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1. Introduction 

It is easily verified that the function 

1 
Uo(X, y) = ~ (x 2 + y2)[(lnx/x5 + y  2) -- t1 

satisfies 

A2uo=30 . 

Go(x, y; 4, rl) = uo(x - ~., Y - tl) is therefore a Green's  function for the biharmonic equa- 
tion, which it is convenient to represent in the complex form 

1 Re[Iz - ~12{ln(z - ~) - 1}], Go(x, y; ~, ~) = 

where z = x + iy, ~ = ~ + i~. Further Green's functions may be obtained, satisfying 
various boundary conditions [1]. For example 

1 I _ __/z~/2-~i/2~] G~(x ,y ;  ~, r/) = ~  Re Iz - C.12 I n [ z ~  M (I) 

vanishes togetl~r with its normal derivative on the negative real axis, 

1 I [2 ln(Z~, ~_~ + (~ + •)z] (2) a2(x,  y; ~, r/) = ~ Re lz - ~ \z + ~/  

does so on the imaginary axis [2-5], and 

G 3 ( x , y ; ~ , r l ) = - ~ R e  Iz-~pln ~ 2 

does so on the circle [zl = 1 [6-8], provided in each case ~ does not lie on the boundary 
in question. In none of these cases does the Green's  function have a singularity on the 
(smooth) boundary. 

The Green's  functions (1 ) - (3 )  are strikingly similar in form to the corresponding 
Green's functions for Laplace's equation, easily obtained by the method of images and 
the use of  conformal transformations for either Dirichlet or Neumann boundary 
conditions. This analogy might lead one to suppose that similarly simple Green's  
functions for the biharmonic equation could be constructed for more complicated 
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regions such as sectors. In the Laplace case, the sector 

1 1 
z r  -~c~  < a r g z  <~c~ -< 7r 

has the simple Green's  function 
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vanishing on the boundary  of  the sector, where ~ is inside the sector. The expression in 
square brackets is holomorphic  in z at the corner z = 0 provided =/c~ is an integer, and 
otherwise has a logarithmic or finitely-sheeted branch point  there. However,  it seems 
most unlikely that any such simple Green 's  function can be constructed for a general 
sector in the biharmonic case. Indeed, Dean and Montagnon [9] have shown that, 
provided n (in general complex) satisfies 

sin nc~ = i n  sin c~, (4) 

then the real and imaginary parts of  the complex expression 

(zn+ 1T-~,+ l)n sin(n - 1)c~ + ( - ~ " ~  _+ zZ~)(n + 1) sin n~ 

are both biharmonic functions whose first order part ia l  derivatives both vanish on the 
boundary  of the sector. Any Green's  function would be expected in general to contain 
terms with the above types of  singular behaviour at z = 0 for the different roots n of  the 
transcendental  equations (4) [10]. It would therefore in general have a complicated 
singularity at z = 0 and could not  be simply constructed from elementary functions, as 
in (1 ) - (3 ) .  Only in the special cases ~ = 2~ and c~ = rt are the solutions of  (4) all integers, 
and these are precisely the cases already covered by (1) and (2) respectively. 

We shall now prove a result which implies that  the inhomogeneous biharmonic 
Green's  function for a sector of  angle ~ satisfying 0 < ~ < = must be singular at z = 0. 
In fact we shall show that, if  u is any non-constant  biharmonic function whose first order 
part ial  derivatives both vanish on a curve which contains a conformal image of  a pair  of 
line segments meeting at an angle c~ (e.g. a pair  of  circular arcs meeting at this angle), 
then u must  be singular at the corner. This result has relevance to numerical work in 
elastostatics [11-14] and steady viscous flow [2-5 ,  7, 8], where Green 's  functions are 
used extensively. 

2. The main result and its proof 

Suppose the function h(~) is holomorphic,  with h'(~) ~ O, on the open disc U = 
{~ ~ C; I~l < 6 }. Let V be the image in the z-plane of  U under the conformal transforma- 
tion z = h(~), define 

F = FlVOF2, Fi={re i~ /2;O<r<(}} ,  F2---- {re  ~=/2;0<r<6}, 

where 0 < c~ < ~, and let C, C1, C2 ( c V) be the images of  F, F1, F2 ( c U) under h. Then 
C is an analytic contour  in the z-plane with a cusp of  angle c~ at z = h(0). It is the image 
under the t ransformation z = h(Z ~/=) (conformal  except at Z = 0) of  the open segment 
( -  i6 ~/~, i6 ~/~) of the imaginary axis of  the Z-plane.  

Theorem. Suppose u(x, y) is a biharmonic function on V analytic in the real 
variable x = Re z and y = I m  z (even at the point  z = h(0)), such that Ou/ax = au/ay = 0 
on C. Then u(x �9 y) is constant  (on V). 
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Proof. Following Muskhelishvili [15], we express the biharmonic function u in the 
form 

u(x, y) = Re w(z), (5) 

where 

w(z) = f ( z )  + fg(z), (6) 

for some functions f ( z )  and g(z) holomorphic on V. It will be more convenient for our 
purposes to express the "complex bipotential" w in terms of  ~" rather than z, writing 

w(~) = w(0,  (7) 

where 

W(~) = g(~) + h(~)G(~), (8) 

and F = f  o h and G = g o h are both holomorphic on U. 
It follows from (5) that 

Ow Q~ Ow /Ow\  
az- t  az az + / i \~ - ) ,  (9) 

Ou #u Ou 
Ox i - -  = 2 0), ~z 

where 

0w 
O~ = g(z) = a(r 

by (6), and 

Ow I #W 

az h'(C) ar 

by (8). Thus 

~u . ~Tu 1 
0 X  l - -  ay h'(~) 

1 
h'(~) [F'(r + h(r 

[F'(r + h*(C)G'(r + G*(C), (10) 

where, for any holomorphic function q$(~) on U, 4)* denotes the holomorphic function 
on U defined by 

q$*(r = 4b(~-). (11) 

By hypothesis, (10) vanishes on T. It therefore vanishes on F~, where ~-= e - ~ ( ,  and 
SO 

F'(r + h*(e -i~r162 = h'(r - '~ )  (12) 

on F~. But both sides of  (12) are holomorphic functions of ~ on U, so (12) must hold 
throughout U. Similarly (I0) vanishes on F2, where C =  e~r and so 

F'(~) + h *(e i~')G'(~) = - h '(~)G *(e ~ ' )  (13) 

throughout U. From (12) and (13), we deduce that 

F'(r = h'(~)[h*(e-i~)G*(e~<<r - h*(e~<<~)G*(e -~r (14) 
h*(e'~r - h*(e '~) 

and 

G'(r = h'(r G*(e i~r 
h,(ei~ 0 _ h , ( e _ i ~  0 , (15) 
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and  hence f rom (10) that  
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au .3u h * ( e - ~ ) G * ( e i ~ ( )  - h*(e*~{)G*(e ~ )  

ax ~y h*(e '~)  - h*(e ~ )  

h*(O[G*(e*~ 0 - G * ( e - ' ~ ) ]  + ~*((). 
h*(ei~ 0 - h *(e -i~() 

Suppose no w that  the ho lomorphic  funct ions  h and  
expansions  

= = 

n = 0  n = 0  

Subst i tu t ing these into (15) gives 

I 1 4-  ~ ,  k a k ~ k - -  1 bm(e im~ - e - * ~ ) ~  = O. 
k 1 A i m  = 1 

By consider ing the coefficient of  { ' ,  we deduce that  

k [ e  i(n 4-1 - k)o~ _ e i(n + |  - k ) ~ ] ( b k t ~ "  4-1  - k 2I- ak/7 +1 ~) = 0 
k = l  

Put t ing  n - I in (19) gives 

(e ;~ -- e-iO(bll6,  4- al/71) = O. 

Since a I = h'(O) r 0 by hypothesis,  we mus t  have 

b~ b-, 
- - =  - - - - =  ir 
a I CI 1 

for some real n u m b e r  r. We now prove by induc t ion  on n that  

G have 

(16) 

in U the Taylor  

(17) 

(18) 

for n >- I. (19) 

(20) 

(sinn )(al) 
b ~ - i r a ~ = -  ~ ~ (b , , - i ra~) .  (22) 

Since 0 < ~ < 7t, the quan t i ty  

sin nc~ e i ( n  1)x 2_  e i (n  - 3 ) =  4 -  . . . 4 -  e - * ( " -  ~)~ 

n sin a n 

has modu lus  strictly less than  1 ( implying  that (4) has no  integer solut ions n of  modu lus  
greater than  1), and  we conclude from (22) that  b, - iran = 0, thus complet ing the p roo f  
of (21). 

F r o m  (17) and  (21), we now deduce that 

G({) = irh(~) + c, (23) 

i.e. 

b, = ira, (21) 

for all positive integers n. Suppose that  b~ = irak for k = 1 , . . . ,  n - 1, where n ~ 2. Then  
the s u m m a n d  in (19) vanishes for k = 2 . . . .  , n - 1, and  (19) reduces to 

(e i'~ - e -~ )a l (b~  + i r~)  + n(e ~ - ei~)~l(b . - ira,) = O, 
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where 

c = b o - ira o. 

Substituting (23) into (16) now shows that Ou/Ox - i (Ou /@)  = 0 throughout V, i.e. that 
u = constant in V. 

3. The special case of a sector 

This special case corresponds to putting 

z = h(~) = ~, F = f ,  G = g. 

In this case, the conclusion of the theorem holds under the weaker assumption that the 
functions f ( z )  and g(z )  have at worst isolated singularities at z = 0. 

To prove this, note first that  (14) and (15) reduce to 

[e-i~g*(ei~z)  - ei~g*(e i~z)] 
f ' ( z )  = (e i= - e -i~) , (24) 

[g*(ei~z) - g * ( e  -i~z)] 
g ' ( z )  = (e ~ - e - i=)z  (25) 

Substituting the Laurent expansion g ( z )  = ~ =  -o~ b , z  n into (25) gives 

~ = / s i n  nc& 
nbnz ~ - 1 =  - b n l  ~ ~. J z  1 

n =  - - o o  n ~  - - o o  

from which we infer that b, = 0 for In[ > 1, and that b~ and b ~ are both purely 
imaginary. Thus 

g(z)  = c + i (rz  + r ' z - 1 ) ,  g * ( z )  = 6 - i ( rz  + r ' z - 1 ) ,  (26) 

where c e C, r, r '  ~ N. Substituting (26) into (24) yields 

f ' ( z )  = - ?  + (2 i r '  cos ~)z -1, 

whence r '  cos c~ = 0, since f ( z )  cannot have a logarithmic singularity at z = 0. Thus 

f ( z )  = - & + constant. (27) 

Substituting (26) and (27) into (6), we see that 

w(z)  = - &  + c i  + irlzt 2 + i U i z  1 + constant, 

and hence by (5) that 

u(x ,  y )  = - r '  Im~/z t) + constant. 

But u(x ,  y )  must have the same constant value on C~, where s = e-i~z, as it has on C2, 
where i = e~"z. Hence r '  sin c~ = 0, r '  = 0, and u(x ,  y) = constant. 

Thus we have shown that a non-constant  biharmonic function u on the sector z ~ 0, 
<�89 must be of the form given by (5) and (6), where f or g has a - ~  < arg z 

non-isolated singularity at z -- 0. 
We conjecture that the conclusion of the theorem of Section 2 for general h will 

likewise continue to hold under the weaker assumption that f ( z )  and g(z )  have at worst 
isolated singularities at z = h(0). Unfortunately the method of proof used in Section 2 
breaks down in this case. This is because there is no longer a lower bound to the 
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summat ion  over  k in the first term of  (18) or  the summat ion  over  m in its second term, 
so that  there is no way  to start  the induct ion.  

Acknowledgement 

I wish to thank Dr.  M a r k  K e l m a n s o n  for arousing my  interest  in this subject and 
for his subsequent  help and encouragement .  

References 

[1] C. Pozrikidis, Boundary Integral and Singular Methods for Linearized Viscous Flow, Cambridge 
University Press, Cambridge 1992. 

[2] E. B. Hansen, Stokesflow down a wall into an infinite pool, J. Fluid Mech., 178, 243 256 (1987). 
[3] E. B. Hansen and M. A. Kelmanson, An integral equation justification of the boundary conditions of 

the driven-cavity problem, Computer & Fluids, 23, 225-240 (1994). 
[4] M. A. Kelmanson and B. Lonsdale, Annihilation of boundary singularities via suitable Green's 

functions, Computational Mathematics with Applications, in press (1995). 
[5] M. A. Kelmanson and B. Lonsdale, A singularity annihilation method for steady viscous flow in the 

double-lid cavity, J. Comp. Phys., submitted (1994). 
[6] P. R. Garabedian, Partial Differential Equations, Wiley, New York 1964. 
[7] M. A. Kelmanson, Theoretical and numerical investigation of steady, viscous, free-surface flow, Appl. 

Math. Lett., 7, 81 85 (t994). 
[8] E. B. Hansen and M. A. Kelmanson, Steady, viscous, free-surface flow on a rotating cylinder, J. 

Fluid Mech., 272, 91 107 (1994). 
[9] W. R. Dean and P. E. Montagnon, On the steady motion of a viscous liquid in a corner, Proc. Camb. 

Phil. Soc., 45, 389 394 (1949). 
[10] M. A. Kelmanson, On the solution structure of a nonlinear transcendental eigenvalue equation, 

Dynamics & Stability of Systems, 4, 245-257 (1989). 
[11] M. Maiti and S. K. Chakrabarty, Integral equation solutions for simply supported polygonal plates, 

Int. J. Engng. Sci., 12, 793-806 (1974). 
[12] A. Mir-Mohamad-Sadegh and K. R. Rajagopal, Theflow ofa non-Newtonian fluid past projections 

and depressions, J. Appl. Mech., 47, 485 488 (1980). 
[ 13] L. N. McCartney, A new boundary element technique for solving plane problems of linear elasticity. 

L Theory, Appl. Math. Modelling, 7, 441-451 (1983). 
[14] L. N. McCartney, A new boundary element technique for solving plane problems of linear elasticity: 

improved theory, Appl. Math. Modelling, 8, 243 250 (1984). 
[15] N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, 

Groningen 1963. 

Abstract 

Let C be a curve which is conformal to a pair of line segments meeting at an angle c~ strictly between 
0 and n, u a biharmonic function analytic in a neighbourhood of C, whose gradient vanishes on C. It 
is shown that u(x, y) must be constant. 
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