal h + 4 = 1 correspond to strategies constructed by negation of 
nontrivial strategies with h + g < 1. However, only nontrivial strategies at the lower 
boundary F of the set G are important. The boundary F connects the points (1, 0) 
and (0, 1). It is monotonic and convex downward due to the properties of G. 

The points of F are incomparable, that is, if ~1 < ~2, then hi > h2. For  any point 
(h, 4) e G there exists another point (hi, 41) s F where h i < h, ~1 < "~, which corre- 
sponds to a better prediction. Therefore, there exists a minimum set of best and 
incomparable strategies among their total set. The number of these strategies is 
infinite, they are described by the error curve F. 

The curve F is sufficient for the choice of the best strategy in the following 
problem. Suppose that the long-term losses associated with prediction can be 
expressed in terms of h and i, that is, as a function 7 = 7(h, i) increasing in its 
arguments. If  sets {(fi, ~): 7 < u} are convex for any level u then the point Q* where 
the contour line 7 = 7* is touching F corresponds to the strategy minimizing 
(Figure 1). 

Thus the general prediction problem (minimization of losses ~) in a class of loss 
functions 7 = 7( r~, ~) is split into two independent problems. The first problem is the 
construction of the loss function 7, which falls in the area of economics or other 
studies. The second problem is the derivation of the curve F using the information 
J ( t ) ;  here the physics of the seismic process is applied. In the latter case a union of 
points (h, ~) should be analyzed; this union is generated by a variation of  parame- 
ters in an algorithm and by applying various algorithms based on identical 
information to predict events of a certain magnitude. The boundary of the convex 
hull of these points serves as an estimate of the diagram F. 

Efficiency of prediction is often measured by two parameters, el = ( 1 - h ) / i  
(GusEv, 1976) and e 2 = 1 - -  h - -  "c (FENG et al., 1985). Clearly, the most effective 
strategy is obtained with the minimum loss function 71 = 1/el in the first case with 
72 = 1/e in the second case. Therefore the optimist strategy with errors (1, 0) is the 
most effective in the first case. Indeed, 71 contour lines form a bundle of straight 
segments with the center Q* = ( 1, 0). The same strategy is the least effective in the 
second case because e 2 = 0. Thus the functions 71 cannot be used to measure the 
efficiency. Moreover, an attempt to choose a universal strategy from a continuum 
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of  incomprable strategies is unsuccessful by itself. The loss function ~2 is certainly 

useful for research purposes; however, the choice of  7 falls, in general, out of 
prediction physics. 

2.2. The Optimal Prediction Strategy 

Consider the hazard function r(t) that is, in other words, the conditional 
(relative to the information J ( t ) )  rate of  predicted events 

r(t) = P{there exists an event in (t, t + A) 13(t) = u}/A = ru. 

We denote by 2 the unconditional rate, that is, the number of  strong events per unit 
time. Let us discretize time with the step A and denote by n(t) the event indicator 
in the interval (t, t + A); if the interval A contains at least one event then n(t) = 1, 
otherwise n(t) = O. 

Statement I. I f  the flow (n(t), J ( t ) )  is stationary and ergodic then there exists 
such threshold r* depending on the loss function 7 that the optimal prediction strategy 
is declaring an alarm every time when r(t) > r*. In rare cases in which the relation 

r(t) = r* has a nonzero probability, an alarm is selected with some probability p*. 
I f  Q* is the point where the contour line ~ = ~* touches the error curve F, then the 

threshold r* is expressed in terms of the common derivative of F and ~ = ~* at that 
point 

dh 
r* = - 2  ~ (Q*). 

I f  one of the curves is not differentiable at Q*, then the derivative is changed for the 

slope of any common line of  support  for F and ~ = ~,* at Q*. In the important  case 

of  linear loss function 7 = e2h + fl'~ the threshold is r* = fl/~, because the contour 

= 7" is a straight line; therefore it is a line of  support  with the slope -fl/2c~. This 
case was studied by LINDGREN (1985) and Ellis (1985). We can interpret a as 

prevented losses when the prediction is successful and fi as the cost of  maintaining 

an alarm per unit time; then 7 stands for total losses per unit time. 

2.3. Minimax Strategy 

Another important  case of  the prediction strategy involves the loss function 
70 = max(h, 4). The optimization of  prediction leads in this case to the minimax 

strategy with h = 4 = min. This strategy is useful when the loss ratio fi/a in the 
linear function is unknown, so that an observer prefers the worst case fl/2e in the 
following sense: 

max min - -  - min (70). 
~,~ ~ ~2  + fl 
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This leads to a certain stability of the minimax strategy (MoLCHAN, 1990, 1991). 
Therefore it is no wonder that the minimax prediction principle is employed in 
practice, though inadvertently. For example, the algorithm CN (KEILIS-BOROK 
and ROTWAIN, 1990) yields h g ~  =25-30%,  on average, for all the regions 
considered in the prediction of events with M > 6.4. Similarly, h ~ i = 33% for 
the M8 algorithm (KEILIS-BOROK and KOSSOBOKOV, 1990) in the prediction of 
events with M >_ 7.5 in the Circum-Pacific belt (private discussions with I. Rot- 
wain and A. Khokhlov). Some simple precursors have a similar arithmetic mean 
of prediction errors, (h + 0 / 2  (see, for example, the energy precursor by 
NARKUNSKAYA and SHNIRMAN, 1993). That means that the modern intermedi- 
ate-term collective precursors (CN, M8, etc.) extend the geography of applica- 
tions rather than leading to a higher quality of prediction. This hypothesis 
requires careful review. 

The seismic gap hypothesis has recently been used in long-term forecasting 
(WORKING GROUP ON CALIFORNIA EARTHQUAKE PROBABILITIES, 1988). In this 
case the information used J ( t )  is the elapsed time since the last large event on a 
certain fault or plate boundary. Therefore the optimal strategy is defined by the 
rule: 

z~(J(t) = u) = alert if r, = F(u)/(1 - F(u)) > r .  (1) 

where F is interevent time distribution. 
If  F has mean m and variance G 2, and belongs to the WeibuU, Gamma, 

Log-Normal type with a reasonable ratio a/m e(0.25, 0.6), then the optimal 
minimax rule takes a simple explicit form: 

r c ( J ( t ) = u ) = a l e r t  if u > k m ,  k - 0 . 7 5 .  

In addition, the errors h,g are similar to the M8 algorithm errors i.e. 
h - g _< 0.35 (MOLCHAN, 1991). 

The rule (1) is not used by the Working Group (WGCP, 1988), therefore its 
forecasting becomes more vulnerable to criticism. The recent discussion of the 
seismic gap hypothesis by KAGAN and JACKSON (1991) actually raises the issue 
of the distribution of F. Considering that earthquake times show clustering, it is 
necessary to use those distributions for which r~ is U-shaped or 

where U(z)>_ O, U(z)~ oo with z ~ 0  and z ~ oo. Then the optimal alert times 
within an interevent period form two intervals: (0, ul) and (u2, oo). The first alert 
interval is a reaction on the clustering while the second one is in agreement with 
the gap hypothesis. 
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3. Prediction with Multiphase Alerts 

The prediction model considered above is sufficiently general and yields a simple 
optimal strategy. It clearly divides the domain of activity into two parts: one is the 
province of geophysics (estimation of the hazard function); the other is related to 
economics (for example, estimation of the loss ratio 3/c~.) In the case of the linear 
loss function, the process (n(t), ~r can even be nonstationary. The rejection of 
stationarity leads to a dependence of the threshold r* on time. Indeed, the obtained 
prediction is optimal under linear losses per unit time both on the interval A (local 
optimality) and on the entire time axis (global optimality). 

The simplest model considered is suitable for many types of practical forecasts 
that involve only two alert states: that is, where an alarm is declared or called off. 
However, a real alert must be multiphase, as a rule, because different degrees of 
hazard require different systems of protective measures (SADOVSKY, 1986). Hence 
we modify the prediction model by introducing multiphase alerts and generalized 
linear losses. 

Let us assume that an observer can declare any alert from a given set of alerts 
(Ao, A1 . . . . .  A m )  using the information J( t ) .  The cancellation of an alert is 
included in the set; it is Ao. We also assume that every alert Ai requires cost fi, per 
unit time and that el is the prevented toss per one successful prediction. In 
particular, c~0 = 30 = 0 for A0. 

We assume that any change of alerts leads to loss cij, 0 < c,.j < ~ .  The case 
cgs = oo means that the change A~ --. Aj is forbidden. For  example, the population 
can be evacuated only after solving transportation problems. Whereas some of the 
protective measures require an ordering of corresponding alert types, other protec- 
tive measures can be carried out in parallel. A block of  such parallel measures is 
considered as a single measure in our model. 

Nonzero e~s values result in stability of alert sequences because they prevent fast 
alternating of alerts. However, the introduction of c o complicates the problem; 
locally, optimal decisions are not globally optimal in this case. Examples of  this 
kind were discussed by MOLCHAN and KAGAN (1992). 

Denote by z~ the losses associated with the decision n(t); prevented losses enter 
there with the minus sign. Let us consider the total losses associated with the 
prediction strategy on the semiaxis t > 0 relative to the initial moment t = 0 with 
time factor p 

Z~ = Z zkAexp(- -p 'kA)= Z ZkAOk 
k>_O k>_O 

0 = exp(--pA).  (2) 

Z~ is called discounted losses in the theory of optimal control (HOWARD, 196V; 
ROSS, 1970). In practical problems the factor p can stand for the efficiency of 
capital investments. Mathematically, the introduction of p allows us to consider the 
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problem on a finite interval of order l/p, escaping difficulties due to boundary 
effects when stationary prediction methods are studied. 

The loss function now as the mean total discounted losses, that is, the prediction 
goal is the minimization of 

S = EZ~ ~ min.  (3) 

Consider the case in which the change of alert types does not lead to additional 
losses, that is, cij = 0 over all i and j. 

Statement 2. Let cij = 0 ,  i , j  = 1, 2 . . . . .  m, and let ~(t) depend only on the 
stationary information sequence J( t ) .  Then the optimal strategy is such that 

zr(t) = Aj. (4) 

where the subscript j* realizes the minimum 

min (flj - ~jr(t)) = S[r(t)] (5) 
J 

for the current value of  the hazard function r(t). 
Remark 1. The function S[r] in equation (5) is the convex polygonal envelope 

of the system of straight lines y = f l j - ~ j r  (Figure 2a). Let Po(0,0), 
Pl(r l , y l )  . . . . .  Pk(rk, yk) be the vertices of the polygon S(r) that are ordered in 
r ,O<r l  < . . .  < r  k <r~+~ =0% and let j(n) be the number of the straight line 
y = f l j -  ~jr with the pair of vertices P,  and Pn+l. The prediction strategy (4), (5) 
means that there exist k < m hazard levels r(t):{ri } such that the alert with j*  =j(n)  
is always declared in the interval r(t) ~ (rn, rn+~) (see Figure 2b). A number of alerts 
{Ai} can be cost ineffective; such is the alert A3 in Figure 2a. 

2. The quantity (5) defines minimum conditional mean losses per unit time in 
the interval (t, t + A) under the given information J ( t ) .  Hence the strategy (4), (5) 
is simultaneously global and local. It does not depend on time factor p and is the 
generalization of the prediction strategy for two-phase alerts with the linear loss 

function discussed above. 
To study the general case we introduce the following notion. We say that the 

process (n(t), J ( t ) )  has M property if the information sequence is a Markov process, 

that is, 

P { J ( t  + A) = v i i ( t )  = u; J(s) ,  Vs < t} = P ( J ( t  + A) = v i i ( t )  = u} = Puv (6) 

and that 

E(n( t )  ]J(s) ,  s _< t } = e ( n t t ) I J ( t )  } = r(t) A. (7) 

Conditions (6) and (7) hold when the information J ( t )  contains all past data on 
predictors up to the moment t and all prehistory of  the process n( - ) .  In other 
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Figure 2 
Optimal multiphase alert with zero losses for the change of  phases. (a) Optimal mean losses per unit time 
s(r) as a function of  hazard level r; s(r) is the envelope of straight l i n e s / ~ -  c~r indexed by alerts A~; P~ 
are vertices of  the envelope; r~ are hazard levels for the change of alerts Ai; the alert A 3 is not  cost 
effective. (b) Hazard function r(t) and optimal alert A:(t) as a time function under conditions of  Figure 

2a. 

words,  the past {J ( t ) ,  n(s), s < t} is measurable  relative to ,r I f  the sequence n(t) 
and a physical  process  x(t) used to predict n(t) has a finite memory ,  that is, a finite 
correlat ion interval J, then (6) and (7) are true for the in format ion  sequence 
J ( t )  = {n(s), x(s), t - J < s < t}; its dimensionat i ty  is less as compared  with the case 
o f  infinite memory .  

Adding  new requirements to the description o f  the process  (n(t), J(t)) we can 
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extend the class of decisions; z(t) can depend on J ( t )  and past decisions z(s), s < t. 
This dependence can be stochastic. 

Statement 3. Assume that (n(t), J( t ) )  is stationary and has M property and that 
decisions n(t) depend on J ( t )  and {Tr(s), s < t}. Then 

a) The optimal multiphase alert with parameters [cr fli, cij] in problem (3) exists 
and can be chosen stationary, that is, decisions g(t) depend on t only in terms of the 
current information J ( t )  = u and current alert 7z(t - A) = Ai. 

b) Minimal mean losses (3), S*(u, i), under initial conditions J ( O ) =  u and 
~z(-A) = i, are defined by the equation 

S(u, i )  = min [c u + fljA -- r .A~ 2 + ~, P.oS(v,j)] .  
J 

(8) 

We assume for simplicity that the set of  states J ( t )  is countable. 
c) I f  O e (0, 1) or p > 0 then equation (8) has a unique solution. This solution can 

be found by an iterative procedure 

S(~ i) = 0; S ("+ 1)= ToS(,) (9) 

where To is the operator defined by the right-hand side of (8) with the domain of 
functions S(u, i). The error of the nth iteration is 

IS ('~ - S*] < On(1 - O) -1Z 

where 

L =  max [ci;+bjA+~;[ 
ij:cij < m 

d) Under conditions J ( t )  = u and rift - A) = Ai the optimal solution is rift) = Aj, 
where the subscript j* =j(u, i) minimizes the right-hand side of (8). 

Remarks. 1) Equation (8) is of Bellman type in the theory of optimal control 
(HowARD, 1960; ROSS, 1970). In our case the control parameter j enters the loss 
function rather than transition matrix [ P j .  2) The recurrence (9) leads to the set 
of functions Sk = S (N k), k = 0 . . . . .  n, which are optimal mean discounted losses 
in the intervals (kA, NA), k = 0, 1 , . . . ,  N - 1. The sequence of subscripts j~(u, i) 
minimizing (8) with S = S~ defines the sequence of optimal decisions in intervals 
(kA, (k + 1)h) under information states (or zfft -A) ) ,  t = kA. 

The described algorithm is also suitable for optimization of total losses in the 
interval (0, NA) when 0 = 1, that is, without the time factor p. Unfortunately, the 
optimal prediction strategy for a finite time interval is nonstationary in the case 
[%] # 0. 

Let us consider two examples. 
Renewal process. NISHENKO (1989) used the following model to predict charac- 
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teristic earthquakes. Interevent intervals are independent and have distr ibutionf(x);  
the information is the time J ( t )  = u elapsed from the last event. This model satisfies 
conditions (6) and (7). The hazard function is 

F(u + 6) - F(u) F(u) 
ru - A(1--F(u))  - 1- -  F(u) 

and the transition matrix P.~ is such that only two transitions from the state u are 
possible, one to u + A with the probability 1 - r .A (no events) and the other two 
0 with the probability r .A (an earthquake occurred). Therefore equation (8) takes 
the form 

S(u, i )  = m i n  [c~j + f l jA - :gruA + O(S(u + A , j ) ( 1  - -  ruA)  + S(O,j)ruA)]. 
J 

Cyclic Poisson process. To describe a sequence of catastrophic events VERE- 
JONES (1978) used a model of Poisson process with periodic rate, 2(0 = 2(t + T). 
Clearly, the information takes the form J ( t )  = t(mod T). Therefore conditions (6) 
and (7) are true. Though this model is nonstationary, Statement 3 still holds. 
Equation (8) takes the form 

S(u, i) = min [c o + fljA -- ej2(u)A + OS(u + A,j)]. 
J 

We also add the obvious condition of periodicity S(u, i) = S(u + T, i) and T = NA. 
Despite the simplicity of these examples, the optimal prediction cannot be 

obtained in an explicit form if [cis] r O, even in the case of two-phase alerts. The 
case [%] r 0 involves the hazard function r,  as well as the matrix of  transition 
probabilities for information states J ( t )  in constitutive time intervals. The practical 
estimation of this matrix Puv is complicated and has not yet been stated. Difficulties 
in estimation of  the matrix [P,v] depend on the type of information sequence J ( t )  
and on detailing of the phase of its states. Above we concluded that the increase in 
the number of predictors leads to new application areas rather than two predictions 
of higher quality. In other words, it is sufficient to use the information phase space 
of a small number of dimensions. 

Optimization o f  mean loss rate. The limit case of problem (3) when p ~ 0 (0 ~ 1) 
stands for the situation in which the loss function takes the form of total expected 
losses per unit time, that is, 

7~ = lim i n f E  zl + "  +zn n ~ ~ n A ~ mi~ n .  (10) 

Problem (10) is interesting for its theory, rather than its applications. Its loss 
function is associated with the prediction strategy on the entire time semi-axis, 
whereas the prediction interval in (3) is of order 1/r. Furthermore, problem (3) is 
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difficult for numerical analysis as is partly. For results in this area see (MOLCHAN, 
1992, MOLCHAN and KAGAN, 1992). 

4. Problems 

4.1. Performance of Prediction Algorithms 

Intermediate-term prediction methods that have been recently developed solve, 
in fact, the theoretical problem: Is the prediction at all possible? Therefore these 
methods mostly reduce to the simplest two-phase alert and are characterized by 
errors (h, i). As noted before, it is not sufficient to know these errors to compare 
various algorithms at the research stage or when economical data are unrefined. 
The situation improves if any algorithm A is characterized by an error curve similar 
to error diagram F (Section 2). The problem arising is that any algorithm is a 
complex of prediction methods that yields only one method after specifying the 
vector | of internal parameters of the algorithm. Varying the essential parameters 
we obtain the error set (h, ~)~. The lower bound of its convex hull is the error curve 
FA representing the capability of the algorithm for prediction with the information 
chosen. 

Curves FA are important because they are estimates for the diagram F describ- 
ing the limit prediction capability of the information. Curves F A a r e  also useful in 
the qualitative comparison of algorithms. For example, c u r v e s  F A for two al- 
gorithms (see Figure 3) intersect at an intermediate point (end points are always the 
same). When ~ is small, the curve FA~ is under FA2. Hence algorithm A1 is 
preferable in applications with great values of/~/~2 where/ / is  the cost rate of alert 
and ~2 is the loss rate from failures-to-predict (/~ and ~. are defined in Section 2). 

Note that the calculation of the F A c u r v e  is a time-consuming procedure, 
estimates of F A being affected as they are by the amount of available data and 
nonuniqueness of f-definition in a case of time-space prediction (MOLCHAN, 1991). 

4.2. Estimation of the Hazard Function 

The present study indicates that statistical estimation is necessary for the hazard 
function r u and the probability transition matrix Puv for information states on 
consecutive time intervals. Note that the hazard function depends on information 
states J ( t ) =  u rather than on time. At present the corresponding statistics are 
collected for separate, simplest predictors. Estimates of ru using any predictor 
combinations (SOBOLOV et al., 1991) are still very rough, because they ignore the 
conditional dependence of predictors on future events. 

The real use of the hazard function r u and matrix [Puv] requires the strict 
selection of the most informative predictors and economic discretization of their 
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n 

1 

0 T* 1 

Figure 3 
Comparison of algorithms by error diagrams F x . Solid line and dash-dotted line are error diagrams for 
two algorithms. The line (n*, ~*) is the common line of support for curves F x , and F A 2. If  ~ = lab + fl'} 

is the loss function and fl/a)~ > n*/'c* then algorithm A 1 is preferable because it yields lesser losses. 

phase space. This is probably a real problem in intermediate-term prediction which 
is effectively based on a narrow range of predictors, that is, those with energy 
parameters (Zhurkov's criterion, b value, and others) and phenomena of quiescence 
and activation. On the other hand, some simple precursors have the same prediction 
errors as the more universal (in space) collective precursors like CN and M8. 

An important example of the estimation of r, is statistical modeling of  earth- 
quake catalogs dating back to HAWKES (1971) and KAGAN (1973). The models 
involve clustering and for this reason were successfully adapted for intermediate- 
term prediction by incorporating precursor S like activation and quiescence 
( O G A T A ,  1988; KHOKHLOV and KOSSOBOKOV, 1992). Modeling a sequence of 
earthquakes in the space X = {time t, magnitude M, location g} is equivalent to 
assigning a conditional probability density of event x, given a prehistory of the 
sequence, J ( t ) ,  that is, the point process {ti, Mi, gi} is determined by the hazard 
function r,(x) with u -- J( t ) .  The most popular model of r,(x) has the form 

r (x) =  o(X) + Z I xi) (11) 
xiEJ(t) 

where 2o(x ) is the main-shock rate and q)(x Ix;) the rate of aftershocks of the first 
generation (primary aftershocks) due to event xi. The function q)(x Ix0) is fre- 
quently factorizable: 
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qb(t, M, g [ to, Mo, go) = c(Mo)q~l (t - to)go2(M)[go3((g -go) / r (Mo))r -~(Mo)]  

where ~Pi, i = i, 2, 3 are normalized distribution laws of primary aftershocks over 
time, magnitude and space, respectively, that is, ~ g0i = 1 and d is the dimension of 
the spatial coordinate g. The statistical properties of  the primary aftershocks are 
not known, therefore the parameterization of  rp~ rests on known statistical proper- 
ties of aftershocks: qh is Omori's law, ~02 is the Gutenberg relation, g03 is a Gaussian 
distribution with linear scale parameter r ( M o ) ~  10 M/2 (OGATA, 1988; KAGAN, 

1991). 
A simple transfer of these laws to primary aftershocks is not entirely justified. 

Attention should therefore be directed to the recent work by (KHOKHLOV and 
KOSSOBOKOV, 1992), where rpl has a Gaussian shape and the spatial scale 
r(mo) oc 10 M/4. The work specifically aims at prediction and shows significantly 
better prediction than the M8 algorithm. 

One paradox of the model (11) is that it is successfully used in prediction in an 
unusual form: an alarm is declared for very large values of r~ (as response to 
activation) and even for very low values (as response to quiescence). 

We conclude by noting that making the seismicity-responsive model more 
complicated puts greater demands on the accuracy of r, and [P~.v]. When dealing 
with prediction involving two kinds of  alarm it was necessary to be able to estimate 
the hazard function with good precision in the vicinity of  a single threshold value. 
With n types of alarm and [C~j] = 0, there appear "n"  threshold values r u. Lastly, 
when [Cij] r 0, the complete structure of the hazard function needs to be known. 
However, practice calls for simple and reliable solutions. For this reason an active 
dialogue is needed between seismologists and economists to discuss realistic typical 
prediction problems. 
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