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Magnetohydrodynamic shock wave decay 

By Roy M. Gundersen, 5801 N. Sheridan Road, Chicago, IL 60660, USA 

1. Introduction 

The motion of a non-uniform shock wave is an important and difficult 
problem, the exact solution of which would require a solution of the 
non-isentropic equations of motion. Generally, approximate analytical tech- 
niques which yield the principal characteristics of the solution must be 
utilized. 

The fact that the difference between a shock transition and a simple 
wave transition with the same strength and initial state involves only terms 
of third and higher order in the strength formed the basis for an approxi- 
mate theory, useful for describing the motion of relatively weak shocks, 
developed by Friedrichs [1, 2], who replaced the actual shock conditions by 
the transition through a corresponding simple compression wave. That 
theory gave an approximate description of the decay of a non-uniform 
shock wave. 

Germain and Gundersen [3-5] developed a theory of non-isentropic 
perturbations of uniform and simple wave flows which has been used to give 
an improved treatment of the decay of a shock wave, applicable to shocks 
of arbitrary strength, though only the initial stages of the decay were 
considered. The Friedrichs theory was contained as a special case. See 
Burnside and Mackie [6]. 

The theory governing the motion of a compressible fluid whose electrical 
conductivity may be assumed to be infinite and the theory of conventional 
gas dynamics are quite similar. It is possible to develop a theory of shock 
waves and simple waves and approximate analytical techniques in a manner 
quite parallel to that employed in conventional gas dynamics. Specifically, it 
is possible to develop a theory of perturbations of initially uniform magne- 
tohydrodynamic shock waves and non-isentropic perturbations of simple 
wave flows [7-10]. These solutions have been utilized to discuss the dacay of 
a magnetohydrodynamic shock wave [11-12] in a form which included the 
magnetic extension of the Friedrichs theory [13] and the solution for 
conventional gas dynamics as limiting cases. An interesting conclusion from 
these alternative discussions is that the Friedrichs theory is useful for much 
stronger shocks than might be expected. 
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Later, another  discussion of  the decay of a shock wave was given by 
Ardavan-Rhad  [14], whose analysis was based on a particular solution of 
the non-isentropic equations of  mot ion,  obtained through the use of  a 
modified hodograph  t ransformation.  An approximate  representation of the 
shock path, valid for relatively weak shocks, was obtained. 

The present paper  shows that  this later me thod  may be extended to 
magne tohydrodynamic  flows in a form which includes the solution for 
conventional  gas dynamics as a special limiting case. Since the basic 
problem is the same as that  considered previously [11] in which a detailed 
discussion of the entire flow field was given, only the approximate  shock 
path will be discussed. The exact solution of  the non-isentropic equations 
may prove useful in other problems. 

2. The basic equations 

For the problem considered, the equat ions which govern the one-dimen- 
sional unsteady flow of an ideal, inviscid, perfectly conduct ing compressible 
fluid, subjected to a transverse magnetic  field, may be written as 

P = exp[(s - so)/c,.]p;' (1) 

U, + uU x + 2 0 9 2 c , - / ( 3  ' - -  1)c - c2sx/7(7 - 1)G = 0 (2) 

c, + uc,. + (7 - 1)cux/2 = 0 (3) 

s, + us, = 0 (4) 

where P, p, u, c, B, ~, b 2 = B2/#p, s, So, o~ = (b 2 + c2) ~/2 and 7 are, respec- 
tively, the pressure, density, particle velocity, local speed of sound,  magnetic  
induction,  permeability, square of the Alfv6n speed, specific entropy, specific 
entropy at some reference state, true speed of sound and ratio of  specific 
heats at constant  pressure Cp and at constant  volume c,,. All dependent  
variables are assumed to be functions of one space variable, x, and the time, 
t. Partial derivatives are denoted by subscripts. 

When the flow is isentropic, this system of equations may be integrated 
to give 

u/2 + w/(7 - 1 )  =7,  - u / 2  + w / ( 7 - 1 ) = f l  (5) 

where 

= f ({o/c) dc II' 

and (a, fi) denote generalized Riemann invariants. The characteristics of  the 
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system of equations (2)-(4) are given by 

dx  /dt  = u, u + co, u - c o  

i.e., the particle paths, the e-characteristics and the fl-characteristics. 
Introduction of the change of variables 

w = exp[(7 - 1)r//2] (6) 

= ot'(COW/C2) d~ - -  (S - -  S0) /7(~ - -  1)C v (7) 

transforms equations (2)-(4) into 

u, + UUx + c2G = 0 (8) 

rl, + u G  + cow-lUx = 0 (9) 

~1 -}- U~. v -1- co2blx/C 2 = 0 (10)  

Note that for isentropic flow, ~ --r/. 
Equations (8)-(10) comprise a system of three equations for three 

dependent variables which are functions of two independent variables. The 
procedure to be utilized is to interchange the dependent variables ({, r/) and 
the independent variables (x, t), carrying a function of the particle velocity 
as a to be determined function of the new independent variables. This leads 
to the following system of equations. 

uex .  - u .xr  + utp - c2t,  = 0 (11) 

x~ - ute - cow-10 = 0 (12) 

x ,  - ut ,  + co2tp /c 2 = 0 (13) 

where 

Replacement of the values of x~ from equation (12) and x, 
(13) in equation (11) leads to the result 

C2t.  4" [CO2Ur /C2 "+" coW - l U~]t/I = 0 

(14) 

from equation 

(15) 

Assuming the second-order partial derivatives are continuous, cross-differ- 
entiation of equations (12)-(13) leads to the linear differential equation for 

c o w - ' O .  + co2t~r = - 0 [ 1  + (cow-').] (16) 

which has the general solution 

~=(w/o) exp[-f(w/m)d~]gf~-f(wco/c2)d~] (17) 
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in terms of an arbitrary differentiable function g. Consequently, the problem 
is reduced to solving equations (14)-(15) with ip given by equation (17). 
Equations (12)-(13) then give x = x(u,  t). 

Assuming the second-order partial derivatives are continuous, solving 
equations (14)-(15) for t~ and t, and cross-differentiating gives the single 
second-order partial differential equation for u --- u(~, 17) 

a_ {i<o~c_~u ~ + <ow-'~dw~o-'~l-~ + ~/~' - ,~g } 

= L  {W03-1C2/( 1 - Y)[~Q((D2r -2bQ ~_O)w-llA~)c-2g _ g]fAq -1 } ( 1 8 )  
0H 

Since the solution for u must reduce to the value given by the generalized 
Riemann invariant (/3 =/30, a constant) when the flow is isentropic, a trial 
solution may be assumed to be 

u = 2wh(r - r/)/(7 - 1) - 2/30 (19) 

where h is an arbitrary differentiable function. 
Substitution of equation (19) into equation (18) leads to the solution 

g = (7 + 1)[h - 2o~wh'l(y - 1)c2]f(a)12 (20) 

where the prime denotes differentiation with respect to the argument, 

fw.o 1,1 
x e x p [ f { R c 2 / 2 a ) 2 ( h 2 - 1 ) } d a  I (21) 

a = - ( s  - so)l?(? - 1)e,, 

and 

R = [ 3 9 2  + (7 - 2)c2}/~2 

Since the equations defining t may be written as 

- -  t .  = w c  { - 2 + 2 / ( 1  - ~ ) } g h  

tr = c 2/~' -~)[1 + 2hh, l(7 - 1)]g[h + 2h, I(7 - 1)] -~ 

the solution for t is found to be 

t = (7 + 1)mf c(~ + I ) / l  -URc (22) 

Equations (12)-(13) then give the solution for x as 

x = [u + ~h(a)]t + { - c o  + w doJldw} ( t  dh (23) 
.) 
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Equat ions (19)-(23) give the solution for the non-isentropic flow in terms of 
h. In the limit of  vanishing magnetic  field, this solution reduces exactly to 
the solution obtained for convent ional  non-conduct ing  flow. 

3. Formulation of the problem 

The usual piston model  will be utilized. Thus,  let the piston, originally 
at rest, be pushed impulsively with constant  speed into fluid originally at 
rest. At  some later time, the piston is abruptly s topped and kept  motionless 
thereafter. At  the fluid-piston interface, continuity of the magnetic field is 
assumed. The originally uniform shock wave thus generated will intersect 
the centered simple wave generated when the piston is stopped. Within the 
region of  interaction, the entropy change across the shock is no longer 
constant  and the shock is non-uniform.  The forward-facing simple wave is 
centered at some point,  say (x0, to), and characterized by fl = rio, a constant.  
On each characteristic, d x / d t  = u + co, the flow parameters are constant,  
and these characteristics are straight lines in the (x, t)-plane. The wave may 
be represented by 

x - x0 = (u + co)(t - to) (24) 

P (25) 

F r o m  the definition of  the characteristic parameters of the simple wave flow, 
equat ion (5), it follows that  

u = ~ - fl0 (26) 

w = (7 - 1)(~ + flo)/2 (27) 

While it is possible to solve explicitly for the flow parameters in the simple 
wave flow in the non-conduct ing  case, it is not possible, in general, to do so 
in the magnet ic  case (the mona tomic  fluid is an exception). 

Letting U denote the shock speed, the equat ion of  the shock path is 
given by integrating the differential equation 

d x / d t  = U (28) 

In the conventional  case, it is c o m m o n  to use the pressure ratio across the 
shock as a basic parameter.  The other flow quantities then may be expressed 
in terms of  this parameter  through the Rankine-Hugonio t  shock conditions.  
In the conduct ing case, two parameters  are needed; namely, one giving a 
measure of  the shock strength and one giving a measure of  the magnetic 
field. Further ,  it is much more  convenient  to use the density ratio across the 
shock as a measure of  the strength. Thus, with subscripts one and two 
denoting,  respectively, the flow in front of  and behind the shock, it is 
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convenient to express all flow quantities in terms of the shock strength 
parameter 

7z = - 1 + P2/Pl (29) 

and m~ = u~/q. This derivation is contained in the Appendix. 
The shock path is determined from the equation 

(dx /drc) /(dt /dTz) = U (30) 

which leads to the following integro-differential equation for h(rc): 

2wh2 MwRh w & o d h ]  
('i = ~c  (~ - l )co + c dw ~ 

~ ~1 du ] 
- +I_c~+T2-MT4  h 2 

+[T3 Ti]~~ - - - + M [ T 4 - T 3 ]  l d ~  
C C d ~  T2 (31) 

where 

27 dc 
Ti 

(-1 - ~)c  d ~  

d [  do  r~=~ w ~ -  
c2 R da 

T3 - - 2o0 2 dzt 

l &o 
T4 = T 1 - - - - -  

codrc 

U - - u  

c 

2 doJ 1 dR + 
co dzc R dn 

J d~ & } 

and flow quantities are to be evaluated behind the shock, i.e., the subscript 
two has been omitted in order to simplify the notation. 

The initial condition for equation (31) is h (0 )=  1. The relationship 
between o- and rc is given in the Appendix, so that h(a) may be obtained once 
h(n) has been determined. 

The problem of finding h(rc) is overdetermined since from equation (19), 
subject to the condition h(0) --- 1, 

2w(h - 1)/(y - 1) = u - 2(w - w,)/(y - 1) (32) 

The right-hand side of equation (32) represents the transition (change in 
generalized Riemann invariant) through the simple wave, which, of course, 
is valid only for a shock of vanishing strength. Thus, the shock path 
obtained through the use of the solution of equation (31) will give a 
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reasonable approximat ion  to the true shock path  only for shocks which are 
relatively weak. Since the Friedrichs theory has been shown to give a 
reasonable approximat ion  for shocks stronger than might  be expected [I 1], 
the same will be true for the present solution. 

In magnetohydrodynamics ,  strong shocks can occur in two ways, i.e., 
for large re or for a very strong applied magnetic  field with re > O. Thus,  the 
present solution requires that  the applied magnetic  field must  also be 
relatively weak. 

A p p e n d i x  

The generalized Rankine-Hugonio t  magnetic  shock condit ions relate 
flow quantities on the two sides of  a shock wave in terms of two parameters;  
namely, one giving a measure of  the shock strength and one giving a 
measure of the applied magnetic  field [9]. With the nota t ion 0 = (? + 1)/ 
(7 - 1), z = P2/PI,  P2/Pl = 1 + re, rn = b / c ,  n = u / c ,  M = ( U  - u ) / c ,  the flow 
quantities needed for equat ion (31) will be given as functions of  re and m~. 

l &  

r dre 

2 ?m2re 3 
Ore + + - -  

7 - 1  2 
2 

- - - -  r e  

7 - - 1  

4? 
- -  - ] . -  - -  

(? - 1) 2 

•  
7 - 1 

9 

c5 r 
c 2 l + r e  

1 dc2 S 1 ( 1 + re) - 1 

3,Tm2re 2 
-- Tm2rt 3 

7 - 1  
2 ?m~Tr3] - S '  

+ + - -  
7 - 1  

= $2 
c 2 dre l + ~ r  

rn~ (1 -}- re)2 
m 2 re 

(.02 ( l + re )2m~= S3 
- = = l + - -  
c~ lr 

1 doo 2 r e - - 1  
- $ 2 +  c02 dzc 2~z( 1 + re) 

W ~-- i S ~ / 2 c 2 S 2  drc d 

-- $4 
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(1  + ~ Z )  
M~ = {2 + m~[2 + ( 2 -  7)~]} 2 - ~ 7  ~ ])~ 

MI 
M y -  

[(1 -1- Tt)'C] 1/2 

< = " 1 +  _IL r / 

1 du2 dn~ 
c~ dx - n2S2 + d~ 

3S3 4 5 (7 - 3) 
R =  $3 

] dR 213&&+(7  -2)$2]  
- - 2 : ; 4  

R d~z 3S3+7 - 2  

de; R - 2 
dw 7 - 1 

do" 1 [ 1  S , I  
d~ ("/ -1)  1+7c 7 
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Summary 

A modified hodograph transformation is used to obtain an exact solution of the equations 
governing the one-dimensional unsteady flow of an ideal, inviscid, perfectly conducting compressible 
fluid, subjected to a transverse magnetic field. This solution is used to obtain an approximate 
representation of the path of an initially uniform shock wave which intersects a centered simple wave. 
In the limit of vanishing magnetic field, the solution reduces exactly to the solution of the corresponding 
problem for conventional gas dynamics. 

R6sum6 

Une transformation hodographe modifi6e est employ6e pour obtenir une solution exacte des 
+quations relatives aux 6coulements unidimensionnels non-stationnaires et non-isentropiques d'un fluide 
non visqueux id+al, parfaitement conducteur d'~lectricit~ et compressible, soumis ~ Faction d'un champ 
magn6tique transversal. On utilise cette solution pour obtenir une repr6sentation approximative de la 
trajectoire d'une onde de choc magn6tohydrodynamique initialement uniforme, rencontrant une onde 
simple centr6e. 

Dans le cas limite d'un champ magn~tique nul, la solution se r6duit exactement fi celle du probl6me 
correspondant de la dynamique classique des gaz. C'est lfi une confirmation de la validit6 de la th6orie. 
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