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1. Introduction 

Wave propagation in compliant ducts filled with a streaming fluid concerns 
not only the basic fluid dynamics, but also the physiology and the medicine, 
especially of the cardio-vascular and respiratory systems (McDonald 1974, Sha- 
piro 1977a, Hyatt et al. 1979, Pedley 1980). The most obvious physiological 
illustration of downstream waves is that of the pulse wave, which propagates 
from the heart towards the periphery of the vascular tree. Under some patho- 
logical circumstances, the blood velocity is high enough to significantly increase 
the pulse propagation velocity (Anliker et al. 1971). An interesting feature occurs 
with upstream waves when the flow becomes "supercritical". This happens, for 
example in a Starling Resistor, when the volume flow ceases to increase in spite 
of stronger aspiration. The explanation is that in a supercritical flow the mean 
fluid velocity exceeds, at some place of the compliant tube, the local propagation 
speed of small perturbations. It follows that signals of stronger aspiration, which 
are generated in the downstream reservoir, cannot be propagated up to the 
upstream reservoir. In consequence, the flow does not increase any more. Such 
a mechanism should for example explain the phenomenon of expiratory flow 
limitation (Dawson and Elliott 1977). Several other examples with clinical rele- 
vancy are listed in the extensive study of Kamm and Shapiro (1979). 

In this general context, a basic problem takes on special interest, namely the 
determination of the relationship between C, [7 and a, where C is the propaga- 
tion speed of perturbations in a long elastic tube conducting a fluid flow, (7 is 
the cross-sectional mean velocity of this flow and a is the wave speed when 
[7 = 0. Because of the experimental difficulties, the relationship C (U, a) has only 
been established on theoretical basis. The interest for this problem is illustrated 
by the following (non-exhaustive) list of publications: Streeter et al. 1963, 
Rudinger 1966, Olsen and Shapiro 1967, Jones 1969, Skalak 1972, Histand and 
Anliker 1973, Rumberger and Nerem 1977, Jan et al. 1983, Holenstein et al. 1984, 
Cancelli and Pedley 1985, Niederer 1985, Rooz et al. 1985, Shimizu 1985. Several 
other works are cited in the extensive monograph of Pedley (1980). In these 
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publications a relationship C ([7, a) has been either derived and/or it has been 
used to interpret experimental results. The underlying theoretical models differ 
among each other in many respects. However, under the appropriate unifying 
assumptions, all these models lead to the same relationship C -- [7 _+ a, which 
implies that the perturbations propagate at the speed a relative to the fluid. 

Besides their own specificity, these theoretical models have in common two 
basic approximations. The general assumption after which the wavelenght of the 
perturbations is much larger than the tube radius leads to the classical long wave 
approximation: (i) the radial acceleration and pressure variation are negligible, 
so that the radial momentum equation is ignored. The second approximation is 
(ii) to assume that the velocity profile of the axial flow is rectangular. 

As a consequence, little is known about the influence of the flow velocity 
profile on this wave propagation phenomenon, and the present study should 
contribute to fill this gap. 

2. Governing equations 

Considered is the wave propagation phenomenon in the system composed 
of an arbitrary fast fluid flow in a long elastic tube. 

The problem shows axial symmetry and no body forces act on the inviscid 
and incompressible fluid. Perturbations of small amplitude are superposed on 
the basic flow, which is steady and parallel to the tube axis. We shall seek for 
traveling wave solutions of the form 

g*(x, r, t) = q~ (r)- e i=(~-c~ (1) 

p (x, r, t) = )~ (r) .  e i=(x-cO, (2) 

where 71 is the stream function of the perturbation, p is the pressure perturbation 
and t is the time; the co-cordinate in the direction of the basic flow is x, while 
r is the radial co-ordinate normal to that direction; a is the wave number and 
C is the wave propagation speed. Retaining the linearized convective accelera- 
tion terms and using the relations u = l / r -  5 T / S r  and v = - l / r  �9 8~P/Sx we 
obtain the momentum equations 

1 d ~  1 d U  1 
- ( U  - C) ~ = - -  Z in x-direction, (3) 
r dr r dr 0 

~2 1 dz 
- -  (U - C) �9 - in r-direction, (4) 
r Q dr 

where U (r) is the velocity of the basic flow and 0 is the fluid density. The 
elimination of Z between (3) and (4) leads to the Rayleigh-like equation 

(U - C) (~"  -- o~2 R2 ~ )  -- U " �9 = o ,  (s) 
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where the prime denotes differentiation with respect to the variable y - r Z / R  2 

(R o is the undisturbed tube radius). This variable substitution allows to enhance 
the similarity between (5) and the Rayleigh equation in the hydrodynamic stabil- 
ity theory. 

The elastic tube is an infinitely long, thin walled cylinder of radius R. Its 
cross-sectional area A only depends on the local transmural pressure and the 
surrounding pressure is constant. The equation for the motion of the tube reduce 
then to the the simple "tube law" 

A = A [Pw (x, t)], (6) 

where pw - p (x, R, t) is the pressure perturbation at the tube wall. 
The linearized boundary condition at the impermeable, moving wall re- 

quires v = OR~St + Us ~R /8x ,  where Us = U (Ro) is the velocity of the basic flow 
at the wall (slip velocity). Replacing v by - l / r  �9 ~ 7~/~x in the previous boundary 
condition and using (1), (2), (6), we obtain 

dA 
- 2 n ~ b = ~ ( U s - C )  z for r = R o ,  (7) 

where d A / d p w  is constant since the theory is linearized. The axial symme- 
try requires v = 0 on the axis. This condition, together with (I) and 
v = - 1/r �9 8 T / S x ,  leads to 

- - - ~ 0  as r - -*0 .  (8) 
r 

3. A part icular so lut ion 

We now solve the differential Eq. (5) when the basic flow velocity profile is 
given by the polynomial 

U = 2 ([2 - Us)(1 - y) + Us, (9) 

where y =- r2/R~ and [2 is the cross-sectional mean velocity: 

2 U r d r = ~  U d y .  (10) 
U ----- R ~  o o 

Both [7 and US being arbitrary, U (r) represents any quadratic profile, in particu- 
lar the rectangle ([2 = Us) or the no-slip parabola (U s = 0). 

Since U" is now zero, (5) reduces to ~" - .z  (R~/4 y) �9 = 0, the solution of 
which is a linear combination of the modified Bessel functions 11 (.  R 0 yl/2) and 
K1 (a Ro yl/2). Considering that K 1 has a pole at the origin, the solution satis- 
fying the boundary condition (8) is 

~b = kc~r l l  (~r),  (11) 
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where k is the integration constant. The introduction of (11) in (3) gives the 
amplitude of the pressure perturbation: 

E ( 2t 1 Ro 2 k a z R  2 ( U - U s )  1 ~202 + U s - C  . I  o(ar) 

+ k 2 ( U  - Us) a r .  11 (ar). (12) 

Further substitution of (11) in the boundary condition at the wall (7) leads to 

- -  k 2 rc c~ R o 11 (~ Ro) = d A  (U s _ C)  Z (Ro) -  (13) 
dPw 

The eigenvalue relation is obtained by eliminating Z between (12) and (13). 
This leads to a quadratic equation for the unknown C, the roots of which are 

C = Us + (U - Us)N +_ [a2N + (U - U~) 2 N2] 1/2 . (14) 

The abbreviations N and a are defined as 

2 I ,  (~Ro) 
N =- , (15) 

R o I o (c~ Ro) 

a2 - dpw ' 

where a is the Moens-Korteweg wave speed and A o = re R 2. The behaviour of 
N (e Ro) for small and large values of c~ R o can be obtained from the correspond- 
ing expansions of I o and I 1. It follows then from (15) 

N ~ 1 - ( 0 ~ R o ) 2 / 8  + O(e*R4o) as leRo] ~ 0, (17) 

2 
g ~  +0 (c~ -2Ro2)  as ]c~R 0 [ ~ o v .  (18) 

~ R  0 

In the following we shall only consider periodic solutions in x, which implies real 
(positive) wave numbers ~. As a consequence, also N (~ Ro) is real. This function 
reaches its maximum, namely one, at the origin and decreases monotonically as 
c~ R o increases, the asymptotic value being zero. This behaviour of N accounts 
for the dispersion phenomenon, the longest waves traveling the fastest. 

Since N is non-negative, C+ and C_, the two wave speeds defined by (14), 
are real and the physical solutions are readily computed from (11) and (12): 

u = k c~ 21 o (c~ r) cos [~ (x - C t)], (19) 

v = k ct 2 11 (c~ r) sin [c~ (x - C t)l, (20) 

P - k e 2 { I 2 ( 8 - - U * ) ( l - - ~ o 2 ) + 0  U s - - C l "  I~176 

+ a2 R ~  (/.7 -- U,)c~r. Ii(c~r ) cos [or - Ct)]. (2t) 
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By definition, downstream waves propagate with the stream at the speed 
C+ > 0, while upstream waves propagate in the opposite direction at the speed 
C_ < 0. In consequence, upstream wave propagation vanishes as soon as 
C_ > 0. The value of U for which C_ = 0 is the critical velocity (7* and the 
latter can be computed from (14): 

( 1 )  a2 
U * = U  s 1 - ~  + 2 - ~ .  (22) 

For  a rectangular profile, Us =/.7 = U* and (22) leads to 

(7* = a N  1/2. (23) 

By contrast, if the profile satisfies the no-slip condition U s = 0, then (7* = oo. In 
this case upstream wave propagation occurs for all values of U/a. 

4. Comparison with other works: long wave approximation 

The theoretical literature, in which the relationship between the wave speed 
and the flow velocity has been explicited, neglects the momen tum equation in 
radial direction. This implies, however, the long wave assumption a R o ~ 1, in 
which case Eqs. (11), (14) and (19) to (21) become 

k ~2 F2 ~b = ~ + 0 (e4), (24) 

u = k ~ Z ( l  + ~ - ) c o s [ a ( x - - C t ) ] + O ( e 4 ) ,  (25) 

k ~3 v = ~ r sin [a(x - Ct)] + O(e3), (26) 

P 

0 

C =  

u {(7 - Us -T- (a z + ((7 - U~)2) 1/2} + O (ca), (27) 

4.1. Linear&ed theories 

Apparently, only two publications deal with linearisation around a state 
which is not the rest and which, simultaneously, satisfies the no-slip condition 

(7 _ (a 2 + ((7 - us)E) 1/2 + 0 (,2 Ro2), (28) 

where e = ~ r. Two velocity profiles are of particular interest, namely the rectan- 
gle and the parabola. It follows then from (28): 

C =  ( 7 + a  for U s = ( 7 ,  (29) 

C =  G_+(a 2 + [ 7 2 )  1/2 for U s = O .  (30) 
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at the tube wall. Morgan and Ferrante (1955), while considering a Poiseuille 
flow, used a linearized perturbation method and, for U ~ a, they approximately 
solved the problem. If the fluid viscosity, the wall mass and the Poisson's ratio 
are neglected in their Eqs. 6 and 7 for the motion of the tube, these reduce to our 
simple tube law (6). Their Eq. 79, in our notation, simplifies then to 

C = t T + a  1 + ~ a 2  . (31) 

Now, the brackets of (31) contain nothing more than the first two terms of the 
power serie in U/a into which the square root of (30) can be expanded. In the 
validity range of Morgan and Ferrante's work, namely U ~ a, both approaches 
are naturally equivalent. As to the report of Womersley (1957), its section X is 
briefly presented in the discussion. 

4.2. One-dimensional, non-linear theories 

In the simplest form of the one-dimensional, non-linear approach, the mass 
conservation equation and the fluid momentum equation are given by 

~- + (A ~7) = 0, (32) 

~G _ ~U 1 ~P 
~- + U ~x Q Ox (33) 

The cross-sectional mean velocity O is defined as 

2 R 
U (x, t) = ~ ! U (x, r, t) r dr,  (34) 

where U(x, r, t) is the unknown axial velocity component. The tube law 
A = A (P), (32) and (33) define a non-linear system which has been integrated by 
the method of the characteristics, for the first time, by Lambert (1958). This 
method has been extended by Streeter et al. (1963) and later by many authors 
already cited in the introduction. The improvements in Lambert's model include 
seepage, tapering, and viscoelatic tube properties as well as fluid frictional terms. 
Common to all these models, however, remains the rectangular velocity profile 
G (x, t). Although the characteristic equations differ from one model to the other, 
the equation of the slope of the characteristics is the same for all, namely 

dx 
- C ( x ,  t) = U ( x ,  t) + a ( x ,  t) .  (35) 

dt 

Now, since the non-linear theory should be able to account for the linearized 
one, (35) should be a generalization of (28). As seen by a simple inspection this 
happens only for the rectangular profile (29). A comparison of (30) and (35) 
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further shows that the non-linear theory can account for the linearized one with 
a parabolic profile only if U/a ~ 1. Since the validity of the linearized result (30) 
is not limited to U/a ~ 1, this restriction necessarily applies to the non-linear 
result (35). 

4.3. Quasi-one-dimensional, non-linear theory 

Also in the quasi-one-dimensional, non-linear method proposed by Barnard 
et al. (1966) the radial fluid momen tum equation is neglected and the equations 
are integrated by the method of the characteristics. Here, however, the axial flow 
profile is not prespecified, so that the momen tum equation 

a/.7 0 0A - aG 1 aP 2v 0U ,=R 
a~- + A ( I - B ) ~ - + B U a x -  Qax + R - ~ r r  (36) 

contains an unknown function B (x, t) defined by 

2 R 
B - _I U2 r dr .  (37) 

R 2 U2 b 

This unknown function reduces to an unknown constant after introduction of 
the variable separation 

U (x, r, t) = G (x, t)" g (r/R). (38) 

Barnard et al. (1966) obtain then for the slope of the characteristics 

dx  
- C(x ,  t) = B U + (a 2 + B ( B  - 1)U2) 1/2. (39) 

dt 

The value of B depends on the assumed velocity profile. In the case more 
particularly considered by Barnard et al., namely this of a parabola, 
9 = 2 (1 - r2/R 2) and B = 4/3. However, even then, (39) does not represent a 
generalization of the linearized result (30). 

The reason lies in the separation of the variables (38). Substituting (38) in the 
differential form of the mass conservation equation we obtain after a single 
integration 

U a A  1 a 
V - 2 A ax r 9 (r/R) - ~ ~x (A U) 1 i z g (z/R) dz .  (40) 

r o  

Introducing now (38) and (40) in the differential form of the (inviscid) momen tum 
equation in x-direction we find 

= - -  n g ( n ) d  (41) ax a t  + g (s) U ~-x g (s) A & s o d s '  
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where s - r/R. The definitions (34) of U and (38) of 9 imply that the integral in 
(41) equals 1/2 for s = 1. In consequence 

r:R + 0(1) U Ux 0(1). (42) 

For  a rectangular profile g (r/R) =- 1 and (42) reduces to the classical form of the 
inviscid, one-dimensional, non-linear momen tum Eq. (33). However, for any 
profile satisfying the no-slip condition at the wall 9 (1) = 0 and (42) becomes 
6P/6x  = 0 for r = R. This unrealistic pressure distribution being a direct conse- 
quence of (38), the latter is inadequate. 

The separation of the variables (38) is convenient in order to satisfy the 
no-slip condition, but it represents nevertheless a too particular constraint since 
it allows only affine velocity profiles. A similar situation exists in boundary 
layers, where affine velocity profiles also require particular pressure distributions 
(Schlichting 1965). 

4.4. Experimental  work 

Already Miiller (1950), before Morgan and Ferrante (1955), had emphasized 
the importance of the no-slip condition and questioned the validity of 
C = U + a. To our our knowledge, Miiller is the only one who has experimen- 
tally established a relationship between C, U and a. Mtiller, however, only 
considers the case U/a ~- 0.1, so that his results are of little help in the present 
controversy. Indeed, the wave speed (35) predicted by the classical theory and 
that (30) predicted by the present theory for a parabola markedly differ only if 

is not much smaller than a. 

5. Discussion 

The purpose of the present work is the evaluation of the wave propagation 
speed of small amplitude perturbations in an elastic tube conducting a fluid flow 
of arbitrary speed. Besides the linearisation, the main underlying simplifications 
are that (i) the cross-section of the tube only depends on the local transmural 
pressure, (ii) the fluid is inviscid and (iii) the basic flow velocity profile is de- 
scribed by a quadratic function of the radial co-ordinate and has an arbitrary 
slip velocity on the tube wall. These simplifications are justified first by the 
simplicity of the resulting analytical solutions, so that the influence of the veloc- 
ity profile on the wave propagation is easy to evaluate. Secondly, all these 
simplifications can be readily incorporated in other partly more general models. 
Then, the latter become particular cases of the present model, so allowing valid 
comparisons. 
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According to our central result (14), the wave propagation speed depends 
not only on the mean velocity of the basic flow, but also on its slip-velocity, i.e. 
on the velocit~y profile. Morgan and Ferrante (1955), in an linearized analysis 
limited to a low speed Poiseuille-flow (t7 ~ a), already came to an equivalent 
conclusion. Surprisingly, the latter seems to have passed unnoticed and their 
work, when cited, is usually classified among those neglecting the convective 
acceleration. 

The same questionable classification concerns Womersley's work since he 
has solved, in the section X of his otherwise famous report (Womersley 1957), the 
same boundary value problem as Morgan and Ferrante (1955), but for arbitrary 
values of U/a. As to the eigenvalue problem, Womersley had the time to solve 
it only in the same particular case as Morgan and Ferrante (t7 ~ a). Womers- 
ley's untimely death (McDonald 1974), in 1958, stopped his advance towards a 
more general solution (Womersley 1957, p. 97 and 107). 

On the basis of the one-dimensional, non-linear theory, in which a rectan- 
gular flow profile is assumed, Shapiro (1977b) has emphasized the analogy 
which should exist between the present wave propagation problem and those in 
compressible flows and in free-surface channel flows. In consequence, upstream 
wave propagation should vanish as soon as U > a. The present linearized ap- 
proach leads to the same conclusion, but only if the profile is rectangular (9). 
By contrast, a parabolic profile allows countercurrent propagation regardless of 
U/a (22, 30). Consequently, the velocity profile of the basic flow markedly affects 
this wave propagation phenomenon as soon as the axial convective acceleration 
becomes significant. 

By definition, the one-dimensional theories, linearized or not, rely upon an 
axial flow with a rectangular velocity profile. This pivotal simplification needs 
however a firm validation, particulary then when fluid dynamical non-linearities 
seem to become important. In classical hydraulics, typically a "hard ware" field, 
these non-linearities probably are unimportant since the pipes are so rigid that 
U/a remains small. This might explain why Lambert (1958) and Streeter et al. 
(1963) made no attempt at all to validate the one-dimensional flow assumption 
when they introduced the method of the characteristics in the present "soft 
ware" field. Although this gap has apparently not been filled, the method is 
nowadays well established. Actually, the method of the characteristics is known 
to be readily feasible only for one-dimensional flows. As an illustration, the 
quasi-one-dimensional, non-linear method of Barnard et al. (1966) which relies 
upon a parabolic flow is not convincing (see previous section). 

The present study shows that the velocity profile of the basic flow and, 
consequently, that its vorticity dU/dr should be taken into consideration. Like 
in rigid tubes the vorticity of a parabolic basic flow is maximum near the wall. 
However, the tube compliance profoundly affects the radial velocity component 
v: while v = 0 on a rigid wall, it reaches its maximum on the elastic wall (Eq. 20). 
The product v. dU/dr, which is therefore maximum near the wall, appears in 
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the axial fluid momentum equation. While this vorticity-dependent term is 
neglected in the classical one-dimensional theory, it is considered here, even 
though only in the linearized form ~b �9 d U/dr (3). These vorticity considerations 
remain valid, at least qualitatively, for a class of basic flows wider than the simple 
parabola. Indeed, the faster is a real basic flow, the blunter is its profile, and the 
stronger becomes the vorticity near the wall. It is noteworthy that the influence 
of the basic flow vorticity on the corresponding wave propagation phenomenon 
is well known in the closely related hydrodynamic stability theory (Schlichting 
1965). 

In conclusion, the present linearized theory shows that the basic flow veloc- 
ity profile modifies not only the wave propagation speed (t4, 28), but also the 
amplitude of the pressure perturbations (21, 27). This effect, which becomes 
noticeable as soon as U/a ~ 1 is not fulfilled, is the more pronounced the larger 
is U/a. The flow disturbances are treated as inviscid, although the generation of 
the basic flow implies viscous effects. This procedure is classical; the effect of 
viscosity on the disturbances is left for future work. 

As to the practical implications, fluid dynamical non-linearities and high- 
speed flow effects seem to play an important role in some patho-physiological 
situations and in the interpretation of clinical tests concerning the cardiovascu- 
lar as well as the respiratory systems (Anliker et al. 1971, Dawson and Elliott 
1977, Shapiro 1977a, Hyatt et al. 1979, Pedley 1980, Niederer 1985). A revalua- 
tion of these fluid dynamical effects could possibly bring some new insights in 
the just mentioned fields. 
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Abstract 

The propagation of perturbations in liquid filled elastic tubes depends on the stream velocity 
of the basic flow. This phenomenon is currently analyzed with the method of the characteristics 
which relies upon a basic flow with a rectangular velocity profile. It seems that this one-dimensional 
flow approximation has not been convincingly validated, which justifies to consider other, more 
general velocity profiles. 
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In the present analytical study the velocity profile is a quadratic function of the radial co- 
ordinate. Small amplitude perturbations are superposed on this inviscid, basic state in which the 
mean velocity U is arbitrarily large. A normal mode analysis shows that the velocity profile and 
therefore the vorticity of the basic flow influence the more the phenomenon the larger is U. For 
example, a parabolic profile allows countercurrent wave propagation regardless of U. 

This questions the one-dimensional wave propagation theory in compliant tubes and, conse- 
quently, the interpretation of several physiological and medical problems mainly in the respiratory 
and cardio-vascular systems. 

Resum6 

La propagation de perturbations dans un tube 61astique conduisant un 6coulement fluide 
d6pend de la vitesse de l'6coulement de base. Ce ph6nom~ne est habituellement 6tudi6 avec la 
m6thode des caract6ristiques, o~ l'on suppose que le profil de vitesse de l'6coulement est rectan- 
gulaire. Comme cette simplification ne semble pas avoir 6t6 bien valid~e, il para~t indiqu6 d'6tudier 
l'impact d'autres profils. 

Dans la pr6sente 6tude analytique, ce profil de vitesse est une fonction quadratique de la 
coordon6e radiale. A cet 6coulement non visqueux, dont la vitesse moyenne O est arbitraire, l'on 
superpose des perturbations de faible amplitude. Une analyse lin6aris6e montre que le profil de 
vitesse et donc le rotationel de l'6coulement de base influencent d'autant plus ce ph6nom+ne d'ondes 
que U est 616v~e. 

Ceci met en question la th~orie uni-dimensionelle de la propagation d'ondes dans des tubes 
compliants et, par lfi-mame, l'interpretation de divers probl6mes physiologiques et m6dicaux, avant 
tout des syst+mes respiratoires et cardio-vasculaires. 
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