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Boundary effects on granular shear flows 
of smooth disks 

By M. W. Richman and C. S. Chou, Dept. of Mechanical Engineering, 
Higgins Laboratories, Worcester Polytechnic Institute, Worcester, 
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Introduction 

In developing recent theories for rapidly flowing granular materials workers 
have exploited the analogy between the fluctuating nature of rapid granular 
motion and the random molecular motion within a dense gas. The grains are 
assumed to interact vigorously with their neighbors through energy dissipating 
binary collisions, while the effects of enduring contacts and static friction be- 
tween grains are ignored. Based upon a statistical description of the particles' 
velocities, it is possible to define mean fields such as density, velocity, and 
granular temperature, and to derive balance equations corresponding to each. 
Constitutive quantities may then be identified through their appearances in 
these equations, and constitutive relations may be obtained through appropriate 
statistical averaging. The appearance in these constitutive theories of a rate of 
dissipation due to inelastic collisions is the most striking departure from the 
kinetic theory for dense gases. 

Complete constitutive theories derived in this manner for assemblies of 
identical, nearly elastic spheres include those obtained by Jenkins and Savage 
[1983], Lun et al. [1984], and Jenkins and Richman [1985@ Jenkins and Rich- 
man [1985b] have extended their work to assemblies of rough disks while 
Jenkins and Mancini [1987] have obtained theories for both binary mixtures of 
nearly elastic spheres and disks. Apart from physical differences, these theories 
vary in complexity according to the assumptions made regarding the distribu- 
tion functions governing the flow statistics. 

Several other theories in which a somewhat simpler averaging techni- 
que was employed have also been advanced. Among these are the theories 
obtained for homogeneous shear flow by Shen and Ackermann [1984] for 
rough disks, and by Raymond and Shen [1986] for rough spheres. Recently 
Shen and Ackerman [1986] have considered more general flows of rough 
disks and have obtained a constitutive relation for the flux of fluctuation 
energy. 
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Although all these theories account in some detail for the interactions 
between the grains within the flow, very little attention has been paid to the 
interactions between the grains and the boundaries that contain the flow. When 
these theories are applied to homogeneous shearing flow, it is imagined that 
there exist boundaries that can sustain such a simple flow. When the stresses 
predicted in this hypothetical situation are then compared with experimentally 
determined stresses, it is assumed that the shearing surfaces of the experimental 
apparatus are precisely those imagined. When the apparent shear rate associated 
with the shear cell is interpreted as the actual shear rate experienced by the 
contained granular material, slip at the boundary is neglected. 

In their numerical simulations of the shearing of rough inelastic disks and 
smooth inelastic spheres, Walton and Braun [1986a, 1986b] ignored all 
boundary effects by periodically imaging particles above and below the primary 
calculational cell. However, Campbell and Brennen [1982, 1985] performed 
numerical simulations of the shearing of rough inelastic disks between parallel 
walls and found the flows to be critically affected by the nature of the walls. In 
one case, no tangential slip was permitted between the particles' peripheries and 
the walls after each collision. Only in a second case in which particles experi- 
enced no change in spin but assumed the tangential velocity of the wall after 
collision did homogeneous shear flows result. Significant boundary effects may 
also be inferred from experimental results. The upper and lower surfaces in the 
shearing device of Savage and Sayed [1984] were roughened by attaching to each 
a layer of sandpaper. Hanes and Inman [1985] used virtually the same device, 
except with less dissipative shearing surfaces roughened by cementing to each a 
grain layer of the material being tested. They measured stresses that were as 
much as three times higher than those of Savage and Sayed at equivalent solid 
fractions and shear rates. Savage and Mckeown [1983] specifically examined the 
effect of wall roughness on the stresses developed in sheared granular materials. 
They carried out experiments and found that the resulting stresses induced when 
the internal surfaces of their device were roughened were typically higher than 
those induced when the surfaces were smooth. 

Without conditions that explicitly ensure the separate balances of momen- 
tum and energy fluxes at the boundaries it is necessary, when analyzing a 
granular flow, to specify the slip velocity and either the granular temperature or 
the flux of fluctuation energy at the containing surfaces. It was in this manner, 
for example, that Haft [1983] was able to employ his phenomenological theory 
to analyze several simple granular flows. If the appropriate conditions were 
known, then it would be possible to determine the slip velocity, granular temper- 
ature, and energy flux at the boundary in terms of the geometry and dissipative 
character of the boundary. Hui et al. [1984] have proposed phenomenological 
boundary conditions on the shear stress and energy flux and have used them 
with Haffs flow theory to analyze shear flow between parallel plates. However, 
these conditions contain several unknown parameters related to the geometry 
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of the boundary. Johnson and Jackson [1987] have improved upon these condi- 
tions by accounting for the mechanism by which fluctuation energy may be 
supplied to the flow. 

In the spirit of the kinetic theories for granular flows, Jenkins and Richman 
[1986] have obtained boundary conditions on the stresses and energy flux at 
bumpy walls that interact with flows of smooth, nearly elastic particles. The 
wall's roughness was completely characterized in terms of its geometry and it 
was possible for the wall to supply fluctuation energy to the flow. However, the 
statistical averaging carried out in calculating the rates of momentum and 
energy transferred at the wall was based upon a simple Maxwellian. In the 
analysis of shear flow, therefore, they used a constitutive theory based upon the 
same distribution. This theory contained no contributions from particle trans- 
port to the energy flux or the shear stress. Moreover, the sole transport contri- 
bution to the normal stress was neglected. 

In this paper we improve upon the work of Jenkins and Richman [1986] in 
several ways. We repair a minor defect in their averaging procedure by expand- 
ing the distribution function about a point near the wall that guarantees positive 
slip velocities. More importantly, in calculating the rates of momentum and 
energy transferred at the boundary, we employ a distribution function that 
contains corrections to the Maxwellian. It is then possible to use a more elabo- 
rate constitutive theory based upon this distribution function in our analysis of 
the shear flow between bumpy walls. This theory includes the effects of particle 
transport on the shear stress, normal stress, and energy flux. We view these as 
significant improvements because, when the solid fraction is 0.5 for example, the 
transport normal stress and energy flux are approximately one-third as great as 
their collisional counterparts, while the transport shear stress is about one- 
fourth as great. Furthermore, the lowest order terms of the pair distribution 
function do not contribute to either the collisional shear stress or collisional 
energy flux. Consequently, the additions to both the collisional shear stress and 
energy flux introduced by small corrections to the pair distribution based upon 
the improved Maxwellian are of the same order as the contributions from the 
pair distribution function based upon the Maxwel!ian alone. This is true even 
though the corrections to the Maxwellian are small compared to the Maxwellian 
itself. 

In presenting the results of our shear flow analysis, we include the detailed 
profiles of mean velocity, granular temperature, and solid fraction, and we 
indicate how these profiles are influenced by variations in boundary geometry. 
In addition, we place special emphasis on the manner in which the shear and 
normal stresses vary with boundary characteristics and solid fraction, primarily 
because the stresses are the quantities most easily measured by the experimental- 
ist. We also demonstrate the sensitivity of the slip velocity to boundary geome- 
try. We do so because in many cases the variation in slip velocity is at least in 
part responsible for the corresponding variations in the stresses. 
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Balance Equations and Constitutive Theory 

Here we present a theory for an idealized granular material consisting of 
identical, smooth, nearly elastic, circular disks that are constained to move in 
their common plane. This is a specialization of a theory developed by Jenkins 
and Richman [1985b] for slightly rough disks. 

We adopt  a statistical description of the disks' velocities and positions by 
introducing a single particle distribution function f This function is defined such 
that f ( e ,  r, t) de dr gives the number of particles with velocity c within the range 
de whose centers are located at r within the area element dr at time t. The 
number of the flow disks n (r, t) per unit area is then 

n = ~ f (c ,  r, t) dc ,  (1) 

where integration is taken over all velocities. If each disk is of mass m and 
diameter o-, then the mean density 0 of the flow is m n and the solid fraction v is 
n zc a2 / 4. 

Any particle property r (c) has a mean value denoted by ( r  and defined by 
the weighted average 

( r  - (l/n) ~r  f ( c ,  r, t) de .  (2) 

The mean velocity u is simply (c ) ,  and the fluctuation velocity C is the difference 
c - u. The granular temperature T is a mean measure of the kinetic energy 
associated with these fluctuations and is given by ( C 2 ) / 2 .  

The balance equations for the mean fields e, u, and T are: 

+ 0 v - u  = 0, (3) 

where an overdot indicates the time derivative with respect to the mean motion; 

~fi = - V .  P + n F  (4) 

where P is the pressure tensor and F is the body force per disk; and 

Q T =  - V.  Q - t r (P-  D) - y, (5) 

where Q is the flux of fluctuation energy, 7 is the rate of dissipation per unit area, 
and O - (Vu + VUT)/2. 

The dissipation 7 is due entirely to inelastic collisions, and is given in terms 
of the mean fields by 

= 4 (1 - e) K T/a 2, (6) 

where e is the coefficient of restitution between flow disks, and 

1r =- 2QaGTa/Z / re  1/2, (7) 
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in which G(v) - v(16 - 70/16(1 - 0 2. The pressure tensor P and the energy 
flux Q measure, respectively, the flux of momentum and fluctuation energy 
within the flow. As such they are composed of contributions from particle 
collisions as well as from the transport of particles between collisions. Here we 
employ a constitutive theory that accounts for both of these effects. In this 
theory, the pressure tensor is given by 

P = (2 e G F T -  t c t rD) I  - K J D ,  (8) 

where F(v) =- 1 + 1/2G, J(v) -= 1 + n(1 + 1/G)2/8, and D is deviatoric part of D. 
The energy flux is 

Q = - ~cMVT, (9) 

where M(v) = 1 + ~c(3/2 + 1/G)2/4. This constitutive theory applies only to cir- 
cumstances in which (1 - e) is of the same order as e - a/L, where L is a 
characteristic length over which the mean fields vary. However, we emphasize 
that, unlike those theories that neglect the effects of particle transport, this 
theory is not restricted to dense flows. Finally, we point out that the constitutive 
theory admits all values of solid fraction that are less than one. This is because 
the expression for the frequency of collisions employed in deriving the theory 
was based upon the radial distribution function of Verlet and Levesque [1982], 
which diverges only when v = 1, but  which gives reasonable results for all values 
of v up to the value at which enduring contacts dominate particle interactions. 

Boundary Conditions 

Here we derive conditions that must be satisfied at an impenetrable 
boundary of a two-dimensional granular flow. We consider a unit length of this 
boundary that has a unit inward normal N. The collisional rate of supply of 
momentum to the flow by this segment is M, and the rate of energy absorbed 
from the flow due to inelastic collisions with this segment is D. We focus atten- 
tion on a rectangle of unit length within the flow that has this segment of the 
boundary as one of its sides. As its width goes to zero, the balance of momentum 
within the rectangle requires that 

M = - P . N .  

The balance of energy requires that 

M . v - D = Q . N ,  

(io) 

(11) 

where the slip velocity v is the velocity U of the boundary minus the flow velocity 
u at the boundary. The slip-work term M �9 v is due to equal tractions on opposite 
sides of the rectangle acting through velocities that differ by an amount v. This 
is the mechanism by which the boundaries may supply fluctuation energy to 
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Figure 1 
Surface geometry. 
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the flow, although it is the relative magnitudes of the slip-work and the dissipa- 
tion rate D that ultimately determine the direction of the energy flux normal to 
the boundary. When these two exactly balance, the boundary neither supplies 
nor absorbs energy from the flow. 

Expressions for M and D in terms of the mean fields depend upon the 
geometry and dissipative character of the boundary. Here we consider the 
bumpy surface shown in Figure 1. Halves of identical, smooth, nearly elastic, 
circular disks of diameter d are equally spaced a distance s apart. If we define 
A = s/d and r - ~/d, then the fraction of the periphery of each wall disk that is 
accessible to flow disks is 2 0/re, where sin 0 = (I + A)/(1 + r). We restrict our 
attention to spacings between wall disks that prevent the flow disks from collid- 
ing with the flat wall; therefore 0 < A < -- 1 + (1 + 2r) 1/z. In addition, we con- 
sider values of r of order unity only. The boundary becomes effectively rougher 
as either A is increased or r is decreased. Consequently sin 0 appears to be a 
natural measure of wall roughness. Also shown in Figure 1 is the unit vector k 
directed from the center of a wall disk to the center of a flow disk at impact and 
the element of angle dk centered about k. At impact the distance ff between 
centers is (o- + d)/2. The coefficient of restitution between wall disks and flow 
disks is ew, and we assume that (1 - ew) is of order e. 

We focus on a collision between a wall disk centered at p and a flow disk 
with velocity e in de such that the point of contact lies within dk centered at k. 
The frequency of such collisions per unit length of flat wall is 

(1/2) ZcscOf(e,  p + #k) (y. k) dkdc,  (12) 

in which g is the relative velocity U - e and g �9 k must be positive for collisions 
to occur. The dimensionless factor X(v) accounts for the influence of excluded 
area and the shielding of flow disks from wall disks by other flow disks on the 
collision frequency. 

The rates M and D are statistical averages of the changes per collision in the 
appropriate flow disk property weighted by the frequency of each wall-flow disk 
collision. The change in momentum per collision experienced by a flow disk is 
m(l + ew) (.q" k) k. The expression for M is therefore 

m = (1/2) z m ( l  + ew) cscO~kf (c ,p  + ffk) (.q. k) 2 dkdc,  (13) 
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where integration is carried out over all velocities c for which g-  k > 0 and over 
all angles k for which - 0 < k < 0. The loss in energy per collision as seen from 
the moving wall is m(1 - e~) (g- k)2/2, so that the expression for D is 

D = (1/4) zm( l  -- e2~) cscOSf(c, p + ~k) (g. k) 3 dkdc, (14) 

where the integration is again carried out over (g. k) > 0 and - 0 < k < 0. 
In the integral expressions for M and D, we use the single particle distribu- 

tion function obtained by Jenkins and Richman [19 8 5 b] in their derivation of the 
eonsitutive relations (6)-(9). They employed the method of moments, in which 
improvements to the Maxwellian distribution were obtained by requiring that 
the balance equations for certain second and third moments of velocity be 
satisfied to lowest order. Their scheme of approximation is self-consistent if we 
assume that the dimensionless velocity gradient aVu/T 1/2 is of order e 1/2 while 
the dimensionless gradients aVv and a V T / T  are of order e. The expression for 
the single particle distribution function that contains the lowest order correction 
to the Maxwellian is then 

f(c, r) = (n/2g T) [1 - (21/2aB/7~1/2 T 3/2) C .  D" C] e x p ( -  C2/2 T) ,  (15) 

in which B(v) - To(1 + 1/G)/8 w/2 and where all mean fields are evaluated at r. 
Because the corrections to the Maxwellian that involve the gradients of solid 
fraction and granular temperature have been neglected, expression (15) contains 
an error of order e. 

Here we expand tile distribution function f(c, p + 6k) about the point 
r -= p + 6N. In this manner, the boundary is located at a distance 6 N  from the 
flat wall. For the integrations required by Eqs. (13) and (14), it is convenient to 
write the result in terms of the relative velocity g = U - c and the slip velocity 
v = U - u(r). If we assume that v/T 1/2 is of order e 1/2, then to within an error 
of order e, 

f (c ,p  + 6k) = (n/e~rT) {1 + (g. v /T)--  (6/T) [(k. V -  N - V )  u] .g 

-- (21/20"B/~ 1/2 T 3/2) g " / ) "  g} exp(-- 92/2 T), (16) 

in which all mean fields are evaluated at r. When this approximation is used in 
Eqs. (14) and (13), the expressions for D and M in terms of the mean fields follow 
directly from integration. We find that D is given by 

D = (2/lr)l/2~X (1 -- ew) T3120cscO,  (17) 

up to an error of order e 3/2, and that the Cartesian components of M are given 
by 

M~ = ~x T{N~ + (2/~z T) 1/2 v,(OcscO -- cosO) 

+ (2/~zT)*/2ffu,,p[(1 + aB/ff) I~p, + NpI~,]}, (18) 
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up to an error of order e. The tensors I,~ and I~a~ depend on the boundary 
geometry and are defined as 

I ~  - (OcscO + cos0) N, Nr + (OcscO - cos0) r~z~, (19) 

where �9 is the unit vector normal to N, and 

I~p, - [(2/3) sin20 -- 2] N~NI~N ~ 

- (2/3) sin 20(N, rpT~ + Npr, T~ + N~r, rp). (20) 

Although the expression for D obtained here is identical to that obtained by 
Jenkins and Richman [1986], the expression for M differs in two ways. We have 
based all statistical averaging upon a more elaborate velocity distribution func- 
tion that was obtained through the method of moments. We have done so in 
order to derive boundary conditions that are consistent with the constitutive 
theory given in Eqs. (6)-(9). The simple Maxwellian distribution used by Jenkins 
and Richman may be recovered by setting B = 0 in Eq. (15). In addition, by 
expanding the distribution function in Eqs. (13) and (14) about the center p of 
a wall disk, Jenkins and Richman artificially extended the possible locations of 
the center of a flow disk to the flat part of the wall. This led generally to an 
underestimation of the slip velocities and, in particular, allowed the possibility 
of negative slip velocities. Here we have repaired this defect by expanding the 
distribution function about the location p + ON of the center of a flow disk when 
it collides at an angle k = 0. This modification introduced the term involving N 
on the right hand side of Eq. (16) and, after integration, the last term on the right 
hand side of Eq. (18). 

Shear Flow 

We consider steady rectilinear flow driven by the relative motion of two 
identical parallel walls to which half-disks have been attached. In an x - y  
Cartesian coordinate system the boundaries are located at x = ___ L/2. The 
upper boundary moves in the x-direction with a constant speed U while the 
lower boundary moves with the same speed in the opposite direction. The 
velocity u in the x-direction, the granular temperature T, and the solid fraction 
v are functions of y only. 

In this case, the balance of mass (3) is satisfied identically. In the absence of 
gravity, the x- and y-momentum balances (4) may be integrated to show that 
both Pxr and Pyy are constants; we call these constants - S  and N, respectively. 
From Eq. (8) we have 

s = x J u ' / 2 ,  (21) 

where a prime denotes differentiation with respect to y, and 

N = 2 ~ GF T. (22) 
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By combining the definition (7) of ~c with Eq. (22) we find that 

K = N a / ( n  T)  1/2 F ,  (23) 

and by using this in Eq. (21) we obtain 

u' = 2(n T)  1/2 F S / N c r J .  (24) 

Differentiation of (22) with respect to y yields 

v' = -- ( T ' / T )  [d l n ( v G  F) /dv] -  1, (25) 

which is a relation between the spatial derivative of the solid fraction and the 
spatial derivative of the granular temperature. 

The energy Eq. (5) simplifies to 

t Qr - S u' + 7 = 0. (26) 

For Qr and 7 we use the constitutive relations (9) and (6), respectively; both of 
these involve x. Then u' and tc are eliminated by employing Eqs. (24) and (23). 
The resulting equation may be written in terms of the derivatives of T only by 
using Eq. (25) to eliminate v'. When cast in terms of w -  T 1/2, the energy 
equation becomes 

(w"/w) = (2/L) z -- (w'/w) 2 H ,  (27) 

where 

1~ 2 ~ (Liar) 2 [2 (1 -- e) -- n F 2 S 2 / N  z J ] / M ,  (28) 

and 

H - 2 [d In (F/M)/dv]  [d In (v GF)/dv] -1 (29) 

When the transport contributions to the normal stress are neglected, F is equal 
to one. When the transport contribution to the energy flux and its effect on the 
collision frequency are neglected, M is also equal to one. Under these circum- 
stances, H vanishes and (27) is a linear equation for w(y)  that is uncoupled from 
v (y). The variation of H with v is shown in Figure 2. As v decreases, the transport 
contributions are responsible for increasingly larger fractions of each constitu- 
tive quantity; consequently, H increases. 

Figure 2 
H(v) versus v. 
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The y-component of Eq. (10) is the normal stress condition at the upper 
wall. With expression (18) for My and the fact that both Iyy~ and ly x vanish, we 
have 

~Z T =  N,  (30) 

in which all quantities are evaluated at y = L/2. In this, we employ (22) to obtain 

Z = I + 2 G ,  (31) 

in which each function of v is evaluated at the solid fraction vw at the wall. 
Equation (31) determines the function Z(v) in such a way that the normal stress 
boundary condition does not restrict the solid fraction at the wall. Consequently, 
v,~ may be treated as a parameter upon which the solutions depend. This treat- 
ment of the normal stress boundary condition is motivated by shear cell exper- 
iments such as those conducted by Hanes and Inman [1985], in which steady 
state stresses were obtained over a range of solid fraction. By contrast, Jenkins 
and Richman [1986] assumed that X was a known function of v and used the 
normal stress condition to fix the solid fraction at the wall. 

The x-component of Eq. (10) is the shear stress boundary condition. 
In expression (18) for Mx we use Ixr x =(2/3)s in20,  Ixx = (OcscO--cosO), 
and QzT= N. After u' has been eliminated through Eq. (24), the resulting 
boundary condition may be written in terms of the slip velocity, v = U - u (L/2), 
as  

v/w = (re/z) 1/2(s/x) z,  (32) 

where Z depends upon the geometry of the boundary and is given by 

1 - ( 4  x/~Fff/3Jcr) (1 +~rB/~) sin20 2 x / ~ F #  
Z - + (33) 

(OcscO -- cos 0) Jcr 

Here and in what follows, all functions of v that appear in Z are evaluated at v,.  
We note that Z, and therefore the slip velocity v, is positive for all solid fractions 
and boundary geometries under consideration. 

The energy flux boundary condition is given by Eq. (11), in which we 
recognize that Q)f T =  N, Mx = S and Qy = - 2~cww'. We first write the result 
in terms of S/N by using Eq. (23) to eliminate tc and Eq. (32) to eliminate v/w. 
Then, from Eq. (28), we write S/N in terms of 2. The resulting boundary condi- 
tion is 

aw'/w = (F/21/2 M) [ J (1 - -  e) Z/F 2 -- (1 - ew) OcscO] 

-- (a 2 J Z 22/23/2 L 2 F), (34) 

in which all functions of v are evaluated at vw. 
Equations (22), (24), and (27) determine v (y), u (y), and w (y) to within three 

constants of integration. These constants, as well as S and N are determined by 
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conditions (30), (32), and (34) at y = L/2 and by the requirements that both u and 
w' vanish at y = 0. In order to simplify the solution procedure, we define the 
average solid fraction ~ by 

L/2 
- (2/L) ~ v(y) dy, (35) 

o 

and replace v in Eqs. (24) and (27) by 9. In these equations, then, we interpret the 
functions F, J, M, and H as those evaluated at g. In terms of the variable 
q =- w'/w, the energy equation becomes 

q' = (2/L) 2 - (1 + H) qZ, (36) 

which, subjected to the condition q (0) = 0, yields 

q = (2/L,,/1 + H) tanh (2 # 1  + Hy/L). (37) 

Solving for w (y), we find 
1 

w = A cosh 1 +/~(2 ,r + Hy/L),  (38) 

where A is an as yet undetermined constant. Integration of Eq. (24) yields the 
velocity profile 

y 1 

u = (2~zl/2FS/NaJ) A ~ coshl+n(2 x / l  + H~/L) d~, (39) 
o 

in which we have ensured that u(0) = 0. 
The three remaining unknown constants are S, N, and A, or equivalently, 

2, N, and A. By employing both Eqs. (38) and (39) evaluated at y = L/2 in 
boundary condition (32) we obtain the relation between 2 and A: 

1 

U/A = (7c/2) 1/2 (S/N) [Z cosh 1 +~/(2 x/1 + H/2) 
L/2 1 

+ (23/2 F/~r J) ~. coshl+n(2 x / l  + Hy/L) dy], (40) 
0 

where S/N is given in terms of 2 by Eq. (28). Here, all functions of v are evaluated 
at ~. 

Finally, we combine Eq. (37) at y = L/2 with the energy flux boundary 
condition (34) to obtain the transcendental equation that determines 2~: 

(2 x/1 + H/2) tanh(2 x/1 + H/2) + (aJZ/21/2LF) (2 ,,/1 + H/2) z 

= (FL/23/2 Ma) (1 + H) [J(1 -- e) Z/F 2 -- (1 - ew) OcscO]. (41) 

In this, all functions of v except H = H (9) are evaluated at vw. When the quantity 
in the square brackets is positive, 2 is real and w(y) and u(y) are expressible in 
terms of hyperbolic functions. The temperature increases from the center line to 
walls, which in this instance supply fluctuation energy to the flow. According 
to Eq. (22), the solid fraction therefore decreases from the centerline to the walls. 
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Figure 3 
Curves that correspond to the critical case ,t = 0 
for ~7 = 0.3, 0.5, and 0.7 and (1 -e) / (1  - e w ) =  0.5. 
The dashed curve gives the maximum value of 
A = - - 1  q-(1 q-2r) 1/2. 
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When the quantity in the square brackets is negative, 2 is imaginary and the 
solutions are trigonometric. Here the temperature decreases while the solid 
fraction increases from the centerline to the walls, which now absorb fluctuation 
energy from the flow. The critical case occurs when the quantity in the square 
brackets is zero. This corresponds to the condition w'(L/2) = 0 in which the 
walls neither supply nor absorb fluctuation energy. In this case, 2 = 0 so that the 
temperature, and therefore the solid fraction, are constant across the gap while 
the velocity varies linearly. In Figure 3 we have plotted the curves in r - A space 
that give rise to this critical case. We have shown these curves for three values 
of ~ = 0.3, 0.5, and 0.7, while we have fixed the ratio (1 - e)/(1 - ew) = 0.5. The 
area below each curve corresponds to boundaries that supply fluctuation energy, 
and the area above corresponds to those that absorb energy. The curves also 
depend upon the ratio (1 - e)/(1 - ew). For a fixed value of e, an increase in 
(1  - e)/(l - ew) corresponds to a decrease in the inelasticity of wall-flow disk 
collisions. This, in turn, results in fewer circumstances under which the 
boundaries can absorb energy and a corresponding upward shift of these curves. 
We have found, for example, that when (1 - e)/(l - ew) = 1 all boundaries sup- 
ply fluctuation energy to the flow provided that ~ is greater than 0.33. 

The general solution procedure is as follows. If we pick a value of ~, and 
guess at a value of vw, then Eq. (41) determines 2. The constant A is then 
determined by Eq. (40) and w(y) is fixed through Eq. (38). The normal stress N 
is then set by Eq. (22) evaluated at y = L/2. In turn, Eq. (22) may be inverted at 
a l l  other values of y to obtain v(y). As a check on the initial guess for v~, we 
calculate ~ according to Eq. (35) and compare this to the value of ~ that was 
chosen originally. After a suitable number of iterations on vw to ensure good 
agreement of 9, the velocity profile u(y) may be obtained from Eq. (39). Finally, 
we solve Eq. (28) for the shear stress S. 

Using this procedure, we have examined the effects of various boundaries 
and average solid fractions on the profiles within the flow. Here and in what 
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follows, we set the parameters  r = 1, A -- 0, ~ = 0.6, e~ = 0.9, e = 0.8, and c~/L 
= 1/11, whenever  they are not  otherwise specified. The variat ions of u/U, w/U, 
and v with y/L are shown in Figure  4 for A = 0, 0.366, and 0.732. The  depen- 
dence of the dimensionless slip velocity v/U on A for r = 2/3, 1, 3/2 is shown in 
Figure 5. As r decreases or A increases the boundar ies  become rougher,  v/U 
decreases, and  the boundar ies  supply less f luctuat ion energy to the flow. Also 
shown in Figure  5 is the dependence  of v/U on ,~ for A = 0, 0.366, and 0.732. 

We have examined the sensitivity of the dimensionless normal  stress N* - 
~ N/4m(2 U/L) 2 and dimensionless shear stress S* =- ~S/4rn(2 U/L) 2 to changes 
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in boundary properties. The variations of N* and S* with A for r = 2/3, 1, and 
3/2 are shown in Figure 6. The stresses generally increase as the boundaries 
becomes rougher. Finally, we plot N* and S* versus ~ for A = 0, 0.366, and 0.732 
in Figure 7. Also shown are dashed curves corresponding to a homogeneous 
shear flow in which there is no slip at the boundary. 
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Discussion 

Based upon a velocity distribution function that contains corrections to the 
Maxwellian, we have obtained boundary conditions for two-dimensional flows 
of nearly elastic disks that interact with bumpy walls. Using a kinetic constitu- 
tive theory based upon the same distribution function, we have analyzed an 
idealized granular shear flow driven by boundaries at which these conditions 
apply. Here, in contrast to the simpler treatment of Jenkins and Richman [1986], 
it was impossible to eliminate the solid fraction v from the energy equation. 
Consequently, both the temperature and velocity profiles depend on v. We have 
incorporated this feature of the solutions in a simple manner, by replacing v in 
the energy equation with the average solid fraction ~ across the gap. 

The curves shown in Figure 3, which separate those boundaries that supply 
fluctuation energy to the flow from those that absorb energy, also depend on 9. 
To understand this dependence we note that these curves correspond to in- 
stances of homogeneous shearing; where the rate of energy dissipated due to 
boundary-flow interactions, which is proportional to N �9 w, exactly balances the 
slip work S �9 v. From Figure 7 and the second of Figure 5 we find that both S/N 
and v are relatively insensitive to changes in 9. However, as ~ increases, w must 
decrease in order to maintain an energy balance within the flow. The corre- 
sponding increase in the slip work is therefore greater than the increase in the 
dissipation rate at the boundary. Consequently, the boundaries supply fluctua- 
tion energy to the flow more readily at higher solid fractions. 

The first panel of Figure 5 demonstrates that the slip velocity is very sensi- 
tive to boundary geometry. Decreases in v/U indicate increases in the mean 
shear rates within the flow, which in turn result in higher temperatures. These 
effects give rise to increases in both normal and shear stresses, as shown in 
Figure 6. When r = 3/2, for example, as A varies between zero to one, v/U varies 
between 0.52 and 0.14. The corresponding dimensionless normal stress N* near- 
ly doubles from 2.15 to 3.51, while the dimensionless shear stress S* more than 
doubles from 0.58 to 1.31. 

The variations of the stresses with average solid fraction g are shown in 
Figure 7. Because the slip velocity is relatively insensitive to changes in ~ be- 
tween 0.25 to 0.8, these curves all have shapes similar to their dashed curve 
counterparts, which are based upon a constant shear rate 2 U/L regardless of 9. 
The dashed curves predict values for the stresses that are too high because they 
are based upon an overestimation of both the mean shear rate and the resulting 
temperature necessary to achieve an energy balance within the flow. When 
A = 0, for example, the normal stress is typically only about  sixty percent of the 
value predicted by the dashed curve, and the shear stress is only about  half of 
its dashed curve value. 

The induced stresses also depend on the dissipative character of the 
boundary through the coefficient of restitution ew. Because of the restriction 
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on the boundary conditions to nearly elastic wall-flow disk collisions, we have 
examined this effect by varying ew between 0.8 and 1.0 only. In this range we have 
found that as the wall-flow collisions become more elastic the normal stress 
typically increases by ten to twenty percent while the shear stress increases by 
five to ten percent. 

In this work we have considered only systems of smooth particles. The effect 
of particle roughness on the shear flow would be to lower the granular temper- 
ature, and therefore the stresses, necessary to maintain an energy balance within 
the flow. However, if the energy dissipated due to normal impact is of the same 
order as the energy dissipated due to particle roughness, then the effects due to 
improvements to the Maxwellian on the stresses will be of the same order as 
those due to particle rotation. Consequently, the improvements to the 
Maxwellian should not be ignored in an analysis of rough particles. 
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Summary 

We obtain boundary conditions for two-dimensional flows of identical, nearly elastic, circular 
disks that interact with a flat wall to which identical, evenly spaced half-disks have been attached. 
Expressions for the transfer of momentum and energy from the boundary to the flow are obtained 
by statistical averaging over all possible wall-flow disk collisions. We improve upon the expressions 
derived by Jenkins and Richman [t986] by employing in the averaging process a more elaborate 
velocity distribution function obtained through the method of moments. In addition we expand the 
distribution function about a point near the flat wall that guarantees positive slip velocities. With 
these boundary conditions, we analyze a two-dimensional shear flow driven by parallel bumpy 
boundaries. The constitutive theory employed includes both the effects of particle collisions and 
particle transport on the transfer of momentum and energy throughout the flow. We demonstrate 
how the resulting profiles of velocity, granular temperature, and solid fraction are affected by 
changes in the geometry of the boundary. We also predict how the induced stresses vary with the 
geometry of the boundary and the average solid fraction within the flow. 

Zusammenfassung 

Wir erhalten die Randbedingungen ffir die zweidimensionale Str6mung identischer, beinahe 
elastischer, runder Scheiben, die sich in Wechselwirkung mJt einer geraden Wand befinden, an der 
in gleichm/iBigen Abst/inden Halbscheiben angebracht sind. Es werden Ausdriicke fiir die 
Ubertragung yon Impuls und Energie vom Rand auf den Strom aufgestellt, die durch den statisch 
errechneten Durchschnitt aller m6glichen Scheibenkollisionen Wand-Strom erhalten werden. Wir 
verbessern die von Jenkins und Richman (1986) entwickelten Ausdriicke dadurch, dab bei der 
Berechnung der Mittelwerte eine erweiterte Geschwindigkeitsverteilung, die auf der Moment- 
methode beruht, einbezogen wurde. Aul3erdem entwickeln wit die Verteilungsfunktion an einem 
Punkt so nahe an der Wand, dab positive Gleitgeschwindigkeiten garantiert sind. Wir untersuchen 
eine zweidimensionale Scherstr6mung mit diesen Randbedingungen, die durch die parallelen unebe- 
nen R~inder getrieben wird. Die konstitutive Theorie, die wir anwenden, beinhaltet sowohl den 
Einflul3 der Teilchenkollisionen als auch den des Teilchentransports auf die fAbertragung yon Impuls 
und Energie innerhalb der Str6mung. Wir zeigen, wie die Profile der Geschwindigkeit, der Granu- 
lartemperatur und des Festk6rperanteils, die sich ergeben, dutch Ver/inderungen der Randgeometrie 
beeinfluBt werden. Weiterhin k6nnen wir voraussagen, wie die erzeugten Spannungen sich mit der 
Randgeometrie und dem im Strom enthaltenen Festk6rperanteil verfindern. 
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