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I. Introduction 

When a multidegree-of-freedom dynamical system undergoes a bifurca- 
tion, it usually does so in only a few degrees of freedom. One simple example 
is the buckling of a column. If # and gc represent the axial and Euler loads 
of a column, respectively, then, as # is varied in the vicinity of #c, the 
temporal evolution of the motion is dominated by the critical mode which, 
in the first approximation, is governed by 2 = ( ~ -  ~ )x  + ax 3. A more 
complicated situation arises when several control parameters ~ are varied in 
such a way that several modes become marginally unstable simultaneously. 
In the latter case, the system is said to undergo a multiple bifurcation. The 
simplest and smallest number of equations which capture the essential 
dynamics of the original system in the vicinity of ~_~ are said to be in the 
normal form. The theory of normal forms is an important analytical tool for 
investigating the qualitative behavior of nonlinear dynamical systems. 

The idea of normal forms for nonlinear systems dates back as far as 
Euler; however, Poincar6 [16] and Birkhoff [3] were the first to bring forth 
the theory in a more definite form. Poincar6 [16] considered the problem of 
reducing a system of nonlinear differential equations to a system of linear 
ones; namely, 

ax ay 
- ~ = A x + f ( x )  to -~=Ay ,  x ~ R " , y ~ R " .  (1) 

The formal solution of this problem entails finding near-identity coordinate 
transformations, x = y  + ~(y),  which eliminate the analytic expressions of 
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the nonlinear terms. It has been shown that such a formal solution exists 
provided the above system is hyperbolic and the eigenvalues 2j of the 
diagonalizable matrix A satisfy the nonresonance condition 

2 i # 2 m , 2 ,  for i =  1 , 2 , . . . , n ,  I m l = ~ m , - >  2 (2) 

where m is a vector of integers m = (ml, m2, �9 � 9  mn) with ml > 0. Further- 
more, it was proven that if, in addition to the above results, the eigenvalues 
lie strictly to one side of a line separating them from zero in the complex 
plane, then the formal series q)(y) is convergent. 

If the system is nonhyperbolic or condition (2) is violated, the analytic 
expressions of the nonlinear terms cannot be completely eliminated via a 
nonlinear change of coordinates. The remaining terms comprise the normal 
form of the system of equations given by (1). The normal form is dictated 
by the nature of the linear operator A. Thus, the nonlinear system in Eq. (1) 
can be reduced to 

dy = A y  + g(y ) ,  y ~ R ~ (3) 
dt 

where g is simpler than f Such reductions have been widely used to study 
deterministic autonomous and nonautonomous  systems (see Arnold [1]). 

In bifurcation problems, the eigenvalues of the linear operator A are 
composed of two sets, one on the imaginary axis and the other with strictly 
negative real parts. The linear vector space E associated with A can also be 
divided accordingly as E = Ec O Es such that Xc e Ec and xs e Es with 
x = Xc + xs. There are two approaches to obtaining normal forms for 
deterministic systems. In the first, as shown in Guckenheimer and Holmes 
[12], one first computes the lower dimensional center manifold onto which 
the dynamics settle for large times. The dynamical system defined on the 
center manifold is then transformed to the normal form through a nonlinear 
change of coordinates. In the second method, one systematically expands 
the original vector field in powers of amplitudes of the critical modes to 
yield both the normal form and center manifold, simultaneously, as shown 
by Elphick et al. [7]. The approach adopted in this paper for the computa- 
tion of the normal form assumes that the center manifold theorem has been 
applied to the original system and is based heavily on the work of Elphick 
et al. [7]. 

The aim of this paper is two-fold: first, to present an explicit formula for 
the normal form of a generalized Hopf  bifurcation with non-semisimple 1 : 1 
resonance and, second, to compare the results with those obtained via the 
method o f  averaging. The results for the corresponding semisimple case 
were obtained by Bajaj and Sethna [2] using center manifold theory and the 
method of integral averaging. 
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Recently, the normal form for a generalized Hopf bifurcation was 
expressed as a 4-dimensional real system by Cushman and Sanders [5] and 
as a 2-dimensional complex system by Elphick et al. [7] and Iooss and 
Adelmeyer [18]. Iooss et al. [19] employed the 2-dimensional normal form 
given in [7] to examine the steady bifurcating solutions in nonlinear 
hydrodynamic stability problems. However, there are no explicit formulas 
relating the coefficients of the original system to those of the normal form. 
This paper presents explicit formulas for the 4 leading constants in the 
complex normal form in terms of coefficients of the original nonlinear 
system with both quadratic and cubic nonlinearities. The complex normal 
form presented by Elphick et al. [7] has recently been analyzed by van Gils 
et al. [11]. It was shown that this co-dimension 3 bifurcation problem is 
more complicated than the closely related case of the non-resonant double 
Hopf bifurcation and contains three different types of co-dimension 1 
singularities and 4 different types of co-dimension 2 singularities. Thus, with 
the help of the results presented in this paper, one can apply the analysis of 
van Giles et al. [11] to any physical problem exhibiting generalized Hopf 
bifurcation with non-semisimple 1:1 resonance. Furthermore, it has been 
shown by Hale [13] that, for systems with linear operators whose superdiag- 
onal terms are equal to 1, an appropriate scaling can be used to obtain the 
averaged equations. In the final section, the averaged equations up to the 
second order approximation are obtained and compared with the normal 
form equations. 

II. Background and notations 

The problem of interest in this paper is a 4-dimensional one. However, 
we shall keep the analysis as general as possible for the time being. Consider 
a dynamical system governed by autonomous differential equations in C ", 

j: = A (# )y  + f ( y ,  p) (4) 

where f: C n --. C" is a C r vector field, r > 2, A is an n x n complex matrix, 
x = 0 is the trivial solution of Eq. (4) for all values of p (i.e., f(0,/~) = 0) 
and the nonlinear vector function can be represented as 

f ( y ,  lt) =f2(y ,  #) +f3(y ,  #) + . . .  + f k ( y , / 0  + " ' .  (5) 

Here, we have expressed the nonlinear terms as a formal power series of 
homogeneous terms with degree denoted by the superscripts. We define H~ 
to be the linear space of homogeneous vector polynomials of degree k in n 
variables with range C n. Let (el, e 2 , . . . ,  en) denote the basis of C" and 
Y = (Y l ,  Y 2 " " Y , , )  be the coordinates with respect to this basis. Thus, an 
element f ~ ( y ,  l~) of H~ can be represented in the form of vector-valued 
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monomials as 
n 

k m e f k ( y ,  l-t) = ~ f f ( y ,  g)e~ = E f  s;m(#)y s, 

315 

]rn] = k 
s s , m  

r n l  m 2 . . . m n = •  ~ fs~m~,m2 ..... , (Y t  Y2 y ,  )es (6) 
S ] m  I = k 

with 

dim{f~ (y, #)} = (n + k - 1)!/[(n - 1)!k!] 

and 

dim{H~ } = n" dim{f~ (y,/x)}. 

Now that a formal set-up for representing Eq. (4) has been obtained, we can 
consider the problem of reducing Eq. (4) to the normal form 

2 = A(lOx + g(x, #), (7) 

g(x, ~) = g'(x,  ~) + g3(x, ~) + . . .  + gk(x, ~) + . . .  

which, as stated previously, is in a simpler form than Eq. (4) and has all the 
essential features of the flow near the equilibrium point of the original 
system. The formal solution of this problem consists of determining near 
identity coordinate transformations 

y = x + h(x), h(x) = h2(x) + h3(x) + . . .  + hk(x) (8) 

where x e f~, and f~ is a neighborhood of the origin of C", such that the 
analytic expressions o f f ( y ,  #) are simplified to yield g(x, #). Once again, fk, 
gk and h k are homogeneous vector polynomials of degree k and belong to 
H~. Assuming the normal form reduction up to order k -  1 has been 
performed, differentiating Eq. (8) gives 

j: = [I + Dxhk(x)]2 

and substituting in Eq. (4) yields 

ic = [I + Dxhk(x)]-l[A(x + h~(x)) + f ( x  + h~(x))]. 

Making use of the fact that, for x e f~,  

[I + Dxhk(x)] ' = I - D~hk(x) + O(Ix[ 2(k- ~)) 

results in 

= A x  + f2 (x )  + f3 (x )  + . . .  + f k - I ( X  ) 

+ {fk(x) + {Ah~(x) -- Dxhk(x)Ax]} + O([xl k+ '). (9) 

It is worth noting that the transformation of degree k does not affect the 
normal form of order ( k -  1) but does affect the terms of order k and 
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higher. The task now is to select hk(x)  so that the terms of degree k in the 
brackets are as simple as possible. Examining the terms of degree k in Eq. 
(9) and comparing with those of Eq. (8) yields 

Ahk(x )  - D x h k ( x ) A x  + f k ( x )  = gk(x)  (10) 

and f J ( x ) =  gJ(x) for j = 2, 3 , . . .  k -  1. Introducing a linear operator LA 
defined by 

LAh k = [h k, Ax]  = Ahk (x )  - D x h k ( x ) A x ,  

Eq. (10) can be rewritten as 

- LA h k(x) = f k ( x )  -- g k(X) = r I k(X). ( 1 1) 

The above equation is called a homological equation. L A " H~ ~ H~ is called 
the homological operator and is linear in the space of homogeneous vector 
polynomials of degree k. Equation (11) is to be solved for hk(x).  

Let us denote R~ as the range of LA and let W~ be any complementary 
subspace to R~ in H~. H~ can be decomposed as follows 

H~ = R~ �9 W~, k > 2. (12) 

Thus, for each f k ( x )  e H~ there exists rlk(x) ~ R~ and gk(x)  e W~ such that 
any given homogeneous polynomial of degree k can be written as 

f k ( x )  = gk(x)  + rlk(X) 

and the suitable transformation hk(x)  is obtained from 

- LA hk(x)  = q k(x). (13) 

Since the choice of complementary space W~ is not unique, neither is the 
transformation hg(x) or the normal form gk(x).  This nonuniqueness was 
resolved by Elphick et al. [7] through a particular choice of inner product. 
As in [7] (refer also to Helgason [14]), we can introduce an inner product 
in H~. To this end, we introduce a differential operator associated with an 
arbitrary f f  (x) e H~ as 

I ~x  el, -~x - ax-----fl 1" Ox'~ ~ "  " " c?x m~." 

Then, for f f  (x), gf (x) in Hf ,  the scalar product is given by 

( f ~  (x), g~ (x) ) = f ~  ( # ) ~  (x)lx=o,~ij = f i ; ~ g j : ~  " 6 i j .  
I~l = k Ifll = k ~ X ~  0 

It is clear that the only terms that will survive are those for which ~ and/~ 
coincide, i.e. 

(,f~ (x), g~ (x)) ~ k -k I = fi,mg;,mm.6~j, m!  = ml !m2! �9 �9 �9 rn, !. 
m = k  
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Thus, the inner product  in H~ is defined as 

( i f (x) ,  gk(x))I_i# : ~ E Ji,mgi,m~k -k ml.. (14) 
i=1 Iml=k 

Using this inner product, we can define the adjoint operator (LA)* as 

{L~ hk(x),fk(x) )I~# = @k(X), L * fK(x) )Hf 

and making use of the fact 

@k(Ax), f~(x) )I-i~ =- @k(x)m fk(A *X) )H# 

Elphick et al. [7] has shown that 

ker(LA.) = ker(LA) * (15) 

Since H~ is a finite dimensional space, ker(LA)* is an orthogonal comple- 
ment of R~ the elements of which we are free to choose. Equation (12) may 
then be written as 

H~ = Rf  | ker(LA.). (16) 

Now, considering the linear equations in H~, we have 

--LAhk(x) = tff(x), LA.gk(x) = 0 (17) 

and the solvability condition 

gk(x) 5 m  = 0. 

The normal form and explicit formulas for the coefficients can then be 
calculated using Eqs. (17) and (18). It is important to note that this normal 
form depends on the matrix A and the choice of complementary space W~. 
Once the functions fk(x) are known, the above method can be applied to 
calculate both hk(x) and gk(x). A recursive algorithm, similar to that of 
Chow and Hale [4], can also be employed to compute the k th  order 
nonlinearities fk(x) given all transformations h(x) and normal forms g(x) up 
to order k - 1. Both methods have been employed independently herein to 
calculate the normal form coefficients which are given explicitly in the 
Appendix. 

III. Normal form for non-semisimple case 

For the non-semisimple case, the normal form calculations are not as 
easy as in the case of a diagonalizable linear operator. However, the 
calculations can be simplified using certain well known results in Lie 
algebra. These will be introduced as we proceed through the calculations of 
the normal form for the generalized Hopf  bifurcation. 
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Given a finite dimensional vector space V over the complex numbers C 
and a space L of linear transformations of V onto itself, one can define the 
Lie bracket by the formula 

[ P , Q ] = ( P - Q - Q . P )  e L  for P, Q e L .  (19) 

Then L becomes a Lie algebra and we say P commutes with Q iff [P, Q] = 0. 
The result that is of importance to us in the Jordan decomposition theorem 
which states that for any A E L there exist S and N such that 

A = S + N  and [ S , N ] = 0  (20) 

where S is semisimple (diagonalizable) and N is nilpotent. Moreover, these 
decompositions are unique and 

ker A = ker S c~ ker N. (21) 

In the calculation of normal forms for generalized Hopf  bifurcation 
with non-semisimple 1 : 1 resonance, the linear operator of interest takes the 
form 

i~o 1 io~ 0 3 0 1 
0 ico 0 0 ico 0 [ 0 0 0 

A = -i~o 1 = - ico 0 + 0 1 
0 0 --ion 0 0 --ico 0 0 0 

= S + N (22) 

and [S, N] = 0. In addition, the homological operator for any two matrices 
A and B also satisfies the relation [LA, L, ]  = L[A,B I. This implies that the Lie 
brackets of Ls, LN and Ls., LN* also commute. Thus, the ker(LA.), which is 
needed for the calculation of the normal form, is given by 

ker(LA.) = ker Ls. n ker LN,. 

It is worth pointing out that the above results can also be obtained using the 
arguments given in Meyer [15]. Furthermore, the normal form g(z), given in 
Eq. (17), commutes with elements of the Lie groups 

G = { e ' A * I s ~ R }  and S ' - - { e ' S l s e R }  

and the normal form is said to have G-equivariance and a simpler S ~- 
equivariance, respectively. Since the proofs of these results are similar, only 
that of Sl-equ]variance, i.e. 

g(esS~) = esSg(~) 

will be given here. To this end, consider z = eSS~ and g(z) = g(eSS~). Taking 
the total differential of g(z) w.r.t, the variable s yields 

dg(z) 
- Dzg(z)Sz. 

ds 
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Now, using the fact that the normal form is such that g e ker (LA.)=  
ker(Ls.) nker(LN.)  and S * =  - S ,  we have 

Dzg(z)Sz - Sg(z) = O. 

Combining the above two equations yields an O.D.E. for g(z) 

dg(z) 
- Sg(z) ,  s e R 

ds 

whose solution can be written as 

g(z) = e~Sg(z; s = O) = esSg(~). (23) 

This proves the Sl-equivariance. The G-equivariance can be proven simi- 
larly by replacing S by A* in the above steps. 

I. Linear algebraic calculation o f  the normal form coefficients 

Now we calculate the normal form and appropriate expressions for the 
coefficients of this normal form. To this end, consider the homological 
equation 

-- LAhk(x) =fk(x).  

It is easy to show that for the semisimple S with eigenvalues 2i, 
i = 1, 2 , . . . ,  n, LAhk(x) reduces to 

Lshk(x)  = ~ hf, m[(m, 2 } -  2s]xmes 
s, lmP = k 

and 

<m, 2 } - 2 ,  = 0; s = l , 2 , . . . , n ;  Im[->2 
is called the resonance condition. The ker(Ls.) is determined by the appro- 
priate combination of m's which satisfy the above condition. The resonance 
condition for the problem under consideration can be expressed as 

i c o ( m i  + m 2 - -  m 3  - -  m 4  - -  l )  = O, 

for s =  1,2 
m l  + m2 + m3 + m4 = k 

and 

- -  i ~ ( m 3  + m 4  - -  m l  - -  m 2  - -  l )  = 0, 

for s = 3 , 4 .  
ml + m z  + m 3  + m 4  = k 

Since mi > 0 and integer, it is obvious that k is always odd and the above 
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conditions yield 

k + l  k - 1  
( m l + m 2 ) -  2 ' ( m 3 + m 4 ) -  2 f o r s = l , 2  

and 

k - 1  k + l  
(m~ + m2) - 2 ' (m3  -q- m 4 )  - 2 for s = 3, 4. 

Thus, the non-zero nonlinear normal form exists only for k = 3, 5 , . . . .  
However,  the original quadratic nonlinear terms can contribute to the cubic 
terms as a result of  the nonlinear transformation as will be seen in the 
subsequent section. Calculation of  the coefficients of  the leading order 
normal form (k = 3) is of  concern in this paper. Thus, in an 80-dimensional 
basis, only 24 vectors lie in the ker(Ls,)  and can be written as 

(X2x3)es, (XlX2X3)es, (x2x3)es, (x2x4)es, (xlxzx4)es, (x2x4)es for s = 1, 2 

(X~Xl)es, (X3XeXl)es, (X]Xl)es, (x2x2)es, (X3XeX2)es, (x]x2)es for s = 3,  4. 

The action of  LN. on these bases can be represented by a 2 4  x 24 matrix 
of  the form 

- C 0 

0 C 
0 - I  

where C = 

0 1 0 1 1 0-  
0 0 2 0 1 0 
0 0 0 0 0 0 
0 0 0 0 1 0 
0 0 0 0 0 2 
0 0 0 0 0 0 

where I and 0 are 6 • 6 identity and zero matrices. The 8-dimensional null 
space of  the above matrix can be easily computed.  Making use of  this, the 
basis of  ker(LA,) can be written as 

xl(x, x 4 -  x2x3)~ 

x2(xlx~x2x3)  f ,  
fx, x3  F x, x3  ??, lx  Ooj 

0 0 , 

x3(x2x3 - x~ x4) ' x~xl ~ ' " 
LXe(X2X3- XlX~)J Lx~x2J , ~x3x~j  

It is worth noting that the first 4 basis vectors are complex conjugates of  the 
last 4, as expected. Since any linear combinat ion of  these vectors spans the 
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null space, we can manipulate the given basis such that the resulting normal 
form is as simple as possible. This manipulation is performed as follows: the 
second basis element is replaced by the vector obtained by subtracting the 
third basis element from the second, and the sixth basis element is replaced 
by the vector obtained by subtracting the seventh basis element from the 
sixth. This procedure yields the new second and sixth bases as 

f ~ t { ~ I 
Xl (Xl X4 - -  X2X3) a n d  0 

0 0 " 

0 X3(X2X 3 -- X 1 X4) 

Thus, the normal form for the generalized Hopf bifurcation with 1"1 
resonance can be written as 

= + { a l ( z i z l )  + a2(z, e2 - -  eiz2)} 
i~o / \ z 2 /  

-~- {bl(Z1Zl) + b2(zxZ2 - ZlZ2) } (  O 

where aj = cj + idj, b: = ej + ~., j = 1, 2. In the above equation, we have 
replaced (xl, x2, x3, x4) by (zl, z2, z~, Z2). Thus, the second and third equa- 
tions can be obtained by conjugating the above equations. 

While calculating the coefficients, we shall assume that the original 
system contains both quadratic and cubic nonlinearities. Thus, for the 
problem under consideration in this paper 

4 
f2(y) = ~ ~ f,;m,2 { r n l  m2 m3 m 4 " ~  dim(H42) = 40 (25a) ,m2,rn3m4kYl 72 Y3 Y4 )es, 

s = l  [m[=2 

4 

S'(y) Z Z ' = f s , . ,  " ml  m2 m3 m4X dim(H 3) 80. (25b) ,rn2,m3m4tYl Y2 Y3 Y4 )es, = 
s = l  Iml=3 

We have shown in the previous section that ker(LA,) = {~} for k = 2 since 
ker(Ls.) = {25}. Thus, all the quadratic terms given by expression (25a) can 
be eliminated and the transformation which performs this reduction, ob- 
tained by the matrix representation of ker(LA.), is given by 

r-B I 0 
0 B 0 
0 0 B 
0 0 0 

i ]  h7.,,1 hl;,=/ 
3;m 

h4~;m 

Fs, 

= /fl.  
LXL  
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where 

- ico 
- 2  

0 
0 
0 

B =  0 

0 0 
0 0 
0 0 
0 0 

and h 2,,m and f2m are 
easy to calculate 

h~;m = B- ' f~ ;m ,  

0 
- ico 
- 1  

0 
0 
0 
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0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
ion 0 0 0 0 0 0 0 
0 igo 0 0 0 0 0 0 
0 - 1  ico 0 0 0 0 0 
0 0 0 3ico 0 0 0 0 
0 - 1 0 0 ieo 0 0 0 
0 0 - 1  0 - 1  /co 0 0 
0 0 0 - 2  0 0 3ia~ 0 
0 0 0 0 0 0 - 1  3ico 

vectors of  dimension 10. Since B is nonsingular, it is 

h2m B-1  2 __ h 2 = ( f l ; m  2;m) 

and h~;m and h24;m a r e  the conjugates of  h21;m and h22;m, respectively. The 
complete expressions for h 2 and 2 1;m h2;m, are given explicitly in the Appendix. 
As these transformations annihilate all of the quadratic nonlinearities in the 
given system, they alter the terms of order 3 and above. We denote the new 
coefficients of the cubic nonlinearities as 

3 3 ~_ 3 2 2 Ps;m=fs;m jTs;,.,, a n d  ~3;m 2 2 , f3;m,f4;m) = F( f l ;m , f2 ;m 

where f3;m a r e  the original coefficients of the cubic nonlinearities, and f3~;m 
are the coefficients of the new cubic terms generated while eliminating the 
original quadratic nonlinearities. The coefficients are indeed functions of the 
coefficients of the original quadratic nonlinearities as one would expect. 
Now, the normal form for the leading nonlinearity is given by Eq. (23) and 
is defined in the space complementary to R 3. The coefficients at, a2, bl, b2 
and their conjugates are calculated using the solvability condition of Eq. 
(18). The first 4 coefficients are 

1 3 
= q-f2;2001 al q-f2;1110 } q- al {3fl;2OlO 3 

1 3 
= - -  " I - f  Z;1101 ) qt_ 2f2;0210 - - f l ; l l l 0  a2 a2 g (2fl;2001 3 3 3 

b~ =f~;2o~o + 51 

1 3 
= --f2;,,lO "3t- 3f2;2001) "~- ~2 b2 g(f,;20,0 3 3 

where the expressions for al, a2,/71 and g2 in terms of the coefficients of the 
quadratic nonlinearities are given in the Appendix. The remaining four 
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coefficients are obtained by conjugat ion of the above expressions, i.e., 
a3 = al, a4 = d2, b3 =/7l and b4 =/72. 

2. Recursive calculation o f  normal form coefficients 

This approach  is based on a series of  papers by Ponce, Gamero  and 
Freire [8, 9, 10, 17] which are, in turn, implementat ions of a me thod  of  
Chow and Hale [4, Chap.  12] which employs a technique developed by 
Deprit  [6] using Lie t ransforms to determine the normal  form. 

In order to remain consistent with the literature, the following nota t ion 
will be used: define F ~, U k, G ~ e Hn k by 

F k = (k - 1)~k(y), U k = (k - 1)!h~(x), Gk(k - 1)!gk(x). 

The first step is a rescaling to isolate the homogeneous  terms of  degree k. 
Letting x ~ ex and y --* ey for e e R, the original system of  Eq. (4) becomes 

~k--i 

j~ = Ay  + k>-2E (k -- 1)~ Fk(Y) (26) 

the near identity t ransformation,  (8), becomes 

~k--~ 

y = x  + k_>2 ~ (k - 1)~ Uk(x) (27) 

and the system in normal  form, (7), becomes 

~k--i 

k = Ax  + ~>_2 ~ (k -- 1)~-~ Gk(x)" (28) 

Following Chow and Hale [4], the sequence {F~} is defined by the 
recursion relation 

k l+2(k-l) 
F~ = F/k_ 1 q- E /Tk--j+ 1 

j=2 j - - 2  - - t - ,  • UJ, 

where F~ = F k, Fll = Ax  and 

0P 0Q 
P x Q =-ff-fx Q - ~ x  P. 

It can be shown (see Chow and Hale [4]) that  

F~ = G k. 

I = 2  . . . .  ,k ,  k = 2 , . . .  

(29) 
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This recursion can be represented by a Lie triangle, 

[(FI)] 

(F~) 

(F~) 

(F, 4) 

(F~) 

F~ [F~] 

F24 F 4 [F 41 

( . )  �9 . . ... [ ' ] .  

The terms in round brackets are from the original system and those in 
square brackets are the final normal form. Each term in the triangle depends 
on those immediately to the left and above. The indexing scheme used here 
is different from that in the above references; the superscript k refers to both 
the order of the monomials in the vector and the row in which it appears in 
the Lie triangle and the subscript refers to the column in which it appears 
in the Lie triangle. 

The recursion operates across rows of the Lie triangle from left to right. 
As an example of what occurs during a recursion, consider the fifth row. F~ 
is a vector containing the order 5 terms in the original system. To generate 
F25, F~ is added to the sum of the terms in column 1 above F~ combined 
with the appropriate UJ's; F 4 x U 2, F 3 x U 3, F~ x U 4, F I x  U s. To generate 
F3 5, F~ is added to the sum of the terms in column 2 above F~ combined 
with the appropriate UJ's; F 4 x U 2, F~ x U 3, F~ x U 4. This process is con- 
tinued until F~ is reached at which time the normal form has been obtained. 
What is happening as the recursion moves across the Lie triangle is the 
accumulation of the order 5 contributions of the near identity transforma- 
tions of orders 2 to 5. In column 2, the contributions from substituting the 
transformations into the original equations are collected. In succeeding 
columns, the contributions from the interaction of new terms generated by 
the transformation and the subsequent transformations are collected until 
finally, in column 5, one has the order 5 terms of the normal form. The 
coefficient (~_-2 t) which appears in the sum is a counting term analogous to 
the binomial coefficient in the binomial theorem. 

Now rewrite Eq. (11) using the new notation 

__ L A  U k -= f fk  __ G k  

where ffk is a vector of the order k monomials resulting from the near 
identity transformations up to order k -  1. If Eq. ( l l )  is rewritten as 

f f~  = G k _ L A  U k 
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then 

prOjker LA* ff'k = G k (30) 

and 

projR# ffk = _ L A g  k. (31) 

However, if (11) is written as 

G k = ffk + L.4 U k 

and it is noted that FI • U k =  ( A x )  • U k =  La  U l', then 

G k =  ffk + F l  x U k. 

Now consider the recursion (29). The only time U k will appear is when 
l = 2, in which case (29) can be written 

k - l / k _ 2 \  k + l  U j U k 
Fk2 = F~ + a-=7_2 ~ j  - 2 ) F ' - J  x + F { x  

o r  

F2 k = f f 2  e + F l •  U k. 

For  1 = 3, Eq. (29) can be written 

-,+ 

o r  

F~ =/?~ + F{ x U k. 

So, for a n y l ,  2 < - l < k ,  

F~ = ff~ + F1 • U k. 

I x U J  

p~ = pk = G k _ LA U ~. 

It is easy to see that the F~ obey the recursion relations 

2) 
F2 k = f f ~ +  _ gl  k -y+ '  x U j 

j ~ 2  

k - l+2  ( k  -- ~ g k _ j +  1 
f f  ~ = f f  ~- ' + ; = 2E I,j - 2 } ' - '  • U ;, l = 3 , . . . , k.  

This recursion is identical to Eq. (29) except for P~, there the F I x  U ~ term 
was left out (and thus will not appear in any of the subsequent F~ ). Thus 
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So Eq. (30) can be used to determine the order k normal form, and if Eq. 
(31) is written 

U k = _LA 1 prOjRn k ffk 

the order k near identity transformation can be obtained. 
In order to continue on to higher order terms in the normal form, it is 

necessary to convert the ff~'s into F~'s. This is accomplished using the 
following correction 

F~ = ff~--projR~ffk, l = 2 , . . . , k .  

IV. Dominant normal form 

In order to study perturbations of a vector field with linear part given 
by the non-semisimple matrix A, we consider the universal unfolding of the 
linear vector field A x  used in van Gils et al. [11] 

A ( 2 ) = (  i+~ i+c~l ), 2=(~,#1,#2) ,  ~ e R ,  # = # 1 + i # 2 e C .  (32) 

This may be calculated explicitly using the homological equation (10) 
applied to first degree polynomials h ~ ( x ) ,  in the same manner as (23) for 
cubic polynomials. The unfolding parameters 2 are found in terms of the 
original linear coefficients to be 

1 1 1 
q-f2;0100 } and # =f2;1000 = 5 {fl;1000 ' 

The above unfolding of A(2) may also be found from the viewpoint of 
versal deformations of matrices, as in Arnold [1], allowing for rescaling of 
time. 

Now, making the observation that z~ = 0 implies z2 = 0 and the normal 
form commutes with S ,  we choose a transformation as in van Gils et al. [11] 

z~ = r e i~, z2 = r ei'Dw, w = u + iv, @ = cot + 0 

which yields three real equations independent of the phase variable 0 

l: = r[~ + u + r2(cl + 2d2v)] 

/~ = #1 - -  /t2 "~ /.)2 ._~ r2(el + 2f2v) 

i~ = #2 - 2 u v  + r 2 ( f l  - 2e2v) 

and 

0 = v + r2(d l  - 2ezV). 
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In order to "blow up" the dominant  terms, we rescale the above variables 
^ ^ ^ ~ ^ 2 ^  2 "  as r = er, u = eu, v =/3v, el = c~ = /30{, #1 = /3 /~1, #2 = /3 ~2" Introducing 

U =  0 and dropping the hats, we have, in new time, 

0' = 20(e + u) +/32c~Q 2 + 0(/32) 

u'  = l.q - u 2 + v2 + elO +/32fzOv + 0(/32) (33) 

U" : # 2  - -  2uv § f lO --/32e20 v + 0(/32) 

and 

0' = v + edl 0 + 0(/32) 

where 

c, = Re(a,),  el = Re(b,), e2 = Re(b2) 

dl = Im(al),  f~ = Im(b,), f2 = Im(b2). 

V. Averaged equations 

In this section, we shall demonstrate the relationship between second 
order averaging and normal  forms for the nilpotent case under consider- 
ation. To this end, we make use of the scaling suggested by Hale [13] for 
linear operators whose superdiagonals are equal to 1. In order to make the 
calculations less cumbersome, we only consider cubic nonlinearities and the 
nonlinear system can be written as 

= A ( # ) y  § F ~  Y3) + F I ( Y )  + F2(Y) + F3(y2, Y4) (34) 

where A is as given in Eq. (22) and the nonlinearities of  degree 3 can be 
written in terms of  the original notat ion as 

4 

= {f,;30o0Y 1 §  2 §  2 3 3 F 0 ~ 3 3 J~;2010YlY3 J~;lo20Y~Y3+f,;oo30Y3}es 
s = l  

4 
F 1 ~ 3 2 --= { f  s;2100Y lY2 3 +fs;2OOl y2y4  3 3 +f,;lllOYl Y2Y3 § f s;lOliYlY3Y4 

s = l  

3 2 3 2 
+ f~;o120YzY3 § fs;oo21Y3Y4}e, 

4 

F2 = ~ {f~;1200Yly~3 +z-3js;loo2YlY42 + f~;llo,YlY2Y43 3 § f s ;o l  11Y2Y3Y4 
s = l  

§  2 3 2 
Js;0210Y 2Y3 § f s;oo12Y3Y 4 }es 

4 

F3 Z 3 3 3 3 = { f ~ ; 0 3 0 0 Y 2  §  , 2 ,  §  , , 2  § J s ; 0 2 0 1  .Y 2.,v4 J s ; 0 1 0 2 . , v 2 y  4 
s = l  
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In order to bring the above equations into "standard form", we make use 
of the scaling suggested by Hale [ 13], which is in line with that of van Gils 
et al. [11], 

Y l = ~ X l ,  Y2 = /~ 2X2,  Y3 = gx3; Y4 = g 2X4 

and transform Eq. (34) to new variables z by means of the transformation 

x j = z j e  TM, X j + z = z j e  -it~ j =  1,2. 

This procedure yields a set of equations in standard form to O(e 2) as 

= eX~ 5, t) + e2Xl(z, ~, t), z = (Z1 ,  Z2 )  (35) 

where 

X ~  Z 2 1 x l = [ e - i ~ 1 7 6  (36) 
e- '~176 5,, t) ' [._ e-i~176 Z, t) J 

and the z equations are obtained by conjugating Eq. (35). Now, applying 
the averaging procedure up to the second order yields 

= ~M{X~ 5, t)} + ~ M  

f a x  ~ aX ~ aWjTo a W_~o+x,(z,e,t)} 
• ( az w + --b-}- lg - az Oe (37) 

where M is the averaging operator defined as 
t 

t i M ( ' ) =  lim 1 --jo T > .  -~ ( . ) d r  

and 

W(z, 5, t) = )70 dt + c(z, 5), 

2 %  5, t) : X~ 5, t) - M{X~ e, 0} 

i.e. 

W1 (z, 5, t) = el (z, s and 

with k(z, ~, t) defined as 

1 3 3 
k ( z ,  _r, t) = 2-~f2;3oooZ 1 e 2i~ - -  

W2(z, e, t) = k(z ,  5, t) + c2(z, ~) 

2~oof~;io20Z, e2 e 2;o,, 1 3 3 4~-(.0 f2;oo30e I e --4icot 

where c is an arbitrary vector function of z and s The choice of c is made 
such that the normal form coincides with the resulting second order 
averaged equations. We have made two observations concerning the 
product terms within the second curly bracket of Eq. (37). Note, in Eq. 
(36), that X ~ is only a function of Zl and 51 and )70 = 0, )70 = 0. Thus, the 
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second order  contr ibut ion f rom k ( z ,  ~, t) is identically zero. The second 
order  contr ibut ions to the averaged equations are 

 2M{c2- L(c,) + Xl(z, z, t)} 

-t-f2;2o,oCl z ,  - -  Z ( c 2 )  "q- X ~ ( z ,  e,  t )} g2Mt {2f32;2010ClZlel 3 - 2 

where 

a ( ' )  ~ 
- O z ' - Z 2 +  v _ ~  f~;20,0z~il O( )_  a( �9 ~zl  z2 ?z2 ) f3;1~176 Zl ~2. L( Q ) 

Compar ing  terms of  like order in the averaged and normal  form 
equations,  the appropria te  choice of  the vector c is given by 

C1(Z , Z) = 0~1Z2, C2(Z , 5) ~- ~2Z251 . 

Equat ing coefficients yields 

3 1 3 3 3 
--f2;11101, --f2;2001 e,f2,2010 -- c~2 = ~ [fl;2010 

- 3 l 3 3 3 
= --f2;11101" ~1f2;2010 - -  ~2 ~ [fl;2010 --f2;2001 

It is obvious that  e1 must  be real. Choosing el to be identically zero, e2 is 
obtained as 

1 3 3 
~2 = - ~ [fl;2010 -f2;2001 -f~;1110]. 

Thus,  the averaged equations are 

~l = ~z2 + e2al(z1~. l )z~ + O(e 3) 

~2 = ebl (z~ ~ )z~ + e 2[b2(z152) + (al - b2)(z1 z2)]z1 ~- O(~ 3). (38) 

The second pair of  equations are obtained by conjugat ing Eq. (38). As 
before, we introduce the universal unfolding defined by matrix A(2) (see Eq. 
(32)) into Eq. (38), use the t ransformat ion 

z l  = r e i~ z :  = r e i~  w = u + iv (39) 

and rescale the variables as 

2^ 2 ^ ~t = #1 = e /~, #2 = ~ #2, c~ = e~. (40) 

After substi tuting Eqs. (39) and (40) into Eq. (38) and dropping  the hats, 
we have the averaged equat ions in terms of  ~ = r 2 as expressed in Eq. (33). 
Thus,  one can conclude that  the dominan t  terms of  the scaled normal  form 
equations (33) agree completely with those of the averaged equations.  
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Appendix  

The t ransformat ions  h ~m, i = 1, 2, which eliminate the quadrat ic  terms 
are: 

1 2 
h2;2ooo = ~-5 (f2;2ooo + imf2,2ooo) 

1 
= -2f,;2ooo +f2;llOO) + i(4f2,2ooo + 2 2 co )c,;,,oo)] 1oo ~ [co( 

1 2 
h2 0200 = 7 a [ _  6f2 2000 + c02( _f2, ,  100 +f2,0200) 

2 2 + ico( -  2f2;2ooo + 2f2;, ,oo + co ~cl;O2OO)] 

h2 lolo_ 1 2 co2 (f2;lO,O -- icof2;lO,O) 

1 
h2;0110=~-3[(2)(  --fl;lO102 ~-f2;0110)2 .~_ i(  --2f2;1010 - -  (.02~fl;0110)]2 

~ 2  5f2;0020 --  icof2;o020 

1 2 2 2 2  
= - -  CO Y,; ,O0, ) ]  h2;lool ~-~ [co(-f , ; lo,o +f2;lOO,) q- i ( -2 f2 ;m,o  

1 
= --6f2;10m + CO (--f , ;o, ,o --fl;,oo, +f2;o,o,) h~;olo1 j [ ~ ~ ~ ~ 

+ ico(2f2 010__ 2 2 (.0 ~#1;0101 )] 

h2oo,~_ 1 [~  ( 4 2 ) ]  q-f2;o011) -{- i 2 2 3co 3 co( _ 2f12 oo2o 2 --~f2;oo2o -- co V1;oo,, 

1 [ 2 2 1 
h 12;0002 = -fl;oo~, f2;0002) - -~f2;0020 q- ~ ( 2 q_ 2 

L 

2 2 _ 

1 2 
h 2;2oo0 = 7f2;2000 

1 
= 2f2;2ooo + icof~;, loo) h2;11oo 7 ( -  

1 
= + co ~%o~oo)] h~;o2oo ~ [--cof2;l~oo + i(--2f2;2ooo 2 2 
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- i  
h 2 ; , o , o  2 = f2;,010 O9 

- - I  2 ' 2  
h22;01,0 = ~ (f2;10,0 + lf2;o, m) 

- i  2 
h 2;0020 = ~ f 2 ; 0 0 2 0  

h 2 1 o o  ' -  - 1  2 co2 (f2;lO,O + i~of~;loo,) 

1 
h2;o~o ,  2 2 ~ = - ~o ~ 2 ; o , o , ) 1  ~-5 [--co(f2;m,o +f2;,oo,) + i(2f2;mm 

h ~ ; ~ 1 7 6  2 2 ) 
~f2;oo2o + iof2;oo,, 

)1 , + i -- (D Y2;0002 " 

The contributions from the quadratic non-linearities to the normal form 
are given by the coefficients &, a2, /7, and/72 and are expressed as follows: 

1 ( l  2 2 3 2  2 1 2 2 
a, =~--~ ~fl ;1omf2;2ooo --f2;2ooof2;lolo -- ~fz;molf2;2ooo q- ~f2;tolof39om 

1 2  2 1 2  2 1 2  2 3 2  2 
+ ~f2;oo20f3;2000 -- ~f2;lomf4;ollo -- ~f2;,o,of4;lOO, -- ~f l ; ,o lof4;m,o 

1 2 2 1 2  2 1 2 2 1 2  2 
~f2;01 mf4;m,o + ~f2;loolf4;,o,o -- ]-~fz;oozof4;l mo -- gfl;oo20f4;2000 

1 2 } i { f  2 2 2  -b ~-~,f2;oo,,f2;2000 + ~-5 22;m10f2;2000 --f22;10mf2;mm -- ~qf2;oo2of4;2ooo 

2 I-3 2 2 - ~f~ 2ooof2 too, + ~f l , ,mof2 ;mm q- ~f2;o2oof2;mm + c o  /~f,;mmf,;2ooo 1 2 2 1 2 1 2 2 
L _  

1 2  2 1 2  2 1 2  1 2  2 
+ ~f,; ,o,of2;1,00 -{- ~f2;,omf2;1100 -- ~f,;o,,of22;2000 + ~fkmolf2;2000 

1 2  2 1 2  2 1 2 2 3 2  2 
,~f2;o,olf2;2000 -- gf2;,o,of3;o, 10 -- gf2;,olof3;,oo, -- gf l ; ,o ,of3; lolo 

1 2  2 1 2 2 1 2  2 1 2 2 
,~f2;01 ,of3;lO,O -- ~f2;oo20f3;, ,00 -- "~f,;oo20f3,2000 - -  ]-'~f2;00l ,f3;2000 

1 2  2 1 2  2 3 2  2 1 2  2 
~f2;,oo,f4;o110 -- ~f2;mo,f<mo, - gf,;loolf4;lO,O -- ~f2;olo,f4;,OlO 

1 2  2 1 2  1 2  2 -]'~ 
1-2 f2;001 ,f4;, mo - ~fnoo, ,f~;2000 - ~f2;ooo2f4;2000 3; 
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f 2 I-1 2 2 1 4 2 2 (.0 ['~fl;2000f2;o110 t~2 = ~-a 22;mmf2;mto -- ~--~f2;oo20f4;2000 -~- 

1 2  2 1 2  2 1 2  2 1 2  2 
"sf1;2000f2;lO01 -I- gf2;Ol~Of2;~ m o -  ~f2;lOOlf2;1100 -{- ~f2;lOlOf3;o110 

1 2  2 1 2  2 1 2  2 2 2 2 
+ gf2;lOlOf3;lOO1 + gfl;lOlOf3;1010 -- gf2;o110f3;1010 -- ~'~f2;oo20f3;llO0 

2 2 2 1 2 2 1 2  2 1 2  2 
~~f,;oo20f3;2000 q- ~~f2;OOllf3;2000 -- gf2;lOlOf4;OlOl +- gfl;lO,Of4;ot 1 0  

1 2  2 1 2  2 2 2 2 1 2  2 
-[- ~f2;o1 lOf4;o110 -{- ~f2;lOOlf4;o110 -]- ~~f2;oo20f4;0200 -- Sfl;lOlOf4;lO01 

1 2  2 1 2  2 1 2  2 1 2  2 
gf2;ol tof4;lOOl '{- gf2;loolf4;100, ']- gfl;Ol lOf4;lOlO "]- ~fl;lOOlf4;lOlO 

1 2 2 1 2 2 1 2 2 
gf2;o101f4;lOlO + ~-~fl;OO20f4;1100 - -  i-~f2;ool x f4;1 loo 

2 2 2 2 2 2 ~fl;OOllf4;2000-+-'~f2;ooo2f4;20001} 

( 1 2  2 1 2  2 i l~f2;lmOf3;lO~O 4 2 2 q- ~ -- ~f2;oo20f3;2000 -- ~f2;101 of4;o110 

1 2  2 1 2  2 1 2  2 1 2  2 
-- ~f2;1010f4;lOOl -- ~f1;lOlOf4;,010 -1- ~f2;o, 10f4;1010 -}- ~fg;loolf4;tOlO 

4 2  2 4 2  2 4 2  2 
q- ~ f2;oo20f4;1100 q- ~-~ f l ;0020f4;2000 - g l  f2;0011 f4;2000 

2 [-1 2 2 -- "~fl;O110fl;2000 + o~ [~f~;lOOlfl;2ooo 1 2 2 

1 2  2 l 2 1 2  2 1 2  2 
~fl;1 lOOf2;O110 - -  ~f2;O110f2;0200 "q- gfl;1100f2;,O01 + ~f2;o200f2;lO01 

+ 

+ 

1 2 2 ~f  l;OllOf 2;llO0 

l 2 2 
~f2;ollof3;ollo 

1 2 
~fl;OllOf~;lOlO 

1 2 2 ~f  2;loolf 4;olm 

1 2  2 1 2  2 1 2  2 
-{- gfl;lOOlf2;1,00 -- gf2;lolof3;0101 -]-- gfl;lOlOf3;O110 

2 2  2 1 2  2 1 2  2 
-+- ~f2;oo20f3;0200 -- ~f,;1010f3;loo, -- g f2;01 lof3;,o01 

1 2  2 1 2 2 1 2  2 
q- ~f1;oo20f3;1100 -- ~-~ f2;o0' 1f3;1 '00 -- ~fl;O0' ,f3;2000 

1 2  2 1 2  2 1 2  2 + -~f,;mmf4;o, ,o + ~fg;o,o,f4;o110 + ~f2;oo1 *f4;0200 
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1 2  2 1 2  2 1 2 : 1 2 : 
~fl;lOOlf4;lO01 -- ~f2;omlf4; lom -k ~f1;o101fe;10m -k -i~fl;ool lf4;11oo 

1 2 2 2 2  2 oo   1ooo  4 oooll 
l{ 

51 co 2 3f21olof22oo o + f 2 1 0 m f 4 2 m  m 2 2 2 ) - + ~f2;oo2of4;2ooo~ 

i { f2  2 2 2 -[- --  2;lolof --f,-2000f2qolo + 2 2 2 2 2;1100 . . 2fl;mmf2;2000 --f2;0110f2;2000 (.0 

2 2  2 1 2  2 ] 
- f2;1 o l 0f2;1010 - 5 f2;oo20f3;2000 - f2;1 oo l f42;1010 -- 5 f2.0011 f4;2000 

f 3 2  2 9 2  2 /~ = ~ 2  2;1010f2;1100 --f2;2000f2;1010 -}- ~f1;1010f2;2000 -- gf2;mmf2;2000 

1 2  2 1 2 2 1 2  2 3 2  2 
+ ~fg;lolof3;lOlO -- ~f2;oo20f3;2000 q- ~f2;lOlOf4;Ol 1o -- ~f2;lOlOf4floo1 

1 2 2 1 2  2 1 2  2 1 2 2 
~fl;lOlOf4;lOm q- ~f2;o,  lof4;m,O q- ~f2;molf4;mlO q- ~f2;oo20f4;llO0 

1 2 2 5 2 2 ) 
1-8fl;OO20f4;2000 -- ~-~f2;oo11 f4;2000 

i { 2 2 2 2 2 2 2 
-f2;lOlOf4;lolo + + 7 3f2;l~176176176176 ~-~f2;oo20f4;2000 

2 [-1 2 2 -- ~fl;2000f2;100, q- ~f l ;1  lOOf2;lOlO +CO L~fl;lolofl;2000 3 2 2 1 2 2 

1 2  2 1 2  2 3 2  2 3 2  2 
~f2;0200f2;mlo - ~fl;lo,of2;1100 + ~f2;lomf2;1100 - -~f~;0110f2;2000 

3 2  2 3 2  2 1 2  2 3 2  2 
q- ~fl;molf2;2000 - ~f2;omlf2;2000 q- ~f2;lomf3;0110 - ~f2;mlof3;lO01 

1 2  2 1 2  1 2 2 1 2  2 
~fl; lOmf3;lOm -+- ~f2;ol  lOf2;lOlO + gf2;oo20f3;1100 - -  ~fl;oogof3;2000 

1 2  2 1 2  2 3 2  2 1 2  2 af2;ool lf3;2000 "1- ~f2;lOOlf4;o110 -- gf2;loolf4;lOO1 -- ~fl;loolf4;1010 

1 2 2 1 2 2 
q- ~f2;o ,ol f4;m,o -t- ~ f 2 ; o o l  l f4;1100 

12 2 1 }  1-2'f,;oo,, f42;2000 -- ~f2,0002f<2000 �9 
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Abstract 

The primary result of this research is the derivation of an explicit formula for the Poincar~-Birkhoff 
normal form of the generalized Hopf bifurcation with non-semisimple 1 : 1 resonance. The classical 
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nonuniqueness of the normal form is resolved by the choice of complementary space which yields a 
unique equivariant normal form. The 4 leading complex constants in the normal form are calculated in 
terms of the original coefficients of both the quadratic and cubic nonlinearities by two different 
algorithms. In addition, the universal unfolding of the degenerate linear operator is explicitly deter- 
mined. The dominant normal forms are then obtained by rescaling the variables. Finally, the methods 
of averaging and normal forms are compared. It is shown that the dominant terms of the equivariant 
normal form are, indeed, the same as those of the averaged equations with a particular choice for the 
constant of integration. 
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