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Introduction 

In 1949, Rivlin [10] applied the general theory of non-linear elasticity 
for an incompressible, isotropic, homogeneous body to study the helical 
shearing of a circular tube for a Mooney material. About 25 years later, 
Ogden, Chadwick & Haddon [9] reconsidered this problem in some detail 
for more general materials. In neither of these works was there an emphasis 
placed upon any detailed structure of the stored energy function for the 
material and how that might relate to the possible existence of equilibrium 
states other than those described. Fosdick & MacSithigh [5] re-examined 
this problem, in 1983, as one of energy minimization with emphasis placed 
on the situation when the stored energy function of the material is not 
convex. Earlier, based on work of Fosdick & Serrin [6], Fosdick & Kao [4] 
had already noted in the context of nonlinear elasticity theory that if the 
cross section of the tube is neither circular nor the annulus between 
concentric circles then an anti-plane shear field (2) is not possible unless the 
material is suitably restricted. More recently, Bauman & Phillips [2] have 
considered this anti-plane shear minimization problem for an elastic tube 
whose stored energy function is in this restricted class, and whose cross 
section is a convex ring. They investigated the issues concerning uniqueness 
and existence of solutions when the stored energy function is not convex. 

For the elastic tube whose cross section is a convex ring and whose 
stored energy function is convex, there is a unique solution to the anti-plane 
shear minimization problem for any prescribed relative axial displacement 
of its lateral boundaries. The smoothness of the minimizer and its gradient 
depends only upon the smoothness of the stored energy function. For a 
material with a non-convex stored energy function, Fosdick & MacSithigh 
[5] have shown that, though the anti-plane shear minimization problem of 
an elastic, concentric, circular tube has a unique solution for any prescribed 
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relative axial displacement of the lateral boundaries, the minimizer must 
possess a jump in its deformation gradient across a certain cylindrical 
surface when the prescribed relative axial displacement of the boundaries is 
given in a well-defined range. This range is determined by the Maxwell 
strains and the radii of the two concentric circles that form the cross section 
of the tube. For an elastic tube with a more general cross section consisting 
of a convex ring, the loss of convexity in the stored energy function implies 
that there is a range in the prescribed relative axial displacement of the 
lateral boundaries where the anti-plane shear minimization problem does 
not have a solution [2]. 

Our interest in this study is in the structure of the deformed configura- 
tion of an elastic tube whose cross section is a convex ring that is subjected 
to a prescribed relative axial displacement of its lateral boundaries. The 
material is assumed to have a non-convex stored energy function. Special 
attention is paid to the situation when there is no minimizer to this 
anti-plane shear minimization problem, but, nevertheless, the energy func- 
tional has an infimum. 

The thrust of this investigation has several folds: First, let the outer 
lateral surface of the elastic tube be fixed and its inner lateral surface be 
displaced uniformly along its axial direction. A natural and practical 
question concerns the relationship between the force applied to the inner 
lateral surface of the tube and the distance displaced by the surface. Clearly, 
the determination of such a relationship requires an understanding of the 
structure of the deformed configuration, and moreover, this relationship 
may be experimentally investigated. Second, plasticity theory is commonly 
employed in the study of problems that involve the damage of materials and 
the localization of deformation (i.e., shear bands). By investigating the 
structure of the deformed configuration of an elastic tube with a non-convex 
stored energy function, we may provide a new perspective on the under- 
standing of  the mechanisms of material damage and the localization of 
severe deformations from an energetic point of view. Finally, the non-exis- 
tence of a minimizer to the above anti-plane shear minimization problem for 
a certain range of prescribed relative axial displacements of the lateral 
boundaries implies that among all "admissible" deformations there is none 
for which the values of the stored energy function correspond to its convex 
points almost everywhere in the body. Because of this, we find that to reach 
the infimum the tube divides into three subdomains: one of  high strain, one 
of low strain, and one of intermediate "mixed" strain. In the intermediate 
"mixed" strain subdomain, the field values of the stored energy correspond 
to convex combinations of convex, but not strictly convex, points of the 
stored energy function. The main variational problem then gives rise to 
a free boundary problem in which the subdomain where the strict 
convexity of the stored energy function breaks down must be determined as 
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part of the solution. The characterization of this intermediate phase mixture 
region is one of the goals of this work. 

We begin in Section 1 by describing the geometry of the cross section of 
the tube, the material constitutive assumptions, and the boundary condi- 
tions. For both simplicity and the ability to obtain more detailed informa- 
tion on the structure of the deformed configuration, we take the cross 
section to be bounded by two non-concentric circles, and we propose to 
consider a trilinear material ([1], [11]). The displacement boundary condi- 
tion requires that the outer lateral surface of the tube be held fixed while its 
inner lateral surface is displaced uniformly a distance H along the axial 
direction. We, then, define the main anti-plane shear minimization Problem 
P1 of this work in (10) and (11) and a corresponding relaxed minimization 
Problem P2 in (16) and (11). Theorem 1 shows that a solution to the relaxed 
minimization problem is unique, and contains some properties that are 
useful in the construction of a minimizing sequence to the minimization 
Problem PI. These results are essentially taken from Bauman and Phillips 
[2]. In Theorem 2, the questions of uniqueness and existence of a solution 
to the minimization Problem P1 are discussed. We determine a specific 
range (Hm, HM) for the prescribed axial displacement H in which there is no 
solution to the minimization Problem P1. This range depends upon the radii 
of the circles, the eccentricity, and the Maxwell strains. 

Section 2 is devoted to obtaining more detailed structure of the solution 
to the relaxed minimization Problem P2 when the prescribed axial displace- 
ment H is in the range (Hm, HM). The attention here is to the subdomain of 
the body (i.e., the phase mixture region) where the field values of the stored 
energy correspond to convex but not strictly convex points of the stored 
energy function. Proposition 2 shows that the contour curves of the solution 
to Problem P2 must be straight lines in the phase mixture region. In 
Proposition 3, after dividing the cross section of the tube into symmetric 
halves, we prove that the magnitude of deformation gradient of the solution 
is monotone along the inner and outer half-boundaries of the cross sectional 
domain. In Proposition 5, we essentially demonstrate that at any point on 
the boundary of the phase mixture region where the normal to that boundary 
is parallel to the direction of the gradient of the solution, the thickness of the 
phase mixture region at that point must vanish. This happens on the axis of 
symmetry of the cross section. Finally, we show in Proposition 6 that the 
interior of the phase mixture region can not intersect the boundary of the 
tube. Thus, a picture that emerges from Section 2 of the level sets u = const., 
which correspond to curves of constant axial displacement for Problem P2 
when H ~ (Hm, HM) , is illustrated (not to scale) in Figure 1. Only the top 
half of the whole region between the eccentric cylinders is shown since the 
figure is symmetric. Notice, in particular, the straight segments for a curve 
u = const, as it runs through the phase mixture region. 
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Figure 1 
Anti-plane shear of eccentric cylinders. Illustration of u = c o n s t ,  curves for H C(Hm, HM) ; 
O < c  I < c2 < H. 

Section 3 contains the results of our numerical investigation, obtained 
by a finite element method as implemented on the CM 200. In Figures 5, 6, 
and 7 we show calculated constant displacement contours for Problem P2 
and the corresponding curves of constant displacement gradient magnitude 
(i.e., shear strain). Also, we exhibit the detailed shape of the phase mixture 
region for Problem P1. Our calculations, here, confirm much of our 
theoretical development in the previous section. In Figure 8 we show how 
the axial force per unit length and the prescribed axial displacement are 
related as the phase mixture region forms and advances through the body. 
Here, to calculate the force per unit length we have used the classical 
relations from nonlinear elasticity theory between stress and stored energy 
function. 

The effort in Section 4 is towards the construction of a minimizing 
sequence for the minimization Problem P1. For a prescribed axial displace- 
ment in the range (Hm, HM), we give the detailed construction of a 
minimizing sequence which, in particular, ensures the continuity of each 
member of the sequence. In Theorem 3, we show that this sequence 
converges weakly to the solution of the relaxed minimization Problem P2. 
That is, the sequence converges to the solution of Problem P2 pointwise, but 
in the phase mixture region the gradient of the sequence converges only 
weakly in L p, 1 < p < oo, to the gradient of the solution of Problem P2; in 
a rough sense the limit takes on the form of a fine grained inhomogeneous 
mixture of two phases (i.e., gradients). Theorem 4 verifies that the total 
potential energy associated with this sequence converges to the infimum of 
the total potential energy within the admissible class of anti-plane shear 
deformations in W1'2(f~). 

Finally, in Section 5, we interpret a few of our main conclusions and 
briefly discuss how our construction of a minimizing sequence carries over 
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to more  general materials. We also discuss the results (c.f., Figure 10) of  a 
preliminary computa t ional  investigation for the anti-plane shear problem 
when the cross section of the tube is bounded  by a fixed outer circle and an 
axially displaced inner concentric ellipse of  small aspect ratio. 

1. Preliminaries 

Consider an elastic, incompressible, isotropic, and homogeneous  cylin- 
drical tube N of  uniform cross section. Let f2 denote the cross section of  ~) 
normal  to its axis, and assume that  ~ is bounded  between two eccentric 
circular domains  f~i, and f~o of radii Ri, and Ro > R~ + le I, where 

~'~i ~ {(Xl, X2) �9 ~3: (X 1 _ e ) Z + x Z < R 2 i }  ' 

~'~o ~ {(Xl, X2) �9 ~3: X 2 + X 2 < Ro  2 }. 

We shall assume that  ~ is infinitely long with axis parallel to the x3 
coordinate direction of  a rectangular Cartesian frame. Thus, 

N' - {(x~, x2, x3) �9 R3: (xl, x2) �9 s and x3 �9 R)}, 

where 

n-no\ i, (1) 

and fi,. is the closure of f~i. The eccentricity of  the domain  is supposed to 
satisfy e > 0, with e = 0 corresponding to a concentric circular ring. 

The tube N is said to undergo an anti-plane shear deformat ion ~ if 

~: (xl, x2, x3) - , ( X l ,  x2, x3 + u(xl ,  x2)) �9 ~3. (2) 

Because the displacement field u is independent  of x3, it will be convenient  
to set x -- (x~, x2), and to let D =- (O/~?xl, ~3/c3x2) denote the two dimensional  
gradient operator.  It is s traightforward to show that  the deformat ion )~ of  
(2) is isochoric, and that  the first two principal invariants of  either the right 
or left Cauchy-Green strain tensor are equal and given by 

I = I I  = 3 + [t~(x)] 2, (3) 

where the shear to(x) has the form 

~c(x) = IOu(x)l" (4) 

On the lateral boundary  of  ~ ,  i.e., on 

{(X,, X2, X3): X �9 ~'~ and x3 �9 R} = ~ f ~  {x3 �9 ~}, 

the axial displacement is prescribed so that  the outer lateral surface of  the 
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tube is fixed and the inner lateral surface is displaced axially by a constant  
value H > 0. Thus,  u(x) is prescribed according to 

u ( x ) = u , = { O  Vx~c~f~o, 
Vx E ~ f~i. (5) 

We let co denote the specific stored energy per unit  reference volume, 
and assume that  co depends upon  the first principle Cauchy-Green strain 
invariant only. Employing (3), we then write co as 

co = co(I) = (o(3 + te2) = 05(te). (6) 

More  specifically, 
([1], [11]) 

05'(~) = #h~c + b  

[#+ te  

we shall consider a trilinear material  defined by 

ifte < K - ,  

i f t e e ( K  ,K+) ,  

ifte > K +, 
(7) 

where o5' = d05(te)/dK, 

# + K  + - # - K -  

#h - K + - K -  

b la- --#+ - K + K  - ,  
K + - - K -  

and #+ ,  /~-, K +, and K are positive constants with K - < K  + and 
# - K -  > # +K +. The specific stored energy associated with (7) then is given 
by 

I l #  --te2 

05(te) =  �89 - K - )  2 + # - K - ( t e  - K - )  + # - , c -  K] 

(2'-#+K2 + 05o 

i fK < K - ,  

if tee  ( K - ,  K+), 

ifte > K  +, 
(8) 

to determine the where 05o = � 8 9  . It is straightforward 
unique values of  tel E (0, K - )  and K2 ~ (K § 0o) with 05'(K1)= co'(te2), so 
that  when te c (tel, te2) the specific stored energy function 05(te) of (8) loses its 
convexity in K. We shall call 05'(tel) --05'(te2) = 05m the Maxwell stress, and 
tel and te2 the associated Maxwell strains. Typical graphs of  05( �9 ) and ( 5 ' ( . )  
are depicted in Figures 2 and 3 respectively. 

We shall not  consider the effect of body force in this work. Conse- 
quently, the anti-plane deformat ion  (2) permits us to write the total 
potential  energy of  N per unit  length as 

efu] = ~ 05(IOul) da, (9) 
dn 
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Figure 2 
The specific stored energy. 

~'(~) 

~'(~1) 

Figure 3 
Gradient of the specific stored energy. 

I 

where da denotes an area element of f~. We say that a stable deformation 
configuration corresponding to the given boundary condition (5) is one that 
minimizes the potential energy (9) in a given class of admissible fields. The 
fundamental minimization Problem PI  then is to 

Minimize E[v], (10) 

where the class d of admissible fields is defined as 

d - {u e w ~ , p ( n ) : p  - 1, u = u* on  0 n } ,  (11)  

where u* is the prescribed displacement boundary data of (5). 
. I f  we let ~(t~)=cS'(~c)/~c, then the Euler-Lagrange equation and 

boundary conditions associated with (10) may be written as 
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D �9 (~(]Dul)Du) = 0 in f~ (wherever u is smooth), 

u = 0  on ~ o ,  (12) 

u = H on 0~;. 

It is not hard to show that ]Du(x)] r (K1, ~2), Vx e f~, for a stable configura- 
tion, so that (7) and (12) imply that whenever u is smooth it must be 
harmonic,  i.e., 

D .  Du = 0 in f~ (wherever u is smooth), 

u =  0 on ~ o ,  (13) 

u = H on 0f~i, 

The class d allows the possibility of  discontinuous deformation gradi- 
ents, in which case a solution to Problem P1 must satisfy an appropriate 
(force balance) jump condition. Let C c fl be a curve across which a 
discontinuity in the deformation gradient occurs and let n be a unit normal 
to C. Suppose Xo ~ C. We shall say that Du(x) -~ Du(xo) + when the limit 
x ~ Xo is taken from the side of  C into which the curve normal n(Xo) points. 
Similarly, Du(x) ~ Du(xo ) -  when the limit x ~ Xo is taken from the side of  
C opposite to which n(Xo) points. The jump condition across C then may be 
expressed as 

~([Du[)Du(x)~.  n(x) = 0 (14) 

for a l l x e C ,  where ~ . ~ - - ( . )  + - ( . ) - .  
Because the specific stored energy function 05(;c) is not convex, the 

minimization Problem P1 may not have a solution. To discuss this situation, 
it is convenient to introduce an associated relaxed minimization problem. 
Let o5"0c) be the lower convex envelope of  05(~:). For  the trilinear material 
(8) of  Figures 2 and 3, 

f05(;c) if ~ ~ (~:1, K2), 05"(K) 
105(K1) + 05;,,(K - ~1) otherwise. (15) 

The associated relaxed minimization Problem P2 then has the form: 

Minimize E*[v], (16) 
v ~ ,~r 

where 

E*M - - -  05*(IouJ) 

It is well known that the minimization Problem P2 always has a solution 
due to the convexity of 05"(~). Also, it is not difficult to show that a solution 
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in ~r of Problem P2  must satisfy the Laplace equation D �9 Du(x) = 0 for any 
x ~ f~ as long as IDu(x)[ r (~:1, x2), and 

D .  e(x) = 0 (17) 

for any x ~ f~ whenever ]Du(x)l ~ (~q, K:), where 

Du(x) 
e(x) =- ]Du(x)l" (18) 

In addition, if there is a discontinuity in deformation gradients across a 
curve C ~ ~,  the jump condition 

n = 0 (19) 

must be satisfied over the curve C, where ~*(~) -&*'(s:)/~c. 
Bauman and Phillips [2] have investigated the issues concerning exis- 

tence and uniqueness of  solutions to the minimization Problem P I  for the 
anti-plane shear of  a tube whose cross section is a convex ring, for a general 
class of materials of  the form (6). They showed that there exists a unique 
solution to the associated relaxed convex minimization Problem P2. Because 
the trilinear material (8) is included in their class of  materials, we know that 
there is a unique solution to Problem P2  for any given e and H. For  later 
reference, we summarize some of the results of  Bauman & Phillips in 

Theorem 1 (Bauman & Phillips). Let f~ be a convex ring. Then there 
exists a solution u to Problem P2  with the following properties: 

(i) u is unique, 
(ii) the level curves 0 -< u = I <- H are of class C1; 

(iii) the unit vector e(x), x ~ ~,  of  (18) is continuous; 
(iv) the set 

f~l - {x ~ f~: u(x) > 1 for 0 < l < H} w f~i (20) 

is convex; 
(v) Du �9 n < 0 and (DDu)n �9 n >- 0 on 0f~l, where n is the unit outer normal 

to ~f~l, l ~  (0, H). 

Proof.  The detailed proofs of these results can be found in [2]. Specifi- 
cally, (i) is Theorem 2.10; (ii) is Lemma 3.1; (iii) is part of  Corollary 3.3; 
(iv) is Theorem 2.8; and (v) is the combination of Lemmas 2.4 and 2.6 
together with an appropriate limit. [] 

For  the trilinear material &(~c) of (8) and the convex ring of (1), the 
solution to the minimization Problem P !  has its own special properties 
which we begin to discuss in 
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Theorem 2. If the eccentricity e = 0, Problem P I  has a unique solution 
for any H. If  e ~ 0, Problem P1 has a solution if and only if H r (Hm, HM), 
where 

In RI [a(Ri + e) - Rol [K + e - Roa]  I 
Hm =- Ro(a 2 -  1) KI, (21) 

in/~(a + l) 
HM "-= Ro ~c2, (22) 

a - - i  

in which 

/~ __= Ro 2 + e 2 - R~ 2 + x/[Ro 2 - (R~ + e) 21 [Ro 2 - (R i - -  e) 21 

a -  

2RoRi 

R ~  + R ~  - e 2 + , / [ R o  ~ - (R i  + e)  2] [ R o  ~ - -  (R i  - -  e)  2] 

2Roe 

Proof. When e = 0, ~ is a concentric circular ring. Fosdick and Mac- 
Sithigh [5] have investigated the solution to this problem for a fairly general 
class of stored energy functions which includes the trilinear material (8). 
The conclusion here follows from their results [5]. 

When e r 0, suppose first that H r HM). It is straightforward to 
show that the field 

H 
u(x) = ~ In R(x), (23) 

where 

2 2 R(x) = x /R~  - a2)2 + [(axl - Ro)(X, - aRo) + ax2] 2 
(axi - Ro) 2 + a2x~ 

satisfies the Laplace equation O �9 (Du(x)) = 0, and [Du(x)] r (~Cl, ~c2) for any 
x ~ f~. In fact, when 0 < H < Hm, it follows that 0 < ]Ou(x)] < ~Cl, Vx ~ fL 
and when H > HM, we have IDu(x)] > to2, Vx ~ ~. Thus, (23) is the unique 
solution to Problem P1 in this case. 

Conversely, suppose that u(x) is a solution to Problem P1. We must 
have either 0 < ]Du(x)] <- ~cl, or ]Du(x)] - •2 for all x ~ ~ by Theorem 5.3 of  
[2]. In this case, the Euler equation for u(x) in fl is the Laplace equation, 
and therefore u(x) must take the form of  (23) because of the boun- 
dary conditions and the standard uniqueness property. Consequently, 
H r HM). [] 

To present our next result, we shall call 

=__ {x IDu(x)l 
o 

and denote f~m as the interior of  f~m. We have 

( 2 4 )  
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Proposition 1. Let u be a solution to Problem P2. Suppose the eccentric- 
ity e is not zero. Let Hm and HM be given by (21) and (22), respectively. 
When H ~ (Hm, HM), the cross section fl is partitioned into three sets fl~, 
~2, and ~m such that 

(i) f~ and ~']2 a r e  open and u is of class C 2'~ o n  f~l w ~2, with 

0<lDu[< l o n ~ l ,  

~2 < [Dul on ~2; 

(ii) ~l < ]Du] < ~c2 almost everywhere on ~m, with ~,~ r ~ .  

Proof. We refer readers to Corollary 3.5 of Bauman and Phillips [2] for 
O 

the proof  of (i) and the first part of (ii). To show f~m ~ ~ ,  we note that if 
O 

tim = ~ ,  then u(x) is a solution to Problem PI, which is impossible for 
H ~ (H,n, HM) because of Theorem 2. [] 

According to Proposition 1 and Theorem 2, w h e n  tim = ~5, Problem PI 
has a solution. Otherwise, Problem P1 has no solution. We observe from 
Proposition 1 that f~m separates the region ff*l where ]Dul e (0, ~c~) from that 
of ~2 where IDu[ ~ (to2, oo). When there is no solution to Problem PI, we 
shall construct a minimizing sequence of deformation fields in d which 
drives the total potential energy (9) to its infimum. First, however, we 
discuss some of the properties concerning ~,~ in the next section. An 
understanding of the character and form of f*m is key to the construction of 
o u r  m i n i m i z i n g  s e q u e n c e .  

2. On the domain of phase mixture 

As noted in Theorem 2, when the prescribed displacement boundary 
data H is in the range (Hm, HM), Problem P1 has no solution. In this 

O 

situation, f~m ~ ~ and the magnitude of the deformation gradient field 
associated with the solution to Problem P2 is bounded below by ~Cl and 
above by •2 for any points in f~m. In a later section, we shall show that for 
Problem P1 there is a minimizing sequence of deformation gradient fields in 
sg which at each x e ~m converges weakly to a particular convex combina- 
tion of two special deformation gradients whose magnitudes are ~Cl and tc:. 
For this reason, we call f~m the domain of phase mixture. 

In order to characterize the shape and form of the phase mixture 
domain f~m, we first give the following 

Proposition 2. Let u be the solution to Problem P2 for a given H. 
Suppose ~m ~ ~ .  Then, the following holds: 
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(i) Each contour  {x e fim" U(X) = l}, for 0 < 1 < H, is a straight line; 
(ii) Let Xo, X e ~  be given so that  I D u ( x o ) l = l q , x  e f2m, and y ( f l ) =  

f l X o + ( 1 - - f l ) x  e f t , ,  for any fl e ( 0 ,  1). Then,  u(y)=U(Xo)  for all 
fl e (0, 1) if and only if x = Xo + Ix - Xo It(Xo), where t(Xo) �9 e(Xo) = O, 
and where e(Xo) is given by (18). 

o 

Proof. (i) Because u is the solution to Problem P2, when ~'~m ~ 
Proposi t ion 1 implies that  ]Du(x)[ e fie1, to3), Vx e f m .  Thus,  u(x) satisfies 

D " Du(x)  _ 0  (25) 
[Du(x)I 

o 

for all x e ~'~m. We rewrite (25) as 

2 = 0. (26) UX 2 UX lX - -  2Ux 11d'x21dx i x 2  - [ -  b / x  i Idx 2x2 

Suppose the generic level set u = const, has a parametr ic  representation 

xl =Xl(e )  and xa=x2(c0  (27) 

with x~, x2 twice cont inuously differentiable and x;(e)  # 0. U p o n  eliminat- 
ing u f rom (26) with the help of  

du 
bl ~ ~ - -  O~ 

de 

which holds true along the generic level set of  u, we derive the differential 
equat ion 

I! t ~t ; x l x 2 - x 2 x l  = 0. (28) 

Then 

\x'ffe)  J = O, 

f rom which we have 

xl (e) + bx2(e) = c, 

where b and c are two constants.  
(ii) Let Xo, x E f~, and y(fi) be given as stated in the hypotheses.  

Suppose first that  u(y(fl)) = U(Xo), for all f l e  (0, 1). Then 

du(y(D) 
- - 0 ,  

dfl 

and by the chain rule 

Du(y(fl)) �9 (x -- Xo) = 0 (29) 
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for all [3 e (0, 1). Because y(1) = X o ,  we then have 

(x  - Xo) �9 D u ( y ( 1 ) )  = (x  - Xo) " e(Xo) = O, 

which implies that 

x - Xo  : Ix  - X o l t ( X o )  

since x - Xo :P O. 
Conversely, suppose x = Xo + Ix - Xo It(xo) e fi,~ and y([3) = flXo + 

( 1 - [3)x, [3 e (0, 1). Then, 

y([3) --  (1  - [3)I x - Xo [t(Xo) + Xo,  

and 

duO,([3))  
- Ix --  xolDu(y([3))"  t(Xo) d[3 

for all [3 e (0, 1). Since y ( 1 ) = X o  and t ( X o ) ' D u ( ( y ( 1 ) ) = 0  by assumption, 
then the straight line y([3), [3 e (0, 1) is perpendicular to e(Xo). Thus, from 
part  (i) of  this proposition, we conclude that y([3), [3 e (0, 1), is the contour 
of the level set u = U(Xo). [] 

Let xt (s )  be a parametric representation of  the level set u = l, 0 < l < H, 
where s is the arc length. We shall denote 2s* as the total arc length of  the 
level set u = l. Because this level set is symmetric about a line through the 
centers of  the eccentric circular regions f~,- and f~o, and ~z is convex by 
Theorem 1, the representation x t ( s )  will intersect the axis of  symmetry at 
two distinct points. Without loss of generality, we assume that the arc 
length s increases as one moves clockwise along xz(s),  and that the direction 
of xl(0) - x t ( s * )  coincides with the negative direction of  the axis of  symme- 
try of  f~. With the above notational agreements, we are now ready to 
investigate how IDul varies along the boundaries of  f~ in 

Proposition 3. Let u be the solution to Prob l em  P2. Then, IDul is 
monotone  along 3f~i and 3f~o for s e (0, s*). Moreover,  let xl e Of~i and 
x2 e ctf~o be such that 

dis t (x l ,  8f2o) = min{lx - YI: x e ~f~ and y e ~f~o } 

and 

dist(x2, a ~ ' ~ i )  = max{Ix - y [ :  x e ano and y e c~f~i}. 

Then, 

I D u ( x , ) l  = max{lDu(x)l: x ~ n}  



Vol. 45, i994 Coexistent phase mixtures 

and 

IDu(x=)[  = min{[Ou(x)[: x ~ f~}. 

215 

Proof. Without  loss of  generality, we shall assume the eccentricity e > 0. 
Let Xo and o be the centers of  ~ and f~o, respectively, and let To be a 
straight line,passing through Xo with unit normal t such that t �9 (Xo - o) > O. 
For any fixed t, let the cap cut off from f~ by To, into which t is directed, 
be denoted by 12o and its reflection through To by Z; so that 

r.o - { x  ~ ~ :  ( x  - Xo) �9 t >- 0}. 

It is clear from the construction that Zo c ~ (Figure 4). 
We claim that 

Du . t <- 0 (30) 

for any x ~ To n O ,  where the equality holds for all x ~ To n O  if t is 
perpendicular to the symmetry axis of  ~.  We shall establish this claim in a 
moment,  but first let us suppose that it holds. Let J? e T o ~ 8 ~ i  and 
x ~ To n ~  so that I x - 2 1  = 6. We observe that To is perpendicular to 
~?f~i at 2, and that, since u is the solution to Problem P2, Du(2)"  t = 
-(Su/~?s)(2) = 0. Because 

~s  ( O u ( ~ )  . n)  = D (~)  �9 n + o~(~) ~ (~) ,  

where n(i)  is the unit outer normal to f~ at $ and ~(~) is the curvature of  
~?f~ at 2, and because 

o ( S U  ) Du(x)  " t - Du(2) " t 
\ 0 s  (2) "n - ~-~01im 6 -> 0, 

Figure 4 
Construction for Proposition 3. 

To 

t 

O O - 
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given by 

D" (~,~([Dul)Du) = 0 in fL 

u = O  on ~f~o, 

u = H on ~f~;, 

(32) 

where ~ (x )  -05,(x)/tc,  and it has a unique solution u~ of class C2'~(~) (see 
Theorem 15.11 of [8]). 

Let G(x) = u~(x') for any x ~ Z'o, where x '  ~ Xo is the mirror  reflection 
of x th rough  To. For  any e e (0, 1), v~ then satisfies 

D . (] ,~(]Dv~ = 0 

l) e ~ bl e 

v~ = 0 < U~ 

in Zo, 

on (To ~g~) w(6Z:  c~ dg~;), 

on OZ: c~O. 

Thus, upon  employing a s tandard comparison principle for elliptic equa- 
tions (see Theorem 10.1 of  [8]), we see that  

v~(x) < u~(x) (34) 

for any x ~ Zo. Since the very definition of v~(x) requires 

DG(x) �9 t = --Du,(x) �9 t 

for any x ~ To c~f~, and since (34) and the boundary  condit ion on To n O  as 
given in (33) requires Dye(x) �9 t >- Du~(x) �9 t, we readily conclude that  

Du~(x) " t <-0 Vx on To~ 

for any e ~ (0, 1). Because a sequence of minimizers to Problem P~ has a 

(33) 

we then have 

0 
c3s (Du(2) . n) >- O. (31) 

The equality holds for 2 on the symmetry axis of f~ since by hypothesis  
Du(x) .  t = 0 for all x ~ To c~f~ when t is perpendicular  to the axis of  
symmetry of  f~. Since (31) holds for any t, then Du(2) "n must  be mono tone  
along ~f~i. 

To show the claim of (30), let 05~(tc) be a sequence of class C3(N +) 
approximat ions  to 05"0c) such that  05'~(K)>0, 05~(0)=0,  05"0c)>0 ,  
105~'(0) - o5""(0)1 -< (e/2)05""(0), and ]05~(~c) - 05"(~c)1 -< e(1 + ~:P), where 
p > 1. For  each e e (0, 1), consider the following minimizat ion Problem P~: 

Minimize {G[v] = fa 05~([Dv[) da } ~ 

The corresponding Dirichlet problem that is associated with Problem P~ is 
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subsequence such that  us ---" u in WI'p(f~), where u solves Problem P2 (see 
Lemma  2.1 of  [2]), we have 

D u . t < O  

on To c~ f~. Moreover,  when t is perpendicular  to the axis of  symmetry of  ft 
we have v~(x)= us(x) in Eo, and consequently,  Du(x) .  t =-0 for any 
x ~ ToC~f~. Thus,  (30) holds. 

N ow let To be a straight line passing through the center of  fro, and as 
before, let t be the unit  normal  to To so that  t �9 (Xo - o) >- O. For  any fixed 
direction t, let the cap cut off f rom ft by To in the direction of  t be denoted 
by Zo and its reflection through To by Eo so that  

Zo - { x  n :  ( x  - Xo) �9 t >- 0}. 
U p o n  employing the above argument ,  we may  conclude that  D u . n  is 
m o n o t o n e  along (?f~o- 

Since Du �9 n < 0 on 0f~i according to Theorem 1, and xl e 0Ft~ is on the 
axis of symmetry of  f~, (31) implies that  Du.  n(x) reaches its min imum 
along (?f2s at x, .  Similarly, D u ' n ( x )  is negative and reaches its max imum 
along (?f~o at x2. Since, according to Theorem 1, (DDu)n .n  > O, we may 
conclude that  IDU(Xl)l is the max imum of  IDu(x)l amd ]Du(x2)l is the 
m in imum of [Ou(x)[ for any x e ~.  [] 

In what  follows, we shall define 

D(~c) =- {x e f~: IDu(x)l > ~c} wf~,, (35) 

and denote by v the outer unit  normal  to ~?D(~c). Thus, by (24) we have 

nm= 
where /)(~1) is the closure of  D(~q). Let d*(x) denote the distance f rom 
0D0c2) to a given point  x e ~?D(~q). Then, d*(x) is given by 

d*(x) = min{ ]z - x]: z e ~?D(~c2) }. (36) 

For  a given Xo ~ ~?D(~I), d*(xo)= 0 if and only if it coincidently 
happens t h a t  Xo ~ t?D0c2). If  d*(x )=  0 for all x e ~D(~q), then D0q  ) = 
D(~c2) and f~m = ~ .  When the eccentricity e r  and H e(Hm, HM), 
Proposi t ion 1 shows that  this possibility can not  happen.  However,  when 
e r 0 it can happen  that  d*(xo) = 0 for some given Xo s ~?D(~q), and in this 
case it is of interest to unders tand how the boundaries ~?D(K1) and ~?D(K2) 
will touch one another.  The remaining two lemmas and three proposi t ions 
in this section address certain aspects of  this issue as well as other special 
properties of  the subdomains  D 0 q )  and D(~c2). 

Lemma 1. The subdomain  DOe), ~c > O, is simply connected. 
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Proof. This result follows immediately from the facts that (i) ]Du[ is 
monotone on &f~ in the sense described in Proposition 3, (ii) f~t, 0 < l < H, 
is convex (Theorem 1), and (iii) Du .n  < 0 and (DDu)n �9 n >- 0, where n is 
the unit outer normal to f~t, 0 < 1 < H (Theorem 1). [] 

Since D(K2) c D(K1) , then Lemma 1 ensures that the boundaries c3D(~q) 
and ~3D(K2) cannot cross, though they can have points in common.  Thus, in 
the case that these boundaries are smooth and touch one another, we have 
the elementary 

Lemma 2. Let u be the solution to Problem P 2  and suppose that the 
boundaries c3D(~i), i =  1,2, are differentiable curves. 1 Suppose X o � 9  
c~D(~:l) n f~  and let v~ denote the unit outer normal to &D(K1) at Xo. Then, 
either Xo r ~?D(~c2) or Xo �9 8D(~c2) and v2 = vl, where v2 is the unit outer 
normal to 0D(x2) at Xo. 

O 

In the following Proposition, we show that for any Xo �9 ~-~m and for a 
sufficiently regular boundary  ~?f2m, the straight line contour  {u(x)=  U(Xo)} 

can meet neither c3D(~:~) nor OD(~c2) twice. In particular, we have 

Proposition 4. Let u be the solution to Problem P2, and let x 1 and 
x2 �9 ~?f~m be two distinct points such that 

(i) ( x 2 -  x~) �9 e(xl) = 0, where e ( ' )  is the unit normal field of  (18), and 
(ii) /3x2 + ( 1 -/3)Xl - x(fl) e f~m for all fl �9 (0, 1). 

Let O~'~m be piecewise differentiable. 2 Then XlE~3O(tci)~ and x2E 
0D(~cj) c~f~, where i C j, and i , j  = 1 or 2. 

Proof. Consider, without loss of generality, X 1 E ~ 3 D ( K I ) ~ .  We 
need only to show that x2 r 63D(Ir For contradiction, suppose 
x2 �9 ~D(~q) c~ ~. 

First, we note immediately, from Proposition 2, that x(fl) is the level 
contour 

U(X(fl)) = U(Xl) 

for all/? �9 (0, 1), and, from the hypotheses (i) and (ii), that 

Du(x2) = Du(x l )  = -- K1 e(xl) .  

In general, the degree of regularity of the free boundary ~?f~m has not been resolved, and is an open 
question which P. Bauman and D. Phillips have been considering for anti-plane shear problems. Our 
computational results in Section 3 indicate that for the problem of this investigation 8f~m is smooth. 
Also, these computations support the view that OD(~cl) and OD(x2) are tangent at points of contact, 
which is the result of this lemma. 
2 See footnote 1. 
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Let 

2 ;  {x efim: (X --X,) "e(xl) >0}, 
and 

0ZI - {x e (?D(~q): (x - - x , )  "e(xl) > 0}. 

We shall conclude, later in this proof,  that  the level contour  
x(fi): fi e (0, 1) c c~2~. However,  first let us suppose that  this claim holds 
and show that  the proposi t ion is valid under  this assumption.  To begin, 
let N(x*) be an open ne ighborhood  of  x * ~  {x(fl): f l e  (0, 1)} in ~2, and 
let N + =-N(x*)c~(f~\D(~cl)). Clearly, then, N + #  ~ is simply connected,  
and {x(fl):fi ~(0 ,  1)}c~N(x*) separates N + and its complementary  set 
N ( x * ) \ N  +. Thus,  we have 

D .Du  = 0  

in N +, and also 

u(x) = U(Xl) and IDu(x)[ = ~cl 

for all x ~ {x(fl):fl ~(0 ,  1)}c~N(x*). Because the level contour  
{x(fi): fi e (0, 1)} c~N(x*) is a straight line, and because u is harmonic  and 
all the level contours  of  u are convex in the ne ighborhood N +, upon  
employing an argument  similar to that  of  L e m m a  2.9 in [2], we find that  all 
of  the level contours  in N + must  have zero curvature. Since (ODu)n �9 n >- 0 
and D u .  n < 0 for any points in f2 (Theorem 1), the ne ighborhood  N § may  
be extended to 3f~o, the particular contour  {u = 0}, which is not  a straight 
line. Thus,  we have a contradict ion,  and so x2 r c?D0cl)c~ f~. 

Now,  in order to show that  the level contour  x ( f l ) c  ~?Xl for all 
fi ~ (0, 1), we first observe that  if such is not  the case there will be a 
sub-interval (fl~,//2) c (0, 1) with x(fli) ~ ~721, i = 1, 2, such that  x(fl) r 021 
for all fi e (ill, f12). We would then have IDu(x(fi))l >_ ~c, for all fl E (ill, f12) 
with strict inequality holding for some fl ~ (ill, f12). In the following, it is 
notat ional ly convenient  and without  loss of generality to rescale temporari ly 
the level contour  x(fi) so that  fl~ and f12 correspond to 0 and 1, respectively. 
Now, to proceed with this counter-possibility, let N1 and N2 be sufficiently 
small open disjoint ne ighborhoods  of  xl and x2, respectively, in N2, and let 
y(c0, c~ ~ (0, 1), be a parametr ic  representat ion for a segment of  the curve 
0Z~ in N1 ~ (~1 with y(0) = xl.  Then, because (~Y~I is piecewise differentiable 
and the level contours  in f~m are straight lines, there is a parameter izat ion 
z(~) e Nzc~Z~  for each c~ e (0, 1), with z(0) = x2, of the form 

z(a) ~-y(e) + s(y(~))t(y(c0), (37) 

with s(y(e)) r 0, ]t(y(a)) I = 1, and t(y(~)) �9 e(y(e)) = 0, such that  

= ( 3 8 )  
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and 

Du(z(oO) = D u ( y ( ~ ) )  = - B; 1 e ( y ( c 0 ) .  ( 3 9 )  

It follows by differentiation of  (38) and use of  (39) that  

(z'(c 0 - y'(c0) �9 e(y(c~)) = 0. 

Further ,  by differentiation of (37) we then find that  

dt (y (~) )  
- - "  e (y (e ) )  = O, 

dc~ 

which, since t(y(cO) is a unit  vector perpendicular  to e(y(cO), implies that  

dt (y (~) )  _ O. 
d~ 

Since this is supposed to hold for all ~ ~ (0, 1), we see that  

t (y )  = t ( x  1 ), e(y) = e (x l  ) (40) 

for all y ~ Nl c~ ~?Z~. Then, by differentiation and use of (39) and (40) we get 

du(y(~) )  dy(~)  dy(~)  
- D u ( y ( ~ ) ) "  ~ -  - Kle(Xl) " - - - ~  , 

which, by integration, gives 

U(y)  = H(X1) - -  l r  �9 ( y  - -  X l )  ( 4 1 )  

for all y e N1 c~321. 
With the above agreement we may conclude that  the straight level 

contour  lines in Z which connect  the corresponding points y(e) ~ N1 c~ c3Z1 
and z(c 0 e N2c~?Z1 for c~ ~ (0, 1) are all para l l e l  to the straight line x(/3) 
which connects x~ and x2. Then, for any x e 2 and corresponding y 
N1 n ~ Z l  such that  (x  - x l )  �9 e ( x l )  = (y  - x l )  " e(xl), we have u(x )  = u(y) ,  
and f rom (41) we see that  

U(X) = U(X1) - -  rO le (x1 )  " ( X  - -  X l ) .  ( 4 2 )  

Since (42) yields D u ( x )  = - x ~ e ( x l ) ,  we find, by limiting x ~x(/3) for any 
/3 e (0, 1), that  IDu(x(/3))] = tq which contradicts the original working hypo- 
thesis that  ]Du(x(/3))l > ~c~ for all/3 e (0, 1) with strict inequality holding for 
some/3 e (0, 1). Thus, x(/3) c 01~1 for all/3 e (0, 1), which shows that  every 
sub-interval of the original (before rescaling) level contour  x(/3) must  lie in 

Because of  this last proposi t ion we now see that  the low strain and high 
strain boundaries  of the phase mixture region, ~?D(~:I) and OD(~2), must  
intersect on the axis of  symmetry of fL This is the content  of  
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O 

Proposition 5. Let ~'~m r ~ "  Suppose Xo ~ ~m and is on the axis of 
symmetry of ~. Then Xo ~ OD(tq) ~ cOO(t~2) (h~. 

Proof. Let u be the solution to Problem P2, and consider, without loss 
of generality, a point Xo ~ ~ c~ OD(tq ) that is on the axis of symmetry of ft. 
We need only to show that d*(xo) = O. 

For convenience, we let (4, t/) denote the coordinates of a local rectan- 
gular coordinate system whose origin is at Xo and orientation is such that 
the positive direction of the ~ axis is e(Xo), where e(Xo) is given by (18) and, 
therefore, is parallel to the direction of the axis of symmetry. Because Xo is 
on the axis of symmetry of ~ and ~/= 0 represents the axis of symmetry, we 
h a v e  

u(x(~, ~)) = u(x(~, -~) ) ,  

and 

]Du(x(~, ~))[ = ]Du(x(~, - t/))]. 

Suppose, for contradiction, that d*(xo) ~ # O. Because D(~2) c D(~q) and 
Du(xo) �9 e(Xo) < 0, we note that x(~, 0) 6 Y~m for any ~ ~ ( -d*(xo) ,  0). Re- 
call fromoProposition 2 that the contours u(x(~, ~I)) = u(x(~, 0)) are straight 
lines in ~m for each ~ ~ ( - d * ,  0). Then, for any ~ ~ ( - d * ,  0), there is a 
t/* # 0 such that one of the following holds: 

(i) x(~, r/*) and x(~, 
(ii) x(~, r/*) and x(~, 

(iii) x(~, r/*) and x(~, 

--t/*) ~ 0D(*q) n {u(x(~, t/)) = u(x(~, 0))} ~ ,  
-11") 6 0D(~c2) c~ {u(x(~, I/)) = u(x(~, 0))} c~Y~, 
- ~ * )  ~ {u(x(~, ~)) = u(x(~, 0))} ~ n o .  

We observe from Proposition 4 that the first two conditions are impossible. 
o 

The last condition implies that there is a subdomain in ~'~m where u = const., 
which contradicts the condition ]Du[-> ~:1 > 0 in ~m. [] 

As noted in Proposition 1, when H ~ (Hm, HM), w e  have (2m # 5Z5. 
Since, according to Proposition 3, the maximum of ]Du] occurs on the 
boundary 0~i, it is inevitable that for some H ~ (Hm, HM) it will happen 
that ~-~m O~'~ r ~.oWe further note from Proposition 2 that the contours 
{u(x) =const . :  x E flm} must be straight lines. Consequently, since the 

O 

boundary of fl is not straight, we must have ~r~ m ('~ ~r-~ = ~ which means 
that it is only possible for the boundaries of ~r~ m and ~ to meet at singular 
points. We state this in 

O 

Proposition 6. Let u be the solution to Problem P2. Then, ~Y~ c~ ~"~m = ~ .  

Proof. Let u be the solution to Problem P2. Suppose, without loss of 
O 

generality, 0Y~o c~ s # ~ .  We let xl and x2 denote two points at which the 
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axis of  symmetry of  f] intersects Of~o so that IDu(xl)l > [Du(x2)[. Because u 
and IDul are symmetric about the axis of  symmetry of  f~, we consider only 
the top half of  f] with the axis of  symmetry of  f] as the base. 

Suppose 2 e 8flo c~SD(K~). We recall, from Proposition 3, that IDul is 
monotone  on the top half of  ~?~o and that the maximum and minimum 
values of  IDu[ occur on the axis of  symmetry of  f~. Also recall, from Lemma 
1, that D(K), ~c > 0, is simply connected. Thus, we have either IDu(x~)[ > ~c2 
or K~ < IDu(x~)l < ~c2. The latter situation is impossible because otherwise 
there is a point z e fl ~ 0D(~2) that is on the axis of  symmetry of  f~ such 
that ~2 > IDu(x)l > ~ for all points x in the interval (z, x~). However, in this 
case Proposition 5 shows that x is also in f~c~SD(x~), which, because of  
(DDu)n .n >- 0 and Du �9 n < 0 in Theorem 1, implies that IDu(x) l < ~ for 
all points x in the interval (z, Xl). We thus have a contradiction. In the first 
situation, since IDu I is monotone along the top half of  ~?f~o, there is a point 
Y e ~?f~o c~ ~?D(~c2) so that y is in the segment of  ~?f~o between a? and Xl. We 
now show that y must coincide with s Suppose y does not  coincide with ~?. 
Then, the segment of  ~f~o between y and 2 is in ~m and is not  a straight line. 
Because u(x) = u(2) = u(y), Vx e ~ o ,  Proposition 2 then requires the exis- 
tence of a subdomain of tim adjacent to ~?~o c~ fimoin which u = u(,~) = u(y), 
which contradicts the condition that IDul ->/s in ~m. Thus, y must coincide 
with s and we conclude that if 2 e 8flo c~?D(~l), then a? e ~?flo n 8D(~2). 

A similar argument will show that if a? e C~oC~?D(~c2), then a?e 
~? f2o c~ ~?D(~cl ). [] 

3. Numerical investigations 

In order to demonstrate the features of  anti-plane shear deformation 
field that were discussed above, we shall present some numerical results for 
the relaxed minimization Problem P2. Because our interest is on the 
structure of the domain of phase mixture, we shall focus on the shape of this 
region and on the contours u = const, in this domain. These matters, in 
particular, are numerically delicate because they are concerned with shear 
strains where the relaxed specific stored energy function for Problem P2 is 
no longer strictly convex. We are especially grateful to our colleague Sanjay 
Mittal who gave us a finite element code which he developed for the Cray-2 
with a direct solver to study the Problem P2. We revised his code so as to 
be compatible with the Connection Machine parallel environment and a 
GMRES iteration scheme, and the numerical results presented here were 
then obtained using the CM-200. 

For  the numerical investigation, we suppose that the cross section f~ is 
defined by the outer radius Ro = 1, the inner radius Ri = 0.25, and the 
eccentricity e = 0.25. The material constants of  the specific stored energy (8) 
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are specified so that K1 = 1, ~c2--2, # -  = 2, and #+ = 1 (see Figures 2 and 
3). 

For the given geometry of the domain f~ and the specified material 
constants, it follows from (21) and (22) that the lower and upper limits of  
the displacement H, between which Problem P1 has no solution and 
Problem P2 has a unique solution with part of f~ supporting shear strains in 
the nonconvex range (tq, to2), are Hm =0.28512975 and HM =4.562076. 
Recall from Theorem 2, then, that the domain of phase mixture occurs if 
and only if the prescribed displacement H lies in the range (0.28512975, 
4.562076). For the purpose of illustration, we shall consider the cases when 
H = 0.9, H = 0.31, and H = 4.3. In the first case, when H = 0.9, the whole 
domain of phase mixture f~m is contained in ti. In each of the latter two 
cases, since H --- 0.31 and H = 4.3 are close to Hm and HM, respectively, we 
find that the domain of phase mixture tim intersects the inner and outer 
boundaries of f2 accordingly. Of course, this intersection can not  contain 
interior points of t,~ because of Proposition 6, and, in fact, only boundary 
points are observed numerically. 

C a s e  H = 0.9 
In Figure 5, the contours of ]Du[ = const, in ~ are shown. Since our 

main concern is the structure of the phase mixture domain ~m and the 
deformation field is symmetric about the symmetry axis of ~, we plot in 
Figure 5 only the contours of  IDu] >- 0.80 for the top half of ~. We observe 
from Figure 5 that the cross section ~ is divided into three regions ~ ,  ~2, 
and tim. In ~1 and f~2, I Du] is smaller than /~1 ~ 1 and greater than ~c2 = 2, 
respectively. Over the thin dark region tim, [Du] varies rapidly from ~Cl on 
the outside boundary to ~c2 on the inside boundary of tim. Because the 
region f2m is very thin, a set of fine mesh has been introduced in order to 

S ft,. 

A B 

Figure 5 
Contours of tDu I = const, for H = 0.9. 
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capture the phase mixture domain ~'~m" To reduce the computat ion cost, we 
employ a set of  coarse mesh for the region in f~ where the mixture domain 
is not expected to occur. From Figure 5 we observe that the distances 
between the two boundaries of f~,, at points A and B are very small. 
Because these two distances are about two or three mesh sizes, and they 
become smaller when a smaller mesh size is used, we infer from the 
computat ion that the two boundaries of ~'~m a re  tangential to each other at 
A and B. This is a confirmation of  the result of  Proposition 5. 

The structure of  the region f~m is further demonstrated in Figure 6. In 
this figure, we magnify a small region S that is located near the top center 
of  ~'~m as shown in Figure 5 and plot the contours of  [Ou I --const.  and 
u = const, in Figure 6a and Figure 6b, respectively. Comparing these two 
figures, we observe that in the darker region, where IDul = const, varies 
from K1 to tr (Figure 6a), the contours u = const, are straight lines (Figure 
6b). This is in agreement with Proposition 2. 

C a s e s  H = 0 . 3 / a n d  H = 4.5 
Figure 7 shows the contours of [Du I = const, for H = 0.31 and H = 4.5, 

respectively. The very thin dark region defines ~, , ,  inside of which 
IOul = const, varies from xl to ~:2. For  H = 0.31, this phase mixture region 
is close to the inner cylinder and it occurs on that side of the cylinder which 
defines the narrow gap for fL Notice, in Figure 7a, there is a small crescent 
domain next to the inner cylinder in which [Du I > x2. For  H = 4.5, the 
phase mixture region is close to the outer cylinder and it occurs on that side 
of  the cylinder which is in the wide gap for f~. Notice, here, in Figure 7b, 
that there is again a small crescent domain adjacent to the outer cylinder in 

g < / g l  

(a) (b) 

Figure 6 
Blow-up of a small region S near the top center of f~m in Figure 5 for H = 0.9. (a) Contours of 
]Ou I = const.; (b) Contours of u = const. 
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(a) (b) 
Figure  7 

Con tou r s  of  ]Du I = const,  for f2 m near  the b o u n d a r y  of  f2. (a) H = 0.31; (b) H = 4.5. 
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which IDul < tq. As we see from the figures, the domain of phase mixture f~m 
intersects with the inner or outer boundary of f~, depending on whether H = 
0.31 or 4.5, respectively. Because we are interested in the geometry of the 
domain of phase mixture, Figure 7 contains only the contours of  ]Du I = const. 
in a small region near the boundaries of f~ that include the intersection of 
f~m with ~?f~. The thickness of the thin dark regions in the figure are about 
two or three mesh sizes. Because the mesh size is not zero, Figure 7 shows 
that the intersection of the interior of the thin dark regions f~m does not vanish. 
However, the intersection of the interior of the dark regions tim with ~?f~ 
becomes thinner as the mesh size is reduced, which we take as an indication 

O 

that ~?f~c~ f~,, = ~3. This is the content of our earlier Proposition 6. 
In Figure 8, we show the axial force per unit length applied to the inner 

cylinder as a function of the distance that the cylinder is displaced. At point 
a in Figure 8 the phase mixture region ~m first starts to appear in f~. 
Between the origin and a, the minimization Problem P2 is quadratic and the 
field theory is linear, so the graph in Figure 8 is linear. Between points a and 
b the phase mixture region has two points of attachment to the inner 
boundary. One of them can be seen in Figure 7a where the dark thin region 
intersects the circular boundary, and the other is symmetric with respect to 
the horizontal base of this figure. At b f~m detaches from the inner boundary 
~?f~. As H is increased further, f~m consists of a ring in f~ which has zero 
thickness at the two points where it crosses the axis of symmetry of  the cross 
section of f~. After point b in Figure 8 the ring f~m is inside, and moves 
toward the outer boundary of f~. At the same time the axial force per unit 
length F increases but not as rapidly as it did between the origin and point 
a, before the phase mixture region appeared. Eventually, for some finite H, 
the graph in Figure 8 will turn upward and become a straight line with a 
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F 

/ /  

Figure 8 
The axial force per unit length F vs. the relative axial displacement H. 

somewhat smaller slope than that between the origin and point a. When this 
happens, ~ no longer contains a phase mixture region ~m. It is possible that 
the characteristic slopes of Figure 8 can be significantly altered by choice of 
the material constants which characterize the specific stored energy func- 
tion. To some extent these slopes will also depend on the geometry of the 
cross section ~. These parametric studies have not been performed. 

4. A minimizing sequence 

In this section, we shall construct a minimizing sequence for the 
Problem P1 for the situation when the eccentricity e :~ 0 and the applied 
displacement H ~ (Hm, HM). While in this case we know from Theorem 2 
that Problem P1 does not have a minimizer in d ,  this does not preclude the 
existence of a sequence in d for which the total potential energy limits to 
its infimum. Because there is a unique solution to Problem P2 (cf. Theorem 
1), it is natural to base the construction of such a minimizing sequence on 
this field. In order to do this, we begin with the following 

O 

Lemma 3. Let u be the solution to Problem P2. Suppose ~"]m :~ ~ "  Then, 
O 

for any fixed X ~ m ,  there exist unique points y e O D ( ~ q ) c ~  and 
z e 0 D ( ~ 2 ) c ~  such that u ( x ) = u ( y ) =  u(z), and e ( x ) = e ( y ) = e ( z ) ,  where 
e ( . )  is the unit normal field of (18). Moreover, for any point x*( f l )=  
fly + (1 - fl)z,/3 ~ (0, 1), on the straight line between y and z, it happens 
that u(x*(fl)) = u(x) and (x*(fl) - x) . e(x) = O. 

This lemma follows as aoCOnsequence of Propositions 2, 4 and 6. First 
recall that the level set {x ~ f~m : u(x) = const.} is a straight line by Proposi- 
tion 2. Because the displacement field is continuous in ~, the straight line 
must intersect with one or more of the boundaries 3D(K1), OD(~2), or c~.  
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O 

However,  since Proposi t ion 6 shows that  tim ~ ~?fl = ~ ,  and since Proposi-  
t ion 4 shows that  the set {x e Am:U(X)= const.} can not  intersect either 
8D(K~) or ~?D(K2) twice, the straight line can only intersect with both  ~?D(~q ) 
and ODffc2). 

Proof. Let X e ~ m  be given. Because the level set { x e f i m "  
u(x) =cons t .}  is a straight line, by Proposi t ion 4 there must  exist a 
y ~ ~D(tq) ~f~ and a z ~ ODffc2) c~f~ such that  u(x) = u(y) = u(z) and 
e(x) = e(y) = e(z). Moreover,  there cannot  be another  such y and z because 
neither ~?D(~q) nor  ~Dffc2) can be intersected more  than once. In any other 
case, the level set will intersect the boundary  0f~, which is impossible 

O 

because ~m ~ f ~  = ~3 by Proposi t ion 6. [] 

Lemma 3 shows that  when e # 0 and H ~ (H,,, HM), the solution to 
Problem P 2  has the impor tan t  proper ty  that  for any y E c?D(~cl)~f~, 
there exists a unique associated point  z ~ ~?Dffc2) ~ f~ such that  u(y) = u(z) 
and e ( y ) =  e(z). Stated another  way, consider the straight line 5 ~  
{x e f~m :U(X)= u(y)}. Then, we see immediately f rom Lemma 3 that  for 
any Yl, Y2 ff 0D0q ) m fl, s ) c~ ~'(Y2) = 595 if and only if Yl :~ Y2. We shall 
use this property in the construct ion of  a minimizing sequence for Problem 
P1. 

To aid in this construct ion we introduce the angular  coordinate 
0 -  a r c t a n ( x 2 / ( x ~ - e ) )  for points x = (x~, x 2 ) e  f~ as measured f rom the 
center of f~i, and because of  symmetry consider only that  half  of f2 where 
0 e [0, ~z]. We denote by y(O) and z(0) the two parametric representations of  
0D(K~) n f~ and 0 D 0 r  respectively. In both  cases, by Theorem 1 and 
Lemma 2 the range of  0 will be [0, re] if ~D(1r c fl and c?D(~c~) m~?f~ = ~3. 
Otherwise, the range of  0 will be subinterval of  [0, ~c]. We shall concentrate 
here on the construct ion of  a minimizing sequence when the range of  0 is 
[0, re]. For  the alternative situations, the construct ion is similar. 

Notice that  0 = 0 or rc if and only if x2 = 0. Thus,  the points y(0), z(0), 
y(rc), and z(rc) are on the axis of  symmetry,  and by Proposi t ion 6 we know 
that y(0) = z(0) and yffc) = z(rc). We now use the solution u to Problem P 2  
to part i t ion the parametr ic  representations y(O) and z(O), 0 ~ [0, 7c], of  
~?D(~q) ~f2 and 0D0c2)h i ) ,  respectively, into N sections with Y o , . . .  ,YN, 
and zo . . . .  , aN, as associated end points of  each section. In particular, we 
set (see Figure 9) 

- u ( . v , )  = u ( . v ,  _ ) + a u  

and 

u, - u ( z , )  = u ( z ,  _ ,  ) + a u  
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for i = 1 , . . . ,  N, where 

A u  - -  
u(y(0))  

N 
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(43) 

The possibility of  this part i t ion is ensured by Lemma 3, f rom which we also 
infer that  

ei -- e(yi)  = e(zi),  i = 0, 1 , . . . ,  N. 

Because e(x) is continuous,  these normal  vectors to the constant  u; contour  
lines satisfy ei - -  e;_ 1 --+ 0 as N --+ 0% a fact we shall use later. 

Let Yi and Yi-i  be two generic end points of  the part i t ion on 
y(O), 0 ~ [0, re], and let f ~  be a subdomain  of  ~'~m of the form 

~'~i ~_. {X  (= t im " U(X) ~ (Ui_ 1, Hi) ). (44) 

For  convenience, we shall denote by s* the distance between Yi and zi, i.e., 

s* = l Y i -  zi], (45) 

and define 

Zi - -  Yi (46) ti-Izi-yil" 
In addition, for any x ~ f~,, let 

s i (x)  = (x - Yi ) " ti, (47) 

I~ i (X)  ~ (Yi--1 - -  X)  " e i_  l ,  (48) 

and 

Zi(X ) = (X - - Y i )  "ei. (49) 

(All of  this nota t ion is exhibited in Figure 9.) Then, for each fixed N, we 
construct  a local displacement field ~tN(X) for x s f~,, by 

~ui - Kx'ri(x) Vx  E fYm and z i (x)  ~ (0, "c(si)), (50) 
fflN(X ) 

u i - 1  + ~:2o-i(x) Vx e fYm and ai(x)  ~ (0, a(si)), 

for all i = 1 , . . . ,  N, where z(si) and o-(s,.) are two unknowns  to be deter- 
mined so that  the field ~N(X) is single valued and cont inuous in f~,. We see 
immediately f rom (50), (49), and (48) that  

f - - r O l e  i VX ~ ~im and z i (x)  ~ (0, z(si)),  
D~tN(X) (51) 

"~[-~2ei-i Vx e f ~  and o-i(x) e (0, a(si)). 

Now, to determine z(si) and o-(s;), we note first that  any x e f ~  may be 
represented by either 

X : Yi q- siti ~ ~iei, 
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o r  

X = Y i  - 1 -~- S i -  I t i  - 1 - -  ~Tiei - 1 �9 

The continuity of UN at z~(x) = z(si) and ai(x)  = o-(s;), then implies that 

Y i  q- S i t i  -]- ~ ( s i ) e i  = Y i -  1 q- S i -  l t i -  l - -  f f ( s i ) e i -  | ,  

and 

bl i 

Thus, 

- -  KI T(Si  ) ~- Ll i_ 1 -~- K2[7(Si  ) .  

and 

( 52 )  

( 53 )  

 (si) = (55 )  
ls " e i -  1 - -  K1 

In addition, we find that si ~ is related to si by 

Si -- t = Si t i  " r - 1 - -  t i  " ei  - l $i 1 " e i  
K 2 e i  ' e i -  i - -  K1 

[ K 2 e i ' t i - l  e i - l l  q - ( l g i - t - u i ) e i ' t i - I  

- ~ - ( Y i - - Y i - l ) "  t i - i  - - K 2 e i . e i _ l  _ K 1  g 2 e i ' e i - l - - K l  

(56) 

From (54) and (55), we emphasize that z(si) and a(s~) depend upon 
x ~ f ~  through s~. Thus, for a given x ~ ~ ,  to determine the value of ~x, 
we first compute the value of s~ by using (47). Then, we calculate z(s~) and 
a(si) according to (54) and (55), respectively. Finally, we determine value of 
Z~N from (50), (48) and (49). 

The displacement field ~U given in (50) defines a continuous field in ~,~ 
for any fixed N. Notice, also, from Proposition 2, that the solution u of 
Problem P 2  satisfies u ( x ) = u i  on each of the lines ( x - y z ) . e z  =0 ,  
i =  0, 1, 2 , . . . ,  N, in the phase mixture region Ore. Thus, ~tu(X) = U(X) in 
(50) at both z~ (x )=  0 and o-~(x)=0. In general, however, f i N ( X ) r  U(X) 
along the curves y(O) and z(0), 0 ~ [0, re], except at the N + 1 pair of poin ts  
yi and zi, i =  0 , . . . ,  N. Now, we wish to connect the field UN(X), defined 
above for all x E f~m, to the field that represents the solution u of Problem 
P 2  in the remainder of f~ so that the composite field is continuous in all of 
fL We shall do this by introducing thin interpolation regions near the curves 
y(O) and z(0), 0 ~ [0, re]. We used a similar construction for our work in [7], 
but in the present application there are always two transition interpolation 
regions to consider. 

(ul -- ui_ l)ei " ei_ l -- tq [(Yi-1 - -  Y i )  " ei-1 - -  S i l l "  ei 1 ] 

K 2 e i  " e i -  l KI 

1 - -  Y i  ) " e i - 1  - -  s i t i  " e i _  l]  - (Ui - -  U i - -1 )  
 (Si) = , ( 54 )  
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We shall denote by f~o(C3D(~l)) and f~,o(OD(x2)) two interpolat ion 
regions that  neighbor ~?D0Cl) and ~D(tc2), respectively. These two subdo- 
mains of f2\f~m are defined as 

neo(~D(h:l)  ) = {X �9 f&D(~cl): 0 < d(x, OD(xl)) < eo} 

and 

f~no(~D(K2)) = {x �9 D(~c2)\f~,: 0 < d(x, ~D(K2) ) < t/o}, 

where eo and r/o are positive, and d(x, 0D(K~)) and d(x, ~D(~c2)) are the dis- 
tances between x and the boundaries ~D(~q) and ~D(K2), respectively, i.e., 

d(x, ~D(/Zl)) = m i n { l x -  y]: y �9 ~ D 0 c , ) ~ n } ,  

and 

d(x, c3D(tr = min{lx - z]: z �9 ~?D(~2)~f~}. 

The numbers  eo and t/o define the thickness of  the interpolat ion subdomains  
f~.o0?D(Xl)) and f~,o(~D(K2)), respectively. Since, as noted earlier, our  
present construct ion assumes ~ D ( ~ : l ) ~ 0 f ~ = ~ ,  then eo and t/o can be 
chosen sufficiently small and positive such that  f~o and f~,o do not  intersect 
the boundaries of  f~. 

Consider  the auxiliary function 

h(s;So) = - 2  3 _ s _  2 (57) 
\ So l  

for s �9 (0, So), where So is a positive parameter.  This function is certainly 
differentiable for s �9 (0, So), and it satisfies h(0; So) = 0 and h(so; So) = 1. We 
record 

h'(s; So) = ds So - (58) 

for s �9 (0, So), which shows that  for any s = ~So, c~ �9 (0, 1), Ih'(s; So)l OCSo 1 
as So ---, O, and h'(c~So; So) = 0 at c~ = 0 or 1. 

Now, let f l (x ;  eo, ~3D(tq)) andf2(x ;  r/o, OD(x2)) be two functions defined 
in f~ so that  

fl(X; go, aD(xl))  = (d(x, aD(~cl)); eo) 

and 

f2(x; qo, ~D(x2)) = (d(x, 0D(~c2)); qo) 

X �9 D0r  , 

X �9 ~ o ( ~ D ( K 1 ) ) ,  

X �9 ~ \ ( D ( ~ c l )  w ~o(~D(~Cl))  ), 

(59) 

x �9 f~\D(~c2), 

x �9 ~dno(~D(K2)), 

x �9 D ( x 2 ) \ ( f ~ ,  u f~no(aD(x2))). 

(60) 
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Then, 

Df~ (x; eo, ~3D(~q )) = 

t ! ' (d(x ,  6qD(t-r 1 )); 8o)Dd(x, 6D(tq )) 

and 

x 6 D(~Cl) , 

x e ~o(~D(tq)) ,  
x e fl\(D(~:~) ~neo@D(lr , 

(61) 

Dfz(x; r/o, aD(tr = 

x 6 ~\D(K2),  
'(d(x, c~D(~c2)); r/o)Dd(x, OD(~c2)) x ~ f~.o(OD(~2)), (62) 

x 6 D(~2) \ (n i  w ~,o(0D(K2))). 

Since the curves [Du[ = const, in fl \flm are smooth,  due to the nature of  the 
Dirichlet problem that  is associated with Problem P2, it is clear f rom (57) 
to (62) that  f i(- ;  Co, ~D(~l)) and f i ( . ;  r/o, c~D(~2)) are of  class C l. 

It is s traightforward to show that  for any fixed N, eo, and r/o, the field 

UN(X) = UN(x) + f l  (X; 80, OO(K,))(u(x) 1 ~N(X)) 

+f2  (X; r/o, OD(Ic2))(u(x) - fflN (X)), (63) 

where u is the solution to Problem P2, is cont inuous in f~; the gradient is 
given by 

DUN(X) = D~N(X) + ( f l ( x ;  80, OD(Xl)) 

+ f2 (X; qo, OD(tc2)))(Du(x) -D~tu(X)) + (D f ,  (X; eo, OD(tq)) 

+ Of2(x; r/o, OOOc2)))(u(x) - UN(X)) �9 (64) 

We observe f rom (64) and (59) - (62)  that  for any x $ (Ore u~,o(OD(tq)) W 
O,o(~D(x2))), DUN(X) = Du(x). Also, notice that  for any fixed N, 80, and r/o, 
we have [DUN(X)[ = /s o r  /t02 when x ~ tim, and IOuN(X)l is bounded  when 
x ~ f~o(C?D(tq)) w f~.o(C?D(x2)). In addition, the displacement field UN(X) of 
(63) satisfies the prescribed displacement boundary  condit ions of (5) be- 
cause for any x ~ ~f~, UN(X) = U(X), which is the solution to Problem P Z  

In the above considerations we have concentrated on the situation 
~?D(~:1) r = ~ ,  so let us now consider briefly the alternative case when 
c ~ D ( t q ) n 0 f ~ # ~ .  As an example, suppose ~D(/r ~ but  
cDD(~:~) c~0f~,-= ~ .  We know from Proposi t ions 3 and 6 that  the sets 
OD(~q)nO~o and O D ( x 2 ) ~ O  o are equal and contain only two points  
that  are located symmetrically with respect to the axis of  symmetry of  
the domain  l'~. Let 2 denote one of  the points of  this set with ff=- 
a rc tan(22 / (2~-e) )  ~ [0, re]. In this case, the range of  the angle 0 that  
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describes the boundary ~ D ( t q ) c ~  must be (g, 2 ~ -  0") because of the 
symmetry of the solution of Problem P2. We shall focus on the half-range 
of (~, ~]. As in the previous construction, here we also partition the 
parametric representations y(O) and z(O), 0 ~ (0", zc], into N sections with 
Y(~) = Yo = 2 and y(~) = YN, where YN lies on the axis of symmetry of the 
domain ~. The increment of displacement Au for this partition is given by 

Au - u(y(n)) - u(y(O')) _ uO'(n)) (65) 
N N ' 

where u is the solution to Problem P2. We now replace (43o) by (65) and 
construct the continuous local displacement field ~N(X), X e ~m, as in (50). 
Because 2 e OD(Xl) c~ ~ o ,  the distance between the parametric representa- 
tion y(O) and ~flo approaches zero as 0 ~ 0". In order to guarantee that the 
interpolation regions rico and f~,o do not intersect with the boundary 0flo, 
we shall choose, for any y ~ OD0cl) c~fl, 

eo -- min{d(y, Off), g} = Co(Y), (66) 

and, for any z ~ ~D(~q) n fl, 

t/o = min{d(z, ~f~), g} = ,o(Z), (67) 

where g is a small but positive number. Keeping the above definitions of eo 
and t/o in mind, we shall again take for the displacement field UN in ~ the 
form (63) for any fixed N. Clearly, this field is continuous in fl, and to see 
that it satisfies the displacement boundary condition, we note that because 
of (66) and (67) the interpolation regions fl~o and ~,o do not intersect with 
the boundary 0~o and we recall that UN(X) = U(X) for any x e ~ and for 
every fixed N. 

A similar line of reasoning also may be applied to the other situations 
when 0D(~c~)~0~ ~ ~ .  Therefore, we consider (63) to be the generic form 
of an admissible sequence of displacement fields for any e # 0 and 
H ~ (Hm, HM). For this sequence, we have the following 

Theorem 3. Let e # 0 and H ~ (Hm, HM).  Let u be the solution to 
Problem P2  and define UN through (63). Suppose eo and r/o are of order N -  
for sufficiently large N as N ~ ~ .  Then, 

(i) for large N, UN ~ W~'P(fl), P -- 1, and UN ~ d ;  
(ii) UN(X)---" U(X) in WI'P(fl), p -> 1, as N ~  ~ ;  and 

(iii) for any fixed sufficiently large N, 

DUN(X ) = ON(x) 

for any x ~ ~ \ ( f ]m w~o(~D(~q) )  ufl,o(OD0c2))), and 

DUN(X) ~ -- [)~(X)IQ + ( 1 - ~(x))lc2]e(x) ( 6 8 )  
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in L p, 
and is 

2(x) 

Here, 
U(Z) = 
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o o 

p -> 1, a.e. in f~m as N --+ oo, where 2(x) e (0, 1) for any x e f*m 
given by 

~ 2 l z - x  I 
x2lz - x[ + ] x -y]" (69) 

y saD(tq)c~f~ and z ec3D(x2)~F~ are such that u(y)= 
u(x) and (.V - z) �9 e(x) = (z - x) �9 e(x) = O. 

Proof. (i) As noted earlier, after (63) and (64), UN(X ) and DUN(X ) a r e  

bounded in f2, and clearly from (59) and (60), fl(X;eo, aD(~cl)) and 
f 2 ( x ;  rio, 0D(/r are in Wl'p(ffZ),p > 1. Thus, UN(X) ~ Wl'p(fft),p > 1. Be- 
cause UN(X) also satisfies the prescribed displacement boundary  condition, 
as remarked above, it follows that UN(X) E d .  

(ii) Consider first the subdomain (ftm W~o(~D(~q))wf~,o(OD(x2))). Let 
o 

x = x* E f2m, and observe from (50) that for any fixed N there is an integer 
i* ~ [ 1 , . . . ,  N] such that x* s f~ff,. Thus, by our earlier construction, we 
have UN(X* ) ""~U(X*) as N--.  co. Now, recall that as N ~  00, we have eo and 
~lo~O, ~=o(~O(~q)) and f~,o(~D(K2))--,~, and UN(X)--'U(X) for all x e  
~?O(~cl) w ~?D(~c2). Because UN(X) = U(X) for any x ~ ~\(f~m wf2%(?D(tq)) w 
F2,o(~D(~c2))) and for every fixed N, we see that UN(X) --+ U(X) pointwise in f~. 
Moreover,  because of  this, it is straightforward to conclude that 

lim ;n d~ " DuN da = fn ~ " Du da, 
N--~ oo 

for any ~b e C~.  Therefore, we have 

Du N --~ Du 

in L p, p > l, as N ~ oo. Consequently, uu ~-  u in wl 'e(~) ,  p > 1, as N ~ oo. 
(iii) It is clear from the above remarks that, for any x e 

~\(~'~m wf~o(OD(~:l))wO,~o(OD(~:2))) and any fixed N, 

D H N ( X  ) : DU(X) .  

To see that (68) holds, we need merely to show that 

Du(x) = -[2(x)~:1 + (1 - 2(x))~c2le(x) (70) 
o 

for any x e tim. Then, the conclusion follows immediately from (ii) of  this 
theorem. 

o 

Let x e ~'~m be given. Then, for any fixed N, there is an integer 
i e [ 1 , . . . ,  N] so that x e f Y .  In ~,= the contour  curves are straight lines. 
Now, consider an integral curve x(p), p ~ [0, p'], of  the normal field e(x(p)) 
to these contour  curves, that passes through x and is such that 

u(x(O)) = ui and u(x(p')) = U~_l. 
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When N is sufficiently large, if we let Se and t i be defined as in (47) and 
(46), then this integral curve is an approximately straight line and we may  
write 

x (p ' )  ~- x(O) + L(x)ee = Ye-  1 + s i -  1 te-  1, 

where 

x ( O )  : Y i  -]- S i t e .  

Thus,  

t ( x )  : (Yi-1 - - Y i )  " ee + S e - l t i - l  " ee. (71) 

Because of  the regularity properties of  the solution to Problem P2, when 
N is sufficiently large, it follows that  

Du(x (p ) )  ~- Du(x )  

for p e (0, p') ,  and we may  write 

fo o, bli 1 - -  b l i  = Du(x (p ) )  �9 (dx (p ) /dp)  dp ~- D(x )  " eeL(x).  (72) 

On the other hand,  f rom (53), we have 

Ue-1 - ui = - ( x l  z(si ) + x2a(si )). (73) 

Compar ing  (72) and (73), we obtain 

K1T(Si) -q-- N20"(S/) 
Du(x)  ~ ee (74) 

L(x) 

for sufficiently large N. 
F r o m  (52), we observe that  (71) has the equivalent expression 

t ( x )  = 7~(si ) "Ji- G(si )ei " e e _  l . (75) 

Let us assume, for the moment ,  that  the following limit is finite, and define 

2(x) = lim Z(Se) (76) 
N ~  ~ L ( x ) "  

Then, because ei �9 el_ ~ ~ 1 and ee ~ e(x)  as N ~ ~ ,  we find that  (74) implies 

Du(x)  ~ - [2(x)~cl + ( 1 - )L(x))~c2]e(x). (77) 

Now, to determine 2(x), first note f rom Figure 9 that  when N is 
sufficiently large, 

Au ~- K1Li (78) 
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OD(~ l )  n f't 

D(~2) n fl 

(a) 

/ x i  (b) 

Figure 9 
Illustration of the construction of a minimizing sequence in f~m. 

e i -  i �9 t i  : - - e i  " t i -  1 : 

where 

S* ~ [ ( Y i - l - - g , )  " t i [ ,  

on c~D(1s where 

L i  = [ Y i - 1 - y i ] e i  "P i ,  

Y i -  1 - Yi 

# ~ -  ] Y ~ - , - - Y i [ '  

and 

A u  "-" 1s 

o n  ~D(1s m ~. Then, for sufficiently large N we have 

[i ,'.~ K 1 L i "  
Is 2 

From Figure 9, we also observe that for each N, 

L i  - -  l i / e i  " e i -  i 
~ ,  

(79) 

(8o) 

(81) 
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and s  as N ~ o v .  Now with the aid of  (79), (80) and (81), we 
conclude that 

K2 - -  tel~el" e i -  i ~Vi-1 -- y i l e i  " Pi. (82) 
e i - 1  " l i  = - - e i  " t i - 1  ~ K,2~i~ 

Upon substituting (82) and (78) into (54) and (55), and the resulting 
equations into (75) and (76), we find that 

K2(s/* - s ; )  
2(x) = lim (83) 

N---~ oO ~ 2 ( S ~  - -  S i )  -1- K,1S i " 

Finally, to obtain (69) from (83) we recall (45) and (46), and we note 
that for any fixed x e f~m and any fixed N, there is an integer i ~ [1, N] such 
that x ~ f ~ ,  and that as N ~ oo, 

(x  - Y i )  �9 ei ~ O. 

Because of  this, we find that 

s~--,Ix-yl, and (si*-s,)-,Iz-xl, 
where y and z are as claimed in the theorem. [] 

Finally, we show that the sequence based upon (63) is a minimizing 
sequence to P r o b l e m  P 1  in 

Theorem 4. Let e # 0, H ~ (Hm, H M ) ,  and suppose eo and ~/o are of  
order N -  1 as N ~ ~ .  Let u be the solution to P r o b l e m  P 2  in WI'P(~), p = 2, 
and let UN be as given in (63). Then, 

lim E[UN] = inf E[v]. (84) 
N - ~ o o  v ~  r 

Proof. For  convenience, we shall define 

ffl~ = {n\(~%(0D(~cl)) w ~.o(?D0c2))) }. 
o 

It is clear, from (51), (59)-(64),  and the definition of flm in (24), that 
XN -- [DUN(X)] is a point of  convexity of  c3(ic) for any x ~ f~ and for any 
fixed N. Therefore, we have 

~(IDv]) -~ ~(~N) + ~ ' ( ~ N ) ( I D v l -  ~N) (85) 

for any v s ~r any x ~ f2s, and any fixed N. Because DUN = - - X N e  by (18), 
we observe that 

~'(~N)(I o ~  I - ~ )  - ~ ' ( ~ )  OuN . (D~ - Ou~)  
K N  

~'(~N) 
+ - -  D U N "  ( - - ]Dv l e  --  D r ) .  (86) 

K N  
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Since 

05'(KN) 
- -  > 0 ,  

KN 

and 

DuN' (-[Dvle - D r )  =  NID Ie . e + 

we have from (85) and (86) that 

>-0, 

05(IDvl) 05( N) + - -  
05t(~N) 

1s N 
D b l  N �9 (Dr - -  D U N )  , 

for any v ~ sr and, consequently, we obtain 

s s /s 

for any v ~.~'  and any fixed N. Note  that for any fixed 
meas{f~o(OD(~q)) w f~,o(~?D(~c2)) } > 0 and 05( �9 ) > 0. Thus, we have 

;n 05(]Dv]) da <- fn 05('Dv[) da = E[v]" 
s 

We now show that as N---> oo, 

05(KN) + - -  DUN" (Dr -- DUN) da -~ lim E[UN], 
s K N  N---~ oo 

(87) 

N, 

which, with (87), then implies the inequality 

E[v] > lim E[UN] , 
N--~ oo 

for all v ~ ~ ,  a main element in the p roof  of  (84). Because 

E[UN]- fn 05(KN) da + fn 05(tzN) da, 
s \f~s 

it suffices to show that 

and 

1s N 
D H  N �9 ( D r  - -  D U N  ) d a  ---* 0 (88) 

f~ (J~(/r d~ ~ 0 
\f~s 

(89) 

as N - ~  oo. 
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Note  that  

meas {~ \~s  } = O(N-1)  (90) 

for sufficiently large N because eo and qo are of  order N -1. Thus,  (88) and 
(89) will hold if the integrands are bounded  for all N. It is clear, f rom (63) 
and (64), that  UN and D u  N are  indeed bounded  for any x e D, as N ~ oo. We 
shall show now that  D u  N is also bounded  in fl\fl~. 

Let y(O) and z(O) be parametr ic  representations of  OD(~cl)c~fl and 
0D(•2) c ~ ,  respectively, with 0 -  arctan(x2/ (x l -  e)). We shall denote by 
(a, b) c [0, 2re) the range of 0. When OD(~I) ~ S f l  = ~ ,  (a, b) = [0, 2zc). 
Otherwise, (a, b) is an open subset of [0, 2zc). 

First, for a given x ~ ~,o(OD(KI)), there exist a corresponding 0 ~ (a, b) 
and ~ e (0, 1) so that  

x = x(~, O) = y(O) + ~eoV(y(O)), (91) 

where v(y) is the unit  outer normal  to D 0 q )  at y. This is true because, by 
definition, the distance, d(x, OD(~q)), f rom x to 8D(~q) is smaller than e0, 
and because the boundary  0 D ( ~ ) ~  fl is cont inuously differentiable. When  
eo is sufficiently small, the differentiability of  the solution u to Problem P2 
shows that  

u(x(o~, 0)) = u(y(O)) + O~eoDu(y(O)) " v(y(O)) + O(e2o) 

for any 0 e (a, b) and any ~ ~ (0, 1). Thus, since eo = O(N-1),  we obtain 

[u(x(~, 0)) - u(y(0))[ = O ( N - i )  

for any 0 e (a, b) and any ~ e (0, 1) as N ~ m. On the other hand,  by the 
construct ion of  (50), we have 

0)) -utv(O))l= O(au) = O(N-1)  

for any 0 ~ (a, b) and ~ ~ (0, 1). Consequently,  we obtain 

lu(x( , o)) - O))l <- lu(x( , 0)) -- uO'(O))l + IC'N(X( , 0)) -- u(.v(O))] 

= O(N -1) (92) 

for any 0 ~ (a, b) and any ~ ~ (0, 1). 
U p o n  employing a similar argument  to the subdomain  ~o(C3O(K2)), we 

show again that, for a given x ~ ~no(OO(/r there exist a corresponding 
0 e (a, b) and/~ s (0, 1) such that  

x = x ( ~ ,  o)  = z(O) - ~ o ~ ( z ( O ) ) ,  

where v(z) is the unit  outer normal  to D(K2) at z, and 

I/.,/(X(]~, 0)) --ffIu(X([~ , 0))[ = O(U-1). (93) 
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From (64), we readily have 

IDuN(x)l < IA (x; ~o, ~D(~,)) +A(x; no, OD(K2))I[Du(x)[ 

+ [1 - f l  (x;  20, aN(g1 )) - f2 (x;  rio , a D ( g  2)) [ [Ou N (x) l 

+ [Df, (x ;Zo, aD(~cl)) + D f2 (x ;tlo, aD(~c2))[lu(x) --~N(X) ] 

for any x ~ f~\f~s, and it is clear from (58), (61), and (62) that 

IDfl (x; eo, OD(tc, )) + D f2 (x; t/o, ~?D0c2))l = O(N) (94) 

as N ~ oo. Thus, because [Du], [D~u[,f~, and f2 are bounded,  and (92), (93) 
and (94) imply 

Io~ + Dfallu - C'NI < oO 

as N ~ oo, we conclude that 

IDUNI < oo (95) 

as N-- ,  oo. Consequently,  05(KN) and 05'(~CN) are bounded as N-- ,  oo, and 
because of  (90) we see that (89) holds. 

To show (88), we first recall that rex(x) is a point of  convexity of  05( - ) 
for every x e f~s and any fixed N, with ~CN(X) = IDu(x)l in fl, \fl,~,, and ~cN(x) 
equal either ~cl or x2 if x ~ ~'~m. Hence, 05'(~CN(X)) = 05*'(IDu(x)l) for every 
x r f~ and for any fixed N. We further observe that 

DUN(X) 
lim - -  = - e ( x )  

~ ~N(X) 

for every x E f~, where e( �9 ) is the unit normal field of  (18). Since f~s ~ f~ 
and 05'(KN) is bounded as N ~ oo, the order of  integration and limit may be 
interchanged to obtain 

05'(1s D u  N �9 ( D r  - D U N )  lim da 
N---~ ~o , )~ s  I~N  

= - f lim 05*'(lDul)e �9 (Dr - DUN) da. 
da N---~ ~ 

After further interchanging the order of  integration and limit, we see that 
the right hand side of  the above equation becomes 

{/oo ;o0 4 N ~ o o  

Because UN ~ U  in LP, p = 2, pointwise, upon employing the Diver- 
gence Theorem and the fact that both u and v are in the admissible class 
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d ,  we have 

t"  ( ~ ' ( K N )  t"  
lim [ Du N �9 ( D r -  DUN)da = [ D .((3*'([Du[)e)(v- u) da. 

N---~ oo . )~s  I~ N on 
(96) 

The right hand side of (96) vanishes because, as noted earlier after (16), 

D" (rS*'(]Dul)e) = 0 

in ~ is a necessary condition for u to be the solution to Problem P2. With 
this, we have shown that (88) holds. 

Moreover, if we let #(tq) == meas{x ~ ~m: [DUN[ = K~} and #(tc2) = 
meas{x eflm: [DUN]= ~2}, then it is clear that 

[  ([DUNI) dx = -J- O (K2)JA(K2). lim (97) 
N---~ oo t]~" )m 

From Theorem 3 it readily follows that the right hand side of (97) may be 
rewritten so as to obtain 

lim 
N---* co m 

~b([Duu[) da = fn ((J~(K;1))~(x) - -  ~(K1)(1 - -  )~(X))) d a  
m 

= f~l  (~ *(/~'(X)K1 -[- ( 1 - -  ) ~ ( X ) ) K 2 )  da. 
m 

We further observe that, with the aid of (89), 

N-~limoo fn (3([DuN]) da = limN---~ co fn,\nm cb(lDuN[) da + N---~limoo fa,~ 

(98) 

da, 

(99) 

and that, for any fixed N and any points x e fl~ \~')m, 

~(IDUN(X) 1) : (5 *(IDUN(X)[). 

Consequently, we conclude from Theorem 3, (98), and (99) that 

lim ~ ~5([DUN[)da = ~ oS*([Du])da = E*[u]. 
N----~ oo Jn 0n 

Because u is the solution to Problem P2, 

( loo) 

E*[u] = min E*[v]. 

The proof of (84) is, then, completed once we see that 

min E*[v] = inf E[v]. (101) 
v ~ d  v ~  
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To show this, we call upon Corollary 3.8, Chapter X of [3]. The function 
05(.), here, satisfies the regularity condition of this corollary and 

<__ 05( ) < 

Therefore, according to this corollary, (101) holds where the admissible 
class of functions d is contained in the Sobolev space WI'P(f~) with p = 2. 

[] 

5. Some remarks 

We have shown that when the prescribed displacement H is in the 
interval (Hm, HM) defined by (21) and (22), Problem P1 does not possess a 
minimizer in the admissible class d ,  but rather the problem has an 
associated minimizing sequence. The minimizing sequence converges weakly 
to a deformation of f~ which, in rough terms, consists of two regions of 
smooth anti-plane shear separated by a domain f~m of  finely mixed shears. 
In (50) and (63) we constructed such a sequence of deformations that is 
piecewise affine and continuous in f~m consisting of shear strain layers 
K1/tc2/~cl/tr and we showed how to connect each member of this 
sequence continuously to neighboring regions of smooth deformation by 
two thin interpolation layers. The sequence (63) is admissible and drives the 
total stored energy to its infimum as the distribution of shear layers gets 
finer and finer (cf., Theorem 4). While the thickness of these shear layers 
vanishes in the limit, there is associated with each point of  f~m a residual 
relative density of  strain K1 and strain tr which characterizes the "average 
shear strain" at that point and how it is achieved by a convex combination 
(mixture) of ~q and ~c2 (cf., Theorem 3). 

In the domain of phase mixture f~m the shear strain, i.e., the weak limit 
of IDUNI as N --, oo, varies on an infinitely fine scale. Because it is common 
to interpret the weak limit of oS'(IDUN I) as shear stress in f~m, and because 
05"([DUN[) has the constant value O~'(~1) = O~'(K2) for all points in ~m, we 
find that the shear stress is constant in f~,,. This is reminiscent of general 
phenomena associated with plasticity. 

According to the numerical results presented in Figures 5 and 7 of  
Section 3, the phase mixture region ~'~m is relatively narrow and long. This 
being a thin localized region in f~ over which the shear strain suffers a large 
change from ~c~ on one side to ~c2 on the other (cf., (68)), suggests the idea 
of a shear band, also reminiscent of studies in plasticity. 

We have considered only a special class of materials (trilinear) in our 
work so that computat ion could be performed. We also constructed a 
minimizing sequence to the nonconvex Problem PI based upon the mini- 
mizer to the relaxed (convexified) Problem P2. We emphasize that when f~ 
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is a convex ring Bauman and Phillips [2] have shown that there exists a 
unique minimizer to Problem P2 for a more general class of  materials than 
those considered here. Also, they have shown that for a certain range of  
prescribed axial displacements there is a subdomain ~r~ m C ~'~ in which the 
minimizer of  Problem P2 takes on shear strain values in the interval 
(K1, x 2 ) - - t h a t  interval which spans the nonconvex portion of  the stored 
energy function. Since, it can be shown that the u = const, contours for a 
minimizer are again straight lines in ~'~m independent of  the material, the 
construction of  a minimizing sequence for Problem P1 can be carried out 
the same as we did here for the class of  trilinear materials. 

In Figure 10, we show a preliminary calculation for the relaxed anti- 
plane shear Problem P2 when the outer fixed cylinder is again circular, but 
the inner concentric cylinder is a relatively thin ellipse of  major diameter 
equal to one-tenth the diameter of  the outer circle and ratio of  minor to 
major diameter equal to one-tenth. The material constants of  the specific 
stored energy function (8) are given so that K1 = 1, K 2 ~ - 1 0 ,  [2--= 2, and 
/~ + = 0.2 (see Figures 2 and 3), and the prescribed axial displacement of the 
inner cylinder is H = 0.15, which is sufficiently large to cause a region f~m to 

(a) u = const.  

(b) [Du[ = const.  

F igure  10 
Con tou r s  of  u = const,  and  IOul = const,  near  the t ip of  the inner  bounda ry  of  the d o m a i n  f~ tha t  is 
bounded  by a circle and  an ellipse. The ra t io  of  the ma jo r  d iamete r  to the mino r  d iamete r  o f  the ellipse 
is 10, the d i sp lacement  H = 0 . 1 5 ,  and  x~ = 1 and  x 2 =  I0. 
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appear, in which the shear strain varies between ~c~ and ~c2. While the 
computations are not accurate and need to be refined with additional mesh 
in the neighborhood of the tip of the ellipse, within the dashed boxes of 
Figure 10 we believe that the computations are trustworthy. Note that here 
IDu[ ~ (tel, to2) and the u = const, contours are straight lines, as we expect. 
In front of the tip of the ellipse we expect a small region of shear strains 
greater than to2 to occur, and this much is suggested from Figure 10b since 
the ~c2 = const, curve in this figure detaches from the boundary and does 
indeed encircle the tip. But we also expect, from theoretical considerations 
such as Proposition 5, that the ~:1 = const, curve in Figure 10b would meet 
the ~c2 = const, curve in front of the tip in f~, on the axis of symmetry. This 
we do not see in Figure 10, and so a mesh refinement in this vicinity will be 
essential in order to clearly identify the region f2m. Finally, the theoretical 
considerations of Proposition 6 suggest that in Figure 10b the ~:1 = const. 
and to2 = const, curves should only intersect the boundary of the ellipse at 
coincident points. It is difficult to see this unequivocally in the figure, but 
there is a clear tendency for all of the [Du[ = const, curves to become 
tangent to the inner elliptical boundary, and this is at least consistent with 
the possibility of coalescence at a common boundary point. 
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Summary 

We study the detailed structure of the deformed configuration of an elastic tube whose cross section 
is a convex ring that is subjected to a prescribed relative axial displacement of  its lateral boundaries. The 
material is assumed to have a non-convex stored energy function. Special attention is paid to the 
situation when there is no minimizer of the associated anti-plane shear minimization problem, but, 
nevertheless, the energy functional has an infimum. The non-existence of  a minimizer to this problem for 
a certain interval of prescribed relative axial displacement of the lateral boundaries implies that among 
all "admissible" deformations there is none with this boundary data for which the values of  the stored 
energy function correspond to its convex points almost everywhere in the body. Because of this, we find 
that to reach the infimum the tube divides into three subdomains: one of  high strain, one of low strain, 
and one of  intermediate "mixed" strain. In the intermediate "mixed" strain subdomain, the field values 
of the stored energy correspond to convex combinations of convex, but not strictly convex, points of the 
stored energy function. The main variational problem then gives rise to a free boundary problem in 
which the subdomain where the strict convexity of  the stored energy function breaks down must be 
determined as part of the solution. The characterization of  this intermediate phase mixture region is one 
of  the goals of  this work. 
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