
Journal of Applied Mathematics and Physics (ZAMP) 0044-2275/91/050730-16 $ 1.50 + 0.20 
Vol. 42, September 1991 �9 1991 Birkh/iuser Verlag, Basel 

An effective boundary element method for inhomogeneous 
partial differential equations 

By C. J. Coleman, D. L. Tullock and N. Phan-Thien, Dept of Mechanical 
Engineering, The University of Sydney, NSW 2006, Australia 

1. Introduction 

In recent years, the boundary integral method (BIM) has become a 
popular technique for solving boundary-value problems that involve a linear 
partial differential equation (PDE) [1]. This approach replaces the original 
problem with one of solving an integral equation that is defined on the 
boundary. Since the new problem is of lower dimension, its numerical 
solution can be far less demanding than the equivalent finite element or 
difference schemes. In particular, for the case of an homogeneous PDE, it 
will only be necessary to consider a boundary discretization. Unfortunately, 
this major advantage disappears when the PDE is inhomogeneous since the 
resulting integral equation will include an integral over the interior and so 
necessitate a discretization of the same complexity as the equivalent finite 
element procedure. Furthermore, if the solution is required for a large 
amount of post-processing, the extra integral can prove a costly feature. 

One way of removing the interior integral is to consider a particular 
solution to the homogeneous PDE. The remainder of the solution will then 
satisfy a homogeneous PDE and hence lead to an integral equation with 
only boundary contributions. The idea behind combining a particular 
solution to the solution of a homogeneous problem was discussed in Buzbee 
et al. [2], who named the method the method of the capacitance matrix 
method. Although the procedure sounds simple, the shortage of closed form 
particular solutions makes a general implementation difficult. The problem, 
however, can be easily overcome if one is prepared to accept an approxi- 
mate particular solution. This can be derived in several ways, but arguably 
the simplest approach is to represent the inhomogeneity in terms of simpler 
functions for which the solution is known. In reference [3], this procedure 
was adopted for a specialised PDE and it is the purpose of the present work 
to show how the method can be extended to other equations. 

The secret to success lies with the choice of approximation basis. 
Although it is possible to use trigonometric [4] or Chebyshev polynomials, 
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such representations can require a great number of terms~ This is especially 
true when the inhomogeneity has a localised anomaly such as a peak. This 
is partly offset by the time saving afforded by the use of the fast Fourier 
Transform. However, such features can often lead to a deterioration in the 
approximation, even at points distant from the anomaly. A further disad- 
vantage is the difficulty of deriving representations in the case of irregular 
boundaries. All of these problems would suggest a piecewise approximation 
of the type that has been effective in the finite element method (FEM); for 
examples, the works by Nardini and Brebbia [5], Banerjee et al. [6], Henry 
and Banerjee [7], Saigal et al. [8], and Wilson et al. [9]. The corresponding 
basis functions, however, would yield complicated particular solutions with 
two distinct regions of analyticity. What is needed is a basis that yields 
simple particular solutions with only one region of analyticity. Furthermore, 
each basis element should give negligible contribution outside a finite 
neighbourhood and so result in an almost piecewise approximation. The 
Gaussian distribution has the required properties and was found to be 
effective in the works of Coleman [3], and Zheng et al. [10]. Gaussians, 
however, come from a more general class known as radial basis functions 
[l l] which, in recent years, have become popular for multidimensional 
interpolation. Since many of this class have the desired behaviour, together 
with other useful properties, the present work concentrates on them. 

2. Poisson equation 

Consider the Poisson equation 

V2@ = f(r) (1) 

over a region R with boundary c~R. Given suitable boundary values, a 
solution can be derived from the integral formulation 

0G to))  dS(r) c(ro)O~(ro) + f~R (G(r, ro)~n (r)--r (r, 

~Rf(r)G(r, ro) dV(r) = 0 (2) + 

where G satisfies 

V2G = 6(r - ro) 

and 

smooth at 

r0 ~ R -- OR 
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When (2) is solved by numerical means, the process will constitute a BIM. 
For the homogeneous case f -  0, this can result in considerable saving over 
the equivalent FEM since only the boundary need be discretized. Obviously, 
this advantage is lost when f ~ 0. There is, however, an alternate approach 
that retains some of the advantage of the homogeneous BIM. This consists 
of finding a particular solution (IDp(V2(I)p = f )  and then solving the integral 
equation 

c(ro)q)c(r0) + G(r, to) (r) -- q)c(r) ~n (r, to) dS(r) = 0 (3) 
R 

for the remainder of the solution ( r  = r + Cp). In general, however, a 
closed form particular solution is impractical and so recourse must be made 
to an approximate solution. Nevertheless, such a solution can still be far less 
demanding than the corresponding integral over R. 

In the present work, the particular solution is obtained by representing 
the inhomogeneity in terms of basis functions ~i (i = 1 to N) for which the 
particular solutions are known, that is 

N 
f(r)-~ ~ a,~pi(r) (4) 

i=1 

The functions qJ~ are chosen to have the form 

_- 0( Jr -r;I) 
~i ] (5)  

where /?; is some constant and 0 is a function of a single variable. Such 
functions are known as radial basis functions [11]. If q~(r) is a radialsolution 
corresponding to the inhomogeneity O(r), then 

~, (6) 

will be a solution corresponding to inhomogeneity qJ~ (r). Since q~(r) satisfies 
an ordinary differential equation, there is rarely any difficulty in finding a 
solution. If a closed form analytic solution is not available, standard 
techniques will provide a numerical solution. 

Consider the 2D Laplace equation with inhomogeneity 
O(r) = exp( - r2), then 

rOr r ~  = e x p ( - r  2) 

from which 

04~ 1 
8r - 2r (1 -- exp(--r2)) 

(7) 
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after imposing the condi t ion 30/~r = 0 at r = O. Choosing r = 0 at r = O, 
this can be further integrated to yield 

gp(r) = �89 + �89 + 2) (8) 

where E1 is the exponential  integral and 7 is Euler's constant.  
A further example is given by ~(r) = (1 + r2) ", for which 

r ~ r  r = ( 1 +  (9) 

On integrating, 

c3~ ( r ; +  1) l+n--  1 
~?r 2r( 1 + n) n r - 1 ( 1 O) 

after imposing the condi t ion Oq~/& -=-0 at r = 0. Integrat ing again, 

�89 (r2 -+- 1)3/2 ) 1 
3 q- (r2 q- 1)1/2-- ln(1 -b (r2 + 1)1/2) for n = 5  

~b(r) = (r 2 + 1)1/2 _ In(1 + (r 2 + 1) 1/2) for n = - ~ 

3 ln(1 + ( r 2 +  1) 1/2 ) for n = 2 

after imposing the condi t ion ~b = 0 at r = 0. The above choice of  n yield 
some popular  radial basis functions. It should be noted,  however, that  the 
case n = 1 does not  have the required decay properties.  

For  a given inhomogenei ty ,  the next stage is to decide on values for the 
re and fl;. A l though  it is possible to place rl to rN on a regular grid, this can 
be wastefhl. Since the me thod  is not  dependent  on such a grid, it is perhaps 
better to concentrate the r; in regions where the funct ion has its mos t  rapid 
variation. Obviously, the corrsponding fli must  be carefully chosen since too 
small fii will result in an approximat ion  of  isolated peaks and too large fli will 
make  the approximat ion  procedure  ill-conditioned. In practice, it was found 
that  fli shoud be of  the same order  as the distance of  the closest neighbours 
to ri and an effective value was found to be the average distance of  immediate  
neighbours.  Collocat ion at the points rl to r~v will then provide a system of  
N equat ions that  determine the N unknowns  fl  to fu .  Al though  the solution 
of  the resulting system can be computat ional ly  expensive, the use of  localised 
basis functions makes the system so well condi t ioned that  iterative procedures 
such as the conjugate gradient  me thod  are rapidly convergent.  Fur thermore ,  
especially in the case ~p(r) = exp(--r2) ,  the system matrix will be effectively 
sparse. Once the ai are known,  the part icular  integral will be given by 

N 

% (ll) 
i = 1  
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The boundary conditions on q~c can now be determined and ~c itself derived 
from boundary integral equation (3) with kernel 

1 ln l r  - a ( r ,  t o )  = (12) 

The solution is now complete. 
The above considerations can be readily extended to the 3 dimensional 

case. For the exponential inhomogeneity O(r) = exp( - r2) ,  

r z a r  r2--&r = e x p ( - r 2 )  (13) 

from which 

a2q  
&2 = r e x p ( - r  2) 

where q~ = re.  On integrating, 

~q~ 1 ex p (_ r2  ) 
~ r - -  

1 after imposing a(~/Or = --2 at r = O. Furthermore 

t~(r) = - x/#~ err(r) 
4r 

after imposing q~ -- - �89 at r = O. Corresponding to 

~k(r) = (1 + r2)" 

it can be shown that 

q (r) = 

2 
1 ln(r 2 + 1) - 2 + - tan- l ( r )  

r 
for n =  - 1  

�89 x / ~ + l - +  l n ( r + x / ~ + l ) ) r  f o r n -  21 

(r 2 + 1 )  3/2 r 2 + 1  l n ( r + x / / ~ + l )  for n=51 
12 t - ~ +  8r 

It should be noted that the kernel for (3) will be given by 

1 
G(r, ro) - 4rcl r _ rol (14) 

in this case. 
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2.1. Example 

As a particular example, consider the Poisson equation 

V2~ = sin(rcx) sin(roy) (15) 

subject to �9 = 0 on the square with vertices (0, 0), (1, 0), (1, 1) and (0, 1). 
This has the exact solution 

1 
q~ = --~-5~2 sin(rex) sin(~y) (16) 

Simulations were performed for rectangular grids of uniformly spaced 
interpolation points. Furthermore, for the boundary integral aspect of the 
solution, a discretisation of 128 equal length constant elements was chosen. 
After several experiments, this was judged to ascribe the majority of error to 
the particular integral aspect. The relative error for the basis functions 
exp(--r2), (1 +/,2)1/2,  (1 + r2) -1/2, and (1 _~_ /, 2) - 3/2 is shown in Tables 1 to 
4 respectively. As can be seen, the best performance is given by the basis 
function (1 +r2) 1/2. This, however, does not have the required decay 
properties. Of the basis functions that do, the Gaussian is clearly the best. 
The simulations were performed using the preferred value of fli. For 
0(r) = exp(-r2) ,  and a mesh spacing of .125, doubling and halving this 
value gave relative errors at point (�89 �89 of .00013 and .27714 respectively. In 
the case of O(r) = (1 + r 2 ) - 1 / 2  these errors were .00018 and .02381 at the 
same point. Clearly, doubling/3i gives considerable improvement and halv- 
ing is a disaster. It should, however, be noted that too large/~ will lead to 
ill-conditioning problems in the interpolation process. 

Table 1 
Relative error for basis function e x p ( - r  2) 

Grid error at error at error at 
spacing (.5, .5) (.25, .25) (.25, .5) 

.25 .00313 .01635 .00968 
�9 125 .00088 .00115 .00102 
.0625 .00026 �9 .00026 

Table 2 
Relative error for basis function (1 + r 2) i/2 

Grid error at error at error at 
spacing (.5, .5) (.25, .25) (.25, .5) 

.25 .00193 .00979 .00606 
�9 ! 25 .00023 .00032 .00027 
.0625 .00003 .00006 .00004 
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Table 3 
Relative error for basis function (1 + r 2) -1/2 

Grid error at error at error at 
spacing (.5, .5) (.25, .25) (.25, .5) 

.25 .00872 .02022 .01459 
�9 125 .00184 .00217 .00201 
.0625 .00045 .00045 .00045 

Table 4 
Relative error for basis function (1 + r 2) 3/2 

Grid error at error at error at 
spacing (.5, .5) (.25, .25) (.25, .5) 

.25 .03381 .04520 .03956 

.125 �9 .01559 .01533 

.0625 .01048 .01046 .01047 

3. Extension to other equations 

It is obvious that the procedures of  the last section can be applied to 
other than the Poisson equation. The major difficulty, however, is the 
derivation of  a particular solution corresponding to a given radial basis 
function. In the previous section, this problem was reduced to that  of  
solving an ODE and so, at worst, resulted in a numerical solution consisting 
of an array of  radial values. Indeed, the numerical solution can have 
advantage over the analytic form if the latter involves the evaluation of  
complex transcendental functions: What  is required, however, is for the 
equation of  interest to have a radial solution corresponding to a radial 
inhomogeneity. This is the case for several equations as illustrated in the 
following sections. 

3. I. Biharrnonic equation 

Consider the inhomogeneous biharmonic 

V4(I) = f ( r )  (17) 

The solution to the homogeneous form ( f -  0) is given by �9 = r �9 r~ l  + (I)2 
where ~1 and (ID 2 both satisfy Laplaces equation and hence the integral form 
(3). 

The technique proceeds as for the Poisson equation, the only major 
difference being the particular solutions that  correspond to a given basis 
function. Let O(r) be a radial inhomogeneity, then the corresponding 
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particular solution q~(r) satisfies 

1 8 ( 8 (1 8 ( ~ r ) ) )  r 2ar r2& 7 7  r2 (18) 

in the three dimensional case. Furthermore, for basis functions of the 
form 

0,09 = ~ ( Ir - - r i l~  (19) 

the corresponding particular solution will be given by 

Consider ~ = rq~, then 

c3r4 -- rl[l(r) 

from which 

8q~ 2 
= ~ erfc(r) 

c3r 2 4 

when ~0(r) = exp(--r2). Furthermore, it can be shown [11] that 

; ;  r 2 r 2 ( 2 5 )  erfc(r) dr =~-erfc(r )  - 7 - - ~  ( e x p ( - r  ) - 1) + 1 erfc(r) - 1 + 

and so 

1 
-- 2)  (21) q~(r) = - - �89 + ~ ) v / 7  e r r ( r )+  exp( - - r  2) 

after adding suitable eigensolutions. For two dimensional problems, 

q~(r)  --= r 2 In r -- 1 + + In r + -~ + - -  

when O(r) = exp(-r2) .  Also, for 

O(r) = (1 + r2)" 

E1 (r 2) E2(_r))'~ 
(22) 2 J  2 
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the particular solutions 4,(r) for three dimensional problems will be 

qS(r) = 

( r  4 7r z 9 ) x  / ( r  
-- 3--~+ 1 +  16 360 160 r2-- ' 

r 2 1 
(~---~ ~-~)x/1 + r2 + ( l~ r  4) ln( r 

1) 
96r l n ( r + ~ + r  2) 

1 f o r  n = ~  

x/q- = _ i  + + r 2) for n 2 

-- l + r 2 +  2 - 4 r r  l n ( r + ~ / l + r 2 )  f o r n -  2 

Results for two-dimensional can also be easily derived, but they are not 
recorded here for brevity. 

3.2. Elas t ic i ty  equat ion  

Consider an isotropic linear elastic continuum R with boundary OR. The 
governing equations are 

a;j-j + f  = 0 (23) 

ai j = 2Uk,k(~i j Dr- q(Ui j -~ Uj, i ) (24) 

where aij is the stress tensor, ui the displacement field, f a known inhomo- 
geneity such as body force and 2 and q are the Lamb constants for the 
medium. Combining equations (23) and (24) yields Navier's equations in 
terms of displacements 

1 + ~  = 0  (25) V2ui + ~ Uk'ik ].,l 

where v is Poisson's ratio. To obtain a form of (25) which will be more 
amenable to later analytic solution it is usual to write the displacements in 
terms of the Galerkin vector G,- [12] to yield 

1 
ui = V2Gi 2(1 - v) Gk,ik (26) 

which upon substitution into (25) gives the following biharmonic equation 
for Gi 

VaGi + f-/= 0 (27) 
# 

Also, differentiating (27) and using (24) it can be shown that the stress 
tensor will be given by 

]A (vGg,nnk•ij -- Gk,ijk "~ ( 1  - -  •)(Gi,jk k "~- aj,  ikk) ) (28) 
aij - (1 --  v) 
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The boundary integral formulation is well documented for elasticity 
problems [13, 14] and results in the following integral equation 

= f [" 
,de R ,I~R 

JR u*(r, ro)~ (~) dr(r) (29) 

where tj represents the traction field, u*(r,  to) is Kelvin's fundamental 
solution for displacement at r due to a system of unit point loads acting at 
ro in an infinite elastic medium, t*(r,  ro) its associated traction and 

lfi.j ro ~ OR and gR smooth at ro 
ciy= ~ij r o a R - O R  

Proceeding as for Poisson's equation, the domain integral may be removed 
by finding a particular solution to (23) satisfying 

ae.. + f  = 0 U,J 

but not necessarily satisfying the boundary conditions for the problem. The 
remainder of the solution may be then obtained from 

f" 

c,j(ro)u; ("o) = JoR 
where 

u*(, , ,  t o ) t ;  (r) dS( r )  - ;~ G(r, to)U; (r) dS(r) (30) 

Ui = U~ + U p (31) 

ti = t7 + t p (32) 

Consider now an inhomogeneity approximated by a series of radial basis 
functions G-(r) (i = 1 to N) 

N 

f (r) ~ ~ ~iOi(r) (33) 
i=1 

where the ei are constants obtained from the fitting procedure. Writing 
(p(r) = Gi/~i and using (27) results in 

V44~ + 1 4.'(r) = 0 (34) 
/z 

Clearly the above equation is now in a suitable form for which the results 
of the biharmonic m a y  be used to derive particular solutions for the 
displacement and traction fields. Using (2), the particular solution for the 
displacement may be written as 

1 
/ g P  = ~ i q ~ l  - -  2(1 -- v-------~ (c~i(a2 + r ir,k~kC~3) (35) 
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where 

2q , 
~b, = q ~ " + -  (36) 

r 

1 q~, (37) 
7 

q~3 = q~" - ! qS' (38) 

From (28) the particular solution for the stress will be 

# 
o 'P  - -  (1  - -  V) (Vr'kO~k~)4~ij - -  (r'i(~jk "~- r'j(~ik ~- r'k(~iJ)(~k~)5 

-- r,ir,jr,k~kgP6 + (1 -- v)(gir,j + o~jr, i)~)4) (39) 

where 

2q5,, 2~b, q54 = r '" + -r - ~ (40) 

1 ~b" 1 ~b' (41) 

~)6=~),t t 3b, ,  + 3 qS' (42) 
- r  V 

from which the traction may be readily derived. 

3.2.1. Example:  Plane strain rotating disk 

As a particular example, consider the rotation of a hollow shaft inner 
radius a outer radius b rotating with angular velocity ~o with ends con- 
strained between two frictionless platters. The analytical solutions for this 
problem are given by [15] 

B 1 l + 2 v  
a00 = A r 2 8 1 - -  V Q c ~  (44) 

1 V 
azz = 2vA Qo)2r 2 (45) 

2 1 - v  

r ( ( l _ 2 v ) A  B 1 1 - - 2 v  )0o92r2 (46) 
ur=~-~g r2 8 -1--7 

B 1 3 - -2v  
- -  O~o2r 2 (43) 

ar~=A-+ r2 8 1 - -v  
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where 

A = �89 2 + b 2) 

B = 1 2 2~2 --50e) a o , 

741 

(47) 

(48) 

0 is the density, # is the shear modulus and v Poisson's ratio. The numerical 
values employed are as follows: a = 1, b = 2 ,  0 = 1, # = 1, v =0.5 ,  and 
c o = l .  

An existing three-dimensional boundary element program was modified 
to implement the method. The program uses linear or quadratic isoparamet- 
ric elements to represent the boundary. Simulations using quadratic ele- 
ments were carried out for a quarter of the domain using the mesh depicted 
in Figure 1. The fli for each point ri was set to be the average distance from 
its immediate neighbours multiplied by a weighting factor w. Numerical 
experiments using weighting factors ranging from 0.5 to 2.5 showed that 
good solutions could be obtained with w from 1.0 to 2.0. For smaller values 
of w (w < 1.0), the body force was clearly underestimated as was evident 
from the lower stresses and displacements. For larger values of w (w > 2.0), 
the approximation procedure became more ill-conditioned resulting in a 
deterioration of the computed solution. Table 5 showing the net force (the 
exact value being (0, 0.583333, 0.583333)) due to the approximation to the 
body force and the condition number CN of  system of  equations used in the 
fitting procedure for the Gaussian basis function clearly backs up these 
observations. Similar behavior was observed for basis functions of the form 
tp(r) = (1 + r2) n. Table 6 summarizes the radial displacements for a range of 
w also for the Gaussian basis function. Figures 2 to 5 and Table 7 are a 
comparison of the results and maximum absolute errors for several different 
basis functions with w = 1.5--corresponding to about the opt imum w for 

Figure 1 
Boundary discretisation for rotating shaft. 
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Table 5 
Net force on disc and condition number of fitting matrix corre- 
sponding to different values of  w 

w f~ fy f~ CN 

0.5 O (10 -9) 0.461253 0.461253 O (10 ~ 
1.0 O (10 -1~ 0.591482 0.591482 O (103) 
1.5 O (10 -1~ 0.586814 0.586814 O (107) 
2.0 O (10 -8) 0.587221 0.587221 O (1011) 
2.5 O (10 -6) 0.683724 0.684923 O (1015) 

Table 6 
Radial displacement for a range of  w for the Gaussian basis function 

R Radial displacement 

exact w = 0.5 w = 1.0 w = 1.5 w = 2.0 w = 2.5 

1 1 0.76935 1.0205 1.0103 1.0088 0.92795 
1.125 0.888889 0.67741 0.90825 0.89907 0.8976 0.82828 
1.25 0.8 0.60516 0.81818 0.80995 0.80853 0.74769 
1.375 0.727273 0.54644 0.74443 0.73707 0.73575 0.68275 
1.5 0.666667 0.49775 0.68298 0.67641 0.67526 0.62987 
1.625 0.615385 0.45692 0.63096 0.62512 0.6242 0.58585 
1.75 0.571429 0.42256 0.58631 0.58111 0.58046 0.54972 
1.875 0.533333 0.3975 0.54743 0.54273 0.54225 0.51706 
2 0.5 0.36959 0.5129 0.50845 0.50775 0.48511 

Table 7 
Maximum absolute errors 

Basis function Maximum absolute error 

b! r (7 r r  ( 7 0 0  (T z z 

exp( - - r  2) 0.010300 0.60460 0.26050 0.023650 
(1 § r2) U2 0.000174 0.058750 0.013700 0.014090 
(1 + r2) -1/2 0.001874 0.060787 0.014830 0.015080 
(1 + r 2) -3/2 0.008860 0.060529 0.026730 0.022360 

each. Again, the best performance was given by the basis function of the 
form (1 + r2) ~/2. However, since this doesn't have the required decay 
properties it would not be expected to perform as well when the body is not 
such a simple form. The basis function (1 +ra)  -~/2 gave the best results 
from the group having the required decay properties. It should be noted 
that the poorer results for arr are due to their derivation from the displace- 
ment field, whereas the other results could be obtained directly from the 
boundary tractions and displacements. 
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Figure 2 
Radial displacement u r with w = 1.5 for basis 
functions exp( - rZ) ,  (1 + r2) 1/2, (1 + r2) -1/2, and 
( l -}- F 2) -- 3/2 
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Figure 3 
Radial stress ffrr with w = 1.5 for basis functions 
exp ( - r2 ) ,  (I +ra)  1/2, (I + r  2) -i/2, and (1 +r2) -3/2 
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Figure 4 
Hoop stress aoo with w = 1.5 for basis functions 
exp(_r2) ,  (1+r2)1/2, ( l + r  2) 1/2, and ( l+r2)  -3/2. 
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Figure 5 0.1 . . . . . .  
Axial stress a= with w = 1.5 for basis functions 0 1.2 1.4 1.6 
exp ( - r2 ) ,  (1 --}- r2) 1/2, (1 + r  2) -1/2, and (I + r  2) -3/2 Radius 

1.8 2.0 

4. Concluding remarks 

A method has been developed which effectively removes the domain 
integral arising in inhomogeneous linear PDE's by approximating the 
inhomogeneity in terms of radial basis functions and thus resulting in an 
integral equation involving boundary values alone. The method is completely 
general, and unlike previous methods using trigonometric or Chebyshev 
polynomials it adapts to irregular regions easily. The method is also 
particularly suited to problems in which the inhomogeneity has localised 
anomalies such as peaks, since, an approximation using radial basis functions 
is effectively piecewise and may concentrate sample points around the anomaly 
with no effect on the approximation elsewhere. This contrasts with polynomial 
approximations in which many terms are required to accurately model an 
anomaly, and as such, often lead to a deterioration in the approximation. 

Example inhomogeneous potential and elasticity problems have been 
presented and accurate solutions have been achieved in both cases. The 
method may be extended to more complex problems where the inhomogeneity 
is unknown a priori. Such is the case for modelling flows of visco-elastic fluids 
and flows with inertia. This will be the subject of future investigations. 
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Abstract 

A method for removing the domain or volume integral arising in boundary integral formulations 
for linear inhomogeneous partial differential equations is presented. The technique removes the integral 
by considering a particular solution to the homogeneous partial differential equation which approxi- 
mates the inhomogeneity in terms of radial basis functions. The remainder of the solution will then 
satisfy a homogeneous partial differential equation and hence lead to an integral equation with only 
boundary contributions. Some results for the inhomogeneous Poisson equation and for linear elastostat- 
ics with known body forces are presented. 
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