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Abstract.  Let g be a finite-dimensional complex simple Lie algebra and Uq(g) the associated 
quantum group (q is a nonzero complex number which we assume is transcendental). If V is a finite- 
dimensional irreducible representation of Uq (g), an affinization of V is an irreducible representation 
17 of the quantum affine algebra Uq(O) which contains V with multiplicity one and is such that all 
other irreducible Uq (t~)-components of V" have highest weight strictly smaller than the highest weight 
A of V. There is a natural partial order on the set of Uq (g)-isomorphism classes of affinizations, and 
we look for the minimal one(s). In earlier papers, we showed that (i) if g is of type A, B, G', F or 
G, the minimal affinization is unique up to Uq(g)-isomorphism; (ii) if g is of type D or E and A is 
not orthogonal to the triple node of the Dynkin diagram of 9, there are either one or three minimal 
affinizations (depending on A). In this paper, we show, in contrast to the regular case, that if Uq(~l) is 
of type D4 and A is orthogonal to the triple node, the number of minimal affinizations has no upper 
bound independent of A. 

As a by-product of our methods, we disprove a conjecture according to which, if g is of type A,~, 
every affinization is isomorphic to a tensor product of representations of Uq(3) which are irreducible 
under Lrq(~t) (in an earlier paper, we proved this conjecture when n = 1). 

Mathematics Subject Classifications (1991). 17B37, 81R50. 

Key words: quantum affine algebras, representations. 

Introduction 

In [2], we defined the notion of an affinization of a finite-dimensional irreducible 
representation V of the quantum group Uq(g), where g is a finite-dimensional 
complex simple Lie algebra and q E C • is transcendental. An affinization of V 
is an irreducible representation V of the quantum affine algebra Uq(fi) which, 
regarded as a representation of Uq(g), contains V with multiplicity one, and is such 

that all other irreducible components of l? have strictly smaller highest weight 
than that of V. We say that two affinizations are equivalent if they are isomorphic 
as representations of Uq(g). We refer the reader to the introduction to [2] for a 
discussion of the significance of the notion of an affinization. 

* Both authors were partially supported by the NSF, DMS-9207701. 
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In general, a given representation V has finitely many equivalence classes of 
affinizations (always at least one), and it is natural to ask if there is a canonical 
affinization. To this end, a natural partial ordering on the set of equivalence classes 
of affinizations was defined in [2], and it was proposed to study the minimal 
affinizations. In [2], [4] and [7], it was shown that, if ~ is of type A, B, C, F 
or G, the minimal affinization is unique up to equivalence. In [6], we considered 
the case when 0 is of type D or E,  and determined the minimal affinizations of 
those representations V whose highest weight A is not orthogonal to the simple 
root corresponding to the 'triple' node of the Dynkin diagram of 0. We found that, 
under these assumptions, there are three minimal affinizations of V, except when 
A is orthogonal to all the simple roots in a 'leg' of the Dynkin diagram, in which 
case there is only one. In this Letter, we remove this regularity assumption when 0 
is of type D4. We find the surprising result that, if A is orthogonal to the triple node, 
the number of minimal affinizations increases with A (roughly speaking), and has 
no upper bound independent of A. 

Although the techniques used in the proof of this result are similar to those used 
in [2], [4], [6] and [7], there is one new feature. In [6] and [7], the crucial step in the 
classification of the minimal affinizations is to prove that such affinizations remain 
minimal on restriction to certain type A subdiagrams of the Dynkin diagram of 0 
(and to the type B2 subdiagram in the nonsimply-laced case). The classification is 
then deduced from that for types A and B2 proved in [4] and [2], respectively. In 
the situation considered in this Letter, however, it turns out that there are minimal 
affinizations of representations V of Uq(D4) which are not minimal for any of the 
type A3 subdiagrams of D4. This makes it necessary to understand the structure 
of certain nonminimal affinizations in the An case. The main tool used here is 
the trigonometric R-matrix associated to a pair of representations of Uq (/i_,,). (We 
thank Gustav Delius for computing the R-matrix we need - see Lemma 3.5.) 

As a by-product of this more detailed study of the affinizations of representations 
of Uq(An), we are able to disprove a conjecture made in [4]. In [3], we showed that 
when 0 is of type A1, every finite-dimensional irreducible representation of Uq(~) 
is isomorphic to a tensor product of small representations (i.e. representations of 
Uq (~) which are irreducible under Uq (0)), and we conjectured that this might extend 
to type A algebras of higher rank. However, we show in this Letter that, when 0 is of 
type A2, the 27-dimensional irreducible representation of Uq(0) has an affinization 
of dimension 35. This cannot be a tensor product of small representations, because 
Uq(0) has no irreducible representation of dimension 5 or 7. 

1. Quantum Affine Algebras and their Representations 

In this section, we collect the results about quantum affine algebras which we shall 
need later. 

Let g be a finite-dimensional complex simple Lie algebra with Cartan subalgebra 
and symmetric Cartan matrix A = (aij)i,jEI. For any i E I ,  define Ai E Z t by 
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A,(j) = ~ij for all j E I. Let P = ~ i e I X . A i  and P+ = ~ i e l N . A i .  Let R 
(resp. R +) be the set of roots (resp. positive roots) of g. Let ai (i E I) be the 
simple roots and let 0 be the highest root. Define a nondegenerate symmetric 
bilinear form ( , )  on b* by (ai, a3) = aij. Let Q = |  a i c  b* be the root 
lattice, and set Q+ = ~ i E I l ~ . o ~ i  . I f0  # J C_ I,  let Qj  = (~iEd2~.o~i C ~* and 
Q+ = ~ , e j N .  ai. Define a partial order >/on P by A ) # iff A - # E Q+. 

In this Letter, we shall be concerned mainly with the case when g is of type D4. 
We take I = {1,2, 3,4}, with 4 being the 'triple node', so that the Cartan matrix 
is 

A = 

2 0 0 - 1  

0 2 0 - 1  

0 0 2 - 1  

- 1  - 1  - 1  2 

Let q E C x be transcendental and, for r, n E N, n ) r, define 

qn _ q-n 
[n]q - q _ q - 1  , 

In]q! = [n]q[n- 1]q...[2]q[1]q, 

q [ T ] q ~ [ n - - T ] ~ ! "  

PROPOSITION 1.1. There is a Hopf algebra Uq(g) over C which is generated as 
an algebra by elements x~, k~ 1 (i E I), with the following defining relations." 

klk~ 1 = k ~ l k i  = I ,  k,kj = kjki, 

k ix : fk ;  1 = q+~,,xf , 

ki - k~ 1 
q _ q - l '  

1 - -a , j  

E [ l - a d ]  " +'r +(x~i) 1 - a ' ' - r : O '  iT~j" 
r=o r ] q (xi ) xj 

The comultiplication A, counit e, and antipode S of Uq(g) are given by 

zx(z+) = x+ok,  + lOx +, 

A(z~)  = x7| + kTl |  
Z2k(/~/:k') : ]g/:t:l@]g/:t:l, 

E(X/:k) : O, s ~--- 1, 

S(X/+) __~ X+]~ -1 S ( X T )  = - - k i X ; ,  S(k/:t:l) = k ?  i 
- i i ~ 

for all i E I. [] 
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The Caftan involution w of Uq (0) is the unique algebra automorphism of Uq ([~) 
which takes x~ ~ - x ~ ,  k/4-1 ~-+ k~ 1, for a l l / E  I .  

Let ~f = I I I  {0} and let A = (aij)i,jei be the extended Caftan matrix ofo, i.e. 
the generalized Cartan matrix of the (untwisted) affine Lie algebra fi associated to 
0. When g is of type D4, 

A = 

2 0 0 0 - 1 \  

J 
0 2 0 O - 1  

0 0 2 0 - 1  , 

0 0 0 2 - 1  

- 1  - 1  - 1  - 1  2 

with the rows and columns numbered 0, 1,2, 3, 4. 

THEOREM 1.2. Let Uq(fi) be the algebra with generators x~, k~ 1 (i E I) and 
defining relations those in 1.1, but with the indices i, j allowed to be arbitrary 
elements of  ][. Then, Uq(fi) is a Hopf  algebra with comultiplication, counit and 
antipode given by the same formulas as in 1.1 (but with i E I). 

Moreover, Uq(fi) is isomorphic to the algebra ,Aq with generators x .~ (i E L l~r 

r E Z), ki 4-1 (i E I), hi,r (i E I, r E Z \ {O})andc  +1/2, andthefollowingdefining 
relations: 

e +1/2 are central, 

k i k ~  1 = k ~ I k i  = 1, e l / 2 c  - 1 / 2  = r  --~ 1, 

kikj = kjki ,  kihj,r = hj,rki, 

k iX~,rk~  -1 ~q-a,~xq- ~- (1 j ,r 

cr _ c--r 

q7 

- 1~ ~ cTid/2x• [hi,~, x~,,] = •  j , ,+, ,  

-4- i _ q4-a,~ + + _4-a,j X4- -4- + • 
X i , r + l X j , s  X j , sX i , r+ l  = q i , rX j , s+l  -- X j , s+lXi , r~  

.(r-~)/2,~+ 
= - 

q _ q - 1  

m [rn] x.=l: 4- x -l- ' l- .. x.4- 
Y~ ~-~(-1)k [ %r~r(1)' ' 'Xi 'r~r(k) J ' sX i ' r ' ( k+l )  " "r~v(m) i # j ,  

7rEErn k=O q 
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for  all sequences o f  integers r l , . . . ,  rm, where m = 1 - aij, ~ra is the symmetric 
group on m letters, and the r are determined by equating powers o f  u in the 
formal power series 

( h u r u+~ = k ~ I e x p  + ( q - q - 1 ) ~  i,• J i,4-r 
r=O s= l  

m t  
I f  0 = ~ i E 1  mio~i, set ko = I-Iiez ki �9 Suppose that the root vector ~+ of  

corresponding to 0 is expressed in terms of  the simple root vectors ~+ (i E I) o f  g 
a s  

= 

for  some A E C • . Define maps w ~ "  Uq(fi) -~ Uq(~) by 

= 
'~ i "*'~ i ~ i,O " 

Then, the isomorphism f :  Uq(~) ~ .Aq is defined on generators by 

f (ko)  = k-~ 1, f ( k i )  = ki, 

f ( x  +) = #w~ . . .w~(x~ , l ) k -~  1, 

f ( X o  ) = Akow+ .. + + " W i k ( X j , - 1 ) ,  

where # E C x is determined by the condition 

k o  - ]Co l 
ix+o,  X o  l - q_q-1 " 

f ( x ~ )  = x • (i E I), i,O~ 

[] 

See [1], [5] and [11] for further details. 
If 0 ~ J C_ I defines a connected subdiagram of the Dynkin diagram of ~, let ~j 

be the corresponding simple subalgebra of g, and let Uq(fia) be the subalgebra of 
Uq(fi) generated by the x~T, r and e • for all i E J, r E Z. Note that there is 
a canonical homomorphism from the quantum affine algebra associated to gj onto 
uq( j). 

Note that there is a canonical homomorphism Uq(g) ~ Uq(~) such that x/~ 
x/i, k~ 1 ~ k~ 1 for all i E I. Thus, any representation of Uq(~) may be regarded 
as a representation of Uq (9) by restriction. 

Let U~: (resp. ~ro) be the subalgebra of Uq(~) generated by the x~ (resp. by the 
r for all i E I, r E Z. Similarly, let U ~- (resp. U ~ be the subalgebra of Uq(g) 
generated by the x/~ (resp. by the k~ l) for all i E I. 

PROPOSITION 1.3. 

(a) Uq(~)  = U - .  U ~ . U +. 
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(b) Uq(~) = 6 - .  fj0. fj+. 

See [5] or [11] for details. 
We shall make use of the following automorphisms of Uq(~): 

[] 

PROPOSITION 1.4. (a) For all t E C • , there exists a Hopfalgebra automorphism 
rt of Uq(~) such that 

rt(x~r ) = trx ~,~, rt(hi,~) = trh@, 

• , Tt(Cq-1/2) = C-1-1/2 Tt(]g i ) = ~ l  

(b) There is a unique algebra involution 5.; of  Uq(~) given on generators by 

= 
~(r177 ~ = r 

~(c•  = c:F'/2. 

C4 ) = -h i , . ,  
= k ? ' ,  

Moreover, we have 

( ~ |  o A = A ~ o ~ ,  

where A ~ is the opposite comultiplication of Uq( ~ ). [] 

See [2] for the proof. Note that if; is compatible, via the canonical homomorphism 
Uq(g) ~ Uq(~), with the Cartan involution w of Uq(g). 

A representation W of Uq(g) is said to be of type 1 if it is the direct sum of its 
weight spaces 

w~ = {w r W lk~.w = q~(Ow} (,~ E e) .  

If W;~ r 0, then A is a weight of W. A vector w E WA is a highest weight vector 
if x +.w --- 0 for all i E I ,  and W is a highest weight representation with highest 
weight A if W = Uq(o).w for some highest weight vector w E W;~. 

It is known (see [5] or [11], for example) that every finite-dimensional irre- 
ducible representation of Uq (g) of type 1 is highest weight. Moreover, assigning to 
such a representation its highest weight defines a bijection between the set of iso- 
morphism classes of finite-dimensional irreducible type 1 representations of Uq (9) 
and P +  ; the irreducible type 1 representation of Uq(9) of highest weight A E P +  
is denoted by V(A). Finally, every finite-dimensional representation W of Uq(g) 
is completely reducible: if W is of type 1, then 

w G V(X)em (w) 
AEP+ 

for some uniquely determined multiplicities mA(W) E N. 
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A representation V of Uq(~) is of type 1 if C 1/2 acts as the identity on V, and 
if V is of type 1 as a representation of Uq(g). A vector v E V is a highest weight 
vector if 

x .  + r L cl/2 v = O, v = ~ ,  ~?" " Z~T * r V ~  . V ~ -  V~  

for some complex numbers q~.a: A type 1 representation V is a highest weight 
representation if V = Uq(g).v, for some highest weight vector v, and the pair 
of ( I  x Z)-tuples + (ffi,,-)~EI,~ez is its highest weight. Note that ff+,,r = 0 (resp. 
ff~,~ = 0) if r < 0 (resp. if r > 0), and that ~+0~,0 = 1. (In [5], highest weight 
representations of Uq (~) are called 'pseudo-highest weight'.) 

If A E P+,  let 79;~ be the set of all I-tuples (Pi)ieI of polynomials Pi E C[u], 
with constant term 1, such that deg(Pi) = A(i) for all i E I. Set 7 9 = Uaep+ 79"\. 

THEOREM 1.5. (a) Every finite-dimensional irreducible representation of Uq ( ~ ) 
can be obtained from a type 1 representation by twisting with an automorphism of 

(b) Every finite-dimensional irreducible representation of Uq(~) of type 1 is 
highest weight. 

(c) Let V be a finite-dimensional irreducible representation of Uq(~) of type I 
and highest weight ( q~r )iEI,rE~. Then, there exists e = ( Pz )iEI E 79 such that 

p~(q-2u) 

r=0  r=0  

in the sense that the left- and right-hand terms are the Laurent expansions of the 
middle term about 0 and ~ ,  respectively. Assigning to V the I-tuple P defines a 
bijection between the set of isomorphism classes of finite-dimensional irreducible 
representations of Uq(~) of type 1 and 7 9. We denote by V(P) the irreducible 
representation associated to P. 

(d) Let P, Q E 79 be as above, and let vp and VQ be highest weight vectors of 
V(P) and V(Q), respectively. Then, in V(P)|  

5 . ( v p |  : O, ( v p |  : 

where the complex numbers k~ ~ ~,~ are related to the polynomials PiQ i as the q~ .a: ~,r are 
related to the Pi in part (c). In particular,/fP| denotes the I-tuple ( PiQi)~el, 
then V(P|  is isomorphic to a quotient of the subrepresentation of V (P )| V ( Q ) 
generated by Vp| [] 

See [5] and [8] for further details. If the highest weight + (~i,~)~eI,re~ of V is 
given by an I-tuple P as in part (c), we shall often abuse notation by saying that V 
has highest weight P. 
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I f a  is any automorphism of Uq(~), and p : Uq(fi) -+ End(V) is a representation 
of Uq(fi), we denote by a*(V) the representation p o a of Uq(fi). Also, we denote 
by V* the vector space dual of V provided with the action of Uq(fi) given by 

(x .  f ) ( v ) =  f (p(S(x) ) (v) ) ,  

where x E Uq(~), v E V, f E V*, and S is the antipode of Uq(~). 
Let w0 be the longest element of the Weyl group of g, and let i + 7 be the 

bijection I + I such that wo(ai )  = - a g .  It is well known that 

w*(V(A)) ~ V(-~oo(A)) V(A)* ~ V(-wo(A)) ,  

for all A E P+ .  The following results are proved in [2] and [6]: 

PROPOSITION 1.6. Let A E P+, P = (Pi)iet E 7 9~, and let 

:~(i) 

P i (u )= ~ I ( 1 - a ~ ] u )  (a~,iECX). 
r = l  

(a) For any t E C x , f f ( V ( P ) )  ~ V(pt) ,  where pt = (P~)ieI and 

~(i) 
P[(u) = [-[(1 - ta~)u). 

r = l  

(b) Define I ~ co . 7~-~o(~) = ( P ~ ) , e l  e by 

:~(i) 

P~(u)  = 1-[(1 - q % , ~ ) .  
r = l  

Then, there exists t E C x , independent of i E L such that 

&*(V(P)) ~ r ; (V ( I~ ) )  

as representations ofUq (~). 
(c) Define P* = (P~')ieI E p-~o(a) by 

A(i) 
~ : ( ~ ) :  H(1 - a:)u). 

r = l  

Then, there exists t* E C • such that, as representations of  Uq(~), 

V(P)* ~ r;.(V(P*)). 
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2. Minimal  Affinizations 

Following [2], we say that a finite-dimensional irreducible representation V of 
Uq(O) is an affinization of A E P +  if V ---- V(P)  as a representation of Uq(g), 
for some P E T ';~. Two affinizations of A are equivalent if they are isomorphic as 
representations of Uq(g); we denote by [V] the equivalence class of V. Let Q;~ be 
the set of equivalence classes of affinizations of A. 

The following result is proved in [2]. 

PROPOSITION 2.1. If  A E P+ and [V], [W] E Qx, we write [V] -<_ [W] iff, for  
all # E P+, either 

(i) mu(V) <<. mu(W ), or 
(ii) there exists u > # with mu(V)  < m , ( W ) .  

Then, -< is a partial order on Q~. [] 

An affinization V of A is minimal if IV] is a minimal element of Q;~ for the 
partial order ___, i.e. if [W] E Q:~ and [W] ~ [V] implies that IV] = [W]. It is 
proved in [2] that Q;~ is a finite set, so minimal affinizations certainly exist. 

The main result of this Letter concerns minimal affinizations of representations 
of Uq(g) when g is of type D4. To state it, we introduce the following terminology 
and notation. First, as in [2], by the q-segment of length r E I~ and centre a E C x , 
we mean the set of complex numbers {aq - r+l  , a q - r + 3 , . . . ,  aqr-1}. Next, let A E 
P+  be such that A(4) = O, and let P = (Pi)i~I E 7 9;~. Suppose that i, j E { 1,2, 3}, 
i r j ,  are such that A(i) > 0 and A(j) > O. Then, if the roots of Pi and Pj form 
q-segments with centres ai and a j, and if 

a___(i = qr,+rj+4-2r 
a 3 

for some 1 ~< r ~< min(ri,  r 3), we join nodes i and j of the Dynkin diagram of 
with a dotted line, as follows: 

Our main result is the following. 
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THEOREM 2.2. Let g be o f  type D4, let A E P+ be such that A(4) = 0 and 
A(i)  > O f o r  i = 1,2  and 3, and let P = (Pi ) ie l  E 7 >~. 

I f  V(P) is a minimal  affinization o f  A, then, f o r  all i E {1,2, 3}, the roots o f  
Pi f o rm  a q-segment with centre a, (say), where the ai satisfy one o f  the fo l lowing 
conditions: 

(a)i,j Fix i, j E { 1,2, 3}, i < j ,  and let {i, j ,  k} = { 1,2, 3}. Then, the condition is 

d o 

i.e. ak _ qMi)+~(k)+2, a__i_/ = q~(1)+~(k)+2, 
ai or ak 

ak a_j = @(j)+~(k)+2. __  = qA(j)+;~(k)+2, 
aj ak 

(b)i,j Fix i, j ,  k as in (a)i,j. Then, the condition is 

I 
4" 

or k 

J 

ak qA(i)+A(k)+2, ai q~(i)+~(k)+2 
i . e .  - - =  - - =  

ai or ak 
aj _ ak qA(j)+A(k)+2. 

_ _  _ q~O)+~(k)+2, __ = 
a k aj 

(c)~,'~ Fix i, j ,  k as in (a)i,j, and let r, s be integers satisfying 

r + s = A(k) + 3, 1 ~ r ~< min(A(i) ,A(k)) ,  1 ~< s ~< min(A(j) ,  A(k)). (3) 
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Then, the condition is 

i.e. 

b 

t l  I / | 

< 4',, 
5"-. \ L  

" ~ .  

J 

a i  _~ q)~(i)+)~(k)+4-2r,  

ak  

ak - -  ___ qaO)+a(k)+4-2~, 
a 3 

al  _ = qa(i)+a(j)+2, 
a 3 

o r  

o r  

b 

r  / /  I 
/ ! 

k-" '. 

d 

ak q.\(~)+;~(k)+4-2r, 
ai 

a__j_j = q;~(3)+)~(k)+4-2s, 

ak  

a._L3 = q;~(i)+)~(j)+2. 
a~ 

Conversely, suppose that the roots o f  each Pi, i = 1,2, 3, form a q-segment o f  
centre ai. Then, for  each i < j in {1,2,3}, 

(d) at least one o f  (a)i,j and (b)i,j defines a minimal affinization, and 

(e) (c)~i~ defines a minimal affinizationfor all r, s satisfying (3). 

(c) i j )  define equtvalent affiniza- Finally, the two diagrams in (a),,j (resp. (b)i,3, r,~ 
tions ; an affinization o f  type (a)i,j ( resp. (b)~j) is not equivalent to any affinization 
of  any other type, except possibly (b)i,j (resp. (a)i,j); and an affinization o f  type 
(c)~i~ is not equivalent to an affinization o f  any other type. 

Remarks. (1) We conjecture that the affinization of type (a)i,j is equivalent to 
that of type (b);,j (in which case, both types would be minimal). 

(2) Each of the diagrams in (a)i,j, (b)i,3 and (c)~'~ actually represent infinitely 
many nonisomorphic representations of Uq(fi). However, it follows from Propo- 
sition 1.6 that any two affinizations V(P) satisfying (a)i J (or any two satisfying 
(b)i,j, or any two satisfying ~'~ (c)i,j) are equivalent. 

The next result deals with the case where ~ is orthogonal not only to the triple 
node, but also to one or more of the exterior nodes. 

THEOREM 2.3. Let g be o f  type D4, and let ~ E P+ be such that ~(4) = 0. 
(a) Let ~(i) > O, )~(j) > 0 and )~(k) = O, where { i , j , k }  = {1,2,3}. Then, 

if  P E T '-'\, V(P) is a minimal affinization of  )~ iff the roots o f  P~ and Pj form 
q-segments with centres ai and a j, where 

a~ = q+(;~(~)+;~0)+2)" 
a 3 
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(b) Let A(i) > 0, A(j) = 0 and A(k) = 0, where {i , j ,  k} = {1,2, 3}. Then, if 
P E 79a, V(P) is a minimal affinization ofA iffthe roots ofPiform a q-segment. 

The proofs of Theorems 2.2 and 2.3 occupy the next two sections. 

3. Affinizations in the Type A Case 

The minimal affinizations of representations of Uq(g) when ~ is of type A were 
classified in [4] (see Theorem 3.1 of that paper). We recall the result. 

THEOREM 3.1. Let g = sln+l(C), and let A E P+. Then, Qa has a unique 
minimal element. Moreover, this element is represented by V(P), for P E 7)~, if 
and only if for all i E I such that A(i) > 0, the roots of Pi form the q-segment 
with centre ai, for some ai E C x , and length A(i), where either 

(a) for all i < j, such that A(i) > 0 and A(j) > O, 

or  

ai qA(i)+2()~(i+l)+...+A(j-1))+A(j)+j-i, 

a 3 

(b) forall  i < j, such thatA(i) > Oand A(j) > O, 

a__j_j = q)~(i)+2(A(i+l)+...+A(j-1))+)~(j)+j-i. 
ai 

In both cases, V(P) ~- V( A ) as representations of Uq(g). [] 

To apply this result to the case where g is of type D4, we need the next 
proposition. If A E P+,  P = (Pi)ieI E 79~, and J is a nonempty subset of I ,  let 
Pd be the J-tuple (Pj) jej  and let Aj be the restriction of A : I ~ Z to J. Also, 
define AJ E P+ by 

{A( i ) ,  i f i E J ,  
A J ( i )  = 0 ,  otherwise, 

and PJ E 7 ) by 

p i a =  f P i ,  i f i E  J, 

( 1, otherwise. 

Finally, we say that 0 # J C_ 
j E {1,2,3}. 

{1,2, 3,4} is admissible if d = {j, 4} for some 

PROPOSITION 3.2. Let ~ be of type D4, let A E P+, and let P = ( Pi)i6I E P~. If  
V(P) is a minimal affinization of A, then, for all admissible subsets J of{ 1,2, 3,4}, 
V(Pj) i s  a minimal affinization of A j and V(P d) is a minimal affinization of A d. [] 



MINIMAL AFFINIZATIONS OF REPRESENTATIONS OF QUANTUM GROUPS 259 

This is a special case of Proposition 4.2 in [6]. 
From Theorem 3.1 and Proposition 3.2, we immediately deduce 

COROLLARY 3.3. Let ~ be of type D4, let )~ E P+, and let P = ( Pi )i~I C 7 9~. If 
V(P) is a minimal affinization of )~, then for all i E {1,2, 3,4}, either Pi = 1 or 
the roots of Pi form a q-segment. [] 

As we mentioned in the Introduction, we need some information about non- 
minimal affinizations in the type A case: 

PROPOSITION 3.4. Let ~ be of type An, where n >1 2, let rl >1 r~ be nonnegative 
integers, and let al , an E C x �9 Let P1 (resp. pn) be the polynomial with constant 
coefficient 1 whose roots form the q-segment with centre al (resp. an) and length 
rl (resp. r~). Then, as representations of Uq(g), 

s - 1  

V(P1,1 , . . . ,  1, Pn) ~- 0 V((rl - t))~l + (rn - t))~n), 
t=0  

if al/an = q+(rl+r,,+n+l-zs) for some 1 <~ 8 < rn, and 

V(P1,1 , . . . ,  1, p,,) "~ V(r~A1) | V(rnA,~) 

otherwise. 

Note that, in view of Proposition 1.6, the assumption rl >/rn involves no loss 
of generality. 

Proof Note first that, by Theorem 3.1, V(P1, 1,. . . ,  1) and V(1, . . . ,  1, P~) are 
minimal affinizations of rl A1 and vnAn, and that they are isomorphic as represen- 
tations of Uq(g) to V(rl A1) and V(r,~An), respectively. Next, by Theorem 1.5(d), 
V(P1,1 , . . . ,  1, Pn) is isomorphic as a representation of Uq(fi) to a subquotient of 
the tensor product V(1, . . . ,  1, P,~)| 1,. . . ,  1) and, hence, as a representation 
of Uq(~) to a subrepresentation of 

Tn 

V(rnA~)| ~- ( ~  V((rl  - 8)A1 + (rn - -  S)An). (4) 
s=O 

To proceed further, we need the following lemmas. 

LEMMA 3.5. Let PI and Pn be as in Proposition 3.4. Then, there exists a homo- 
morphism of representations of Uq( ~ ) 

I :  V(1 , . . . ,  I,Pn)| 1, . . . ,  1) ~ V(P1, 1, . . . ,  1) |  1,Pn) 

of the form 

rn  s - 1  r 1 x "k 

I E (r_I~0 (1 a'qr'+r'~+n+l-Zr)~I (a~n = - -  - -  q r l + r n + n + l - 2 r ) )  p r s ,  

s = 0  a n  / r = s  
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where, for s = O, 1, . . . ,  r~, 

P%: V(rnAn) |  V(rtAt)QV(rnA~) 

is a homomorphism of representations of Uq(g) (independent of at and an) whose 
image is the unique Uq( g )-subrepresentation of V ( rt A1)N V ( r,~An ) isomorphic to 
V ( ( r l -  8)/~t -~ (rn  -- 8),~n). 

Proof This is proved by using the techniques of [9]. We omit the details. [] 

From now on, we denote the unique Uq (0)-subrepresentation of 

V ( 1 , . . . ,  1 ,Pn ) |  1 , . . . ,  1) 

isomorphic to V( ( r t -  8)A1 + (r,~ - s)An) simply by V ( ( r l -  s)A1 ql-(rn- 8))~n). 

LEMMA 3.6. Let P1 and Pn be as in Proposition 3.4. Then, the tensor product 

V ( 1 , . . . ,  1 ,P~) |  1 , . . . ,  1) 

is reducible as a representation ofUq(~) for only finitely many values of the ratio 
a l l a n .  

Proof For the duration of this proof, we abuse the notation by writing V(P1, Pn) 
for V ( 1 , . . . ,  1, Pn)| 1 , . . . ,  1). 

Note first that, by Proposition 1.6(a), the reducibility or otherwise of V(P1, Pn) 
depends only on the ratio a l / an .  Note also that, because each irreducible Uq (0)- 
subrepresentation of V(P1, Pn) occurs with multiplicity one (see (4)), V(P1, Pn) 
has only finitely many Uq(~)-subrepresentations. Thus, it suffices to prove that a 
given Uq(~)-subrepresentation m of V(P1, Pn) is actually an irreducible Uq(fi)- 
subrepresentation for at most finitely many values of al/a,~. 

Let { m l , . . . ,  ms} be a vector space basis of M,  and extend it to a basis 
{ml , . . . ,  mr} of V(Pt, P~) (these bases being independent of at and an). Then, 
M is a Uq(})-subrepresentation of V ( 1 , . . . ,  1, Pn)| 1 , . . . ,  1) if and only if, 
for each 1 ~< u ~< s, x0 + . mu and x o . mu are linear combinations of m l , . . . ,  ms. 
From the form of the isomorphism f in Theorem 1.2, it is clear a priori that 

t 

x0+ = Z cuvmv, 
v=l  

where each coefficient c,~v is of the form 

I - t  t/ -1 
Cur = Cuval q- Cuvan 

with cr and cu~" independent of at and as (and similarly for x o . mu). There are 
two possibilities: either 

(a) ' Cur c ~  = = 0 for all v > ~, or 
(b) the condition Cu, = 0 for all v > s holds for, at most, one value of al/a,~ 
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(and similarly for x o . mu) .  We claim that possibility (a) cannot hold for both x + 
and x o . It follows that possibility (b) must hold either for x + or for x o (or both). 
But this means that M is a Uq(fi)-subrepresentation for, at most, one value of 

( l l /an .  
To prove the claim, suppose for a contradiction that (a) does hold for both 

x + and x o . Then, M is a Uq(~)-subrepresentation of V(PI,  Pn) for all values of 
a l / a n .  Taking a l / a n  = q~,+~n+n+l--2s (0 ~< S < rn), we have 

k e r ( / )  = + V( (T  1 -- t ) ~  1 + (T n -- t )~n )  , 
t=O 

and taking a l / a n  =- q-(rl+r,~+n+l-2s) (O~s < rn), we have  

T n  

ker(I) = 0 
t=sT l 

v ( ( ~  - t)~i  + ("n -- t)~n).  

Note that these kernels are Uq(g)-subrepresentations of V(P1, Pn) (for the appro- 
priate value of al/a,~) .  Since M is irreducible under Uq(fi), it must either be 
contained in, or intersect trivially, each of these representations. It is clear that this 
is possible only if M is irreducible under Uq(g). But, by Theorem 3.1, M cannot 
be irreducible under Uq(~) for all values of a l / a n .  [] 

We now return to the proof of Proposition 3.4. Taking a l / an  = q-(~l+~,~+,~+1-2s), 
where 0 ~< s ~< rn, we see that the image of I is a representation of Uq (~) isomorphic 
tO 

8 

0 v(( ,-~ - t)~,l + (,~,~ - t)~,n) 
t=O 

as a representation of Uq(O). Moreover, by Theorem 1.5(d), the image of I is an 
affinization of V(r l  A I + rn An). In view of Proposition 1.6(b) and (c), to complete 
the proof of the first part of Proposition 3.4, it suffices to prove that the image of 
I is irreducible as a representation of Uq(fi). We prove this, and the second part of 
Proposition 3.4, as follows. 

Now let w + (resp. w;-) be a Uq(g)-highest (resp. lowest) weight vector in 
V ( ( r l  - S)Al + (r~ - s)A~), and let 

71 s " V ( P I ,  1 , . . . ,  1 ) 0 V ( 1 , . . . ,  1 ,Pn)  ---+ V ( P 1 ,  1,..., 1)OV(1, . . . .  1 , P n )  

be the projection onto V ( ( r l  - s)Al + (rn - s)An). As in the proof of Lemma 3.6, 
it is clear that 

X+o . W+o = aT lu l  + a~ l~n ,  
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where ul and Un are vectors in V(P1, 1 , . . . ,  1)@V(1, . . . ,  1,Pn) which do not 
depend on al or an. Moreover, since x + . w + has weight (rl - 1 )A1  + ( r n  - 1)An, 
and since the weight space 

(V(P1, 1 , . . . ,  1 ) |  1, Pn))(rl-1)A,+(rn-1)An 

: V(rlA1 + rnAn)(rl-1)Al+(rn-1)An 0 C.W +, 

it follows that 

~rl(X0+. w0 +) = (A ,a[ '  + Ana'~l)w +, 

where the complex numbers A1 and An do not depend on al or an. By the 
discussion immediately following the proof of Lemma 3.6, we know that this 
component vanishes if a l / an  = q-(r~+~,,+n+0. It follows that, for any al, an, 

~rl (x0 + . w +) -- B+(a'~lqrl+rn+n+' _ a l l ) w  +, 

for some B + E C which is independent of al and an. Note also that B + # 0, for 
otherwise V(rl  Al+rnAn) would be a Uq(fi)-subrepresentation of V ( 1 , . . . ,  1, Pn)| 
V(P1, 1 , . . . ,  1) for every value of al and an, contradicting Lemma 3.6. 

Similar arguments show that, for all 0 < s ~< rn, 

-- all)w+s , (5) 7rs(X+o �9 Ws_l)+ = B+(a lq rl+r,,+n+3-2s 

and that for all 0 ~< s < rn, 

7rs(X+o �9 W s _ I )  = BT(a l lq  rl+r.+n+3-2s --  a n l ) W s ,  (6) 

where the B~ E C x are independent of al and an. It follows easily from (5) and 
(6) that 

(i) if al ~an = q-ffl+r,+n+l-2s),  then 

s 

im(I)  = ( ~  V((r l  - t)A1 + (rn - t)An) 
t=0  

is an irreducible Uq(fi)-subrepresentation of V(PI,  1 , . . . ,  1 ) |  1, Pn); 
(ii) if a l / a n  = qrl+*,+n+l-2*, then 

coker(/)  ~ + V((r l  - t)A1 + (rn - t)An) 
t = 0  

is an irreducible Uq(fi)-quotient representation of V(P1,1 , . . . ,  1)| 
V ( 1 , . . . ,  1, Pn); and 

(iii) if al/an # q+(rl+r,,+n+l-2s) for any 0 ~< s ~< rn, then I is surjective and 
V(P1, 1 , . . . ,  1)@V(1, . . . ,  1, Pn) is an irreducible representation of Uq(fi). 
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These three statements together establish Proposition 3.4. [] 

EXAMPLE. We consider the case ?z = 2, A = 2)`1 + 2)`2, al/a2 = q5. By 
Proposition 3.4, 

V(PI ,  P2) ~ V(2)`l + 2),2) �9 V(),I + ),2) 

as representations of Uq(g). Thus, V(P1, P2) is not small (i.e. it is not irreducible 
under Uq(g)). On the other hand, 

dim(V(2),1 + 2),2)) = 27, dim(V(),1 + ),2)) -- 8, 

so dim(V (PI,  P2)) = 35; since Uq (~) has no irreducible representations of dimen- 
sions 5 or 7, V(PI, P2) is not isomorphic to a tensor product of small representa- 
tions. 

As we mentioned in the Introduction, this example disproves a conjecture made 
in [4]. 

4. Proof of the Main Theorem 

In this section, we give the proof of Theorem 2.2. We shall not discuss the proof 
of Theorem 2.3, since it is similar to, but much easier than, that of 2.2. 

Suppose first that V(P)  is a minimal affinization of ), E P+ ,  where ),(4) = 0 
and ),(i) > 0 for i --- 1 ,2,3.  Let Ui, for i = 1,2,3,  be the subalgebra of Uq(g) 
generated by the z~,  k} kl in Proposition 1.1 for which j E {1 ,2 ,3 ,4} \{ i} .  For 
each i, there is an obvious canonical epimorphism Uq(A3) ~ Ui, so that, by 
restricting to Ui, any representation of Uq(g) may be regarded as a representation 
of Uq(A3). 

Assume that 

a__l_l ~q+(A(1)+A(2)+4-2s) 

a2 

for all 1 ~< s ~< min()`(1), )`(2)). We show that V(P{1,3,4}) and V(P{2,3,4}) are 
irreducible as representations of U2 and Ui, respectively, so that by Theorem 3.1 
we are in case (a)l,2 or (b)l,2. Suppose then that at least one of V(P{1,3,4}) or 

V(P{2,3,4}) is reducible, say V(P{I,3,4}). Let Q E 79~ be such that, for i = 1,2, 3, 
the roots of Qi form a q-segment with centre bi, where 

/)2 = qA(2)+;~(3)+2 b3bl =q;~(1)+;~(3)+2 and b3 " (7) 

We claim that [V(Q)] -< 
will prove our assertion. 

[V(P)]. This contradiction to the minimality of IV(P)] 

4 Let m , ( V ( Q ) )  > 0, where # = )` - ~, ?7 = ~ j = l  nj~ n3 E N. We need the 
following lemma from [71 (see Lemma 3.2 in that paper). 
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LEMMA 4.1. Let ~ # J C_ I define a connected subdiagram o f  the Dynkin 
diagram o f  g. Let )~ E P+, P E 79~, and # E )~ - Q+. Then, i f  V is any highest 
weight representation o f  Uq(~) with highest weight P and highest weight vector 
v, we have m s ( V  ) = m u j ( V j ) ,  where Vj  = Uq(fij) .  ve. Moreover, i f  V is 
irreducible, so is Vj, and the highest weight o f  Vj  is Pj .  [] 

Since, by Theorem 3.1, V(Q{1,3,4)) and V(Q{2,3,4}) are irreducible under U2 
and U1, respectively, it follows from this lemma that nl and n2 are strictly positive. 
The next lemma, a special case of Lemma 4.3 in [6], shows that n4 > 0 too. 

LEMMA 4.2. Let A E P+, Q E T ';~, i E { 1,2, 3), and assume that the roots o f  Qi 
form a q-segment. Let # E P be o f  the form # = )~ - ~ j e I  njoej, where nj >~ 0 
for  all j ,  and n4 = O. I f  mu(V(Q) )  > O, then ni = O. [] 

Next, since bl/b2 = q.~(1)-.~(2) is clearly not of the form q+(.~(1)+A(2)+4-2s) for 
any l~<s ~< min()~(1), A(2)), it follows from Proposition 3.4 that 

V(Q{ 1,2,4 )) ="~ V(P{ 1,2,4 )) ='~ V(A(1)A , ) | (2)A 2 ) 

as representations of U3. If n3 = 0, Lemma 4.2 implies that m~,(V(P)) = 
m u (V (Q)) (take J = { 3 )). On the other hand, if n3 > 0, taking ~/' = a I + 53 + an, 
we have A - ~' > A - 7/and m;~_,7,(V(P)) > 0, because V(P(1,3,4)) is not irre- 
ducible as a representation of/-/2 by assumption, while m~_~, (V(Q))  = 0, because 
V(Q(l,3,4)) is irreducible as a representation of U2. This completes the proof that 
[V(Q)]-< [V(P)]. 

We have now shown that, if P does not satisfy condition (a) or condition (b) in 
2.2, then, for all 1 ~< i < j ~< 3, 

__az --_ q+(A(i)+)~(j)+4-2s,~) 
aj 

for some 1 ~< slj <~ min(A(i), A(j)). It is easy to see that these inequalities and the 
condition 

al  a2 a3 

a2 a3 a l  

are consistent only in the following three cases (together with the other three in 
which all the arrows are reversed): 
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I II 

, >"7 
i I 

I I I 

- . . \ ,  - -  \ :  

SI2 -l- S23 --  S13 = X(2) + 2 812 + 813 - 823 ~-~ A(l) + 2 

III 

9. 

sJ3 + s23 - s12 = X(3) + 2 

We remind the reader that diagram I, for example, means that 

Ct2 q)~(1)+,k(2)+4-Zs12 a__33 = q)~(2)+)~(3)+4-2s23, 

~2 a l  

a_~3 = q)~(1)+.~(3)+4-2s13. 

a l  

We must show that cases I-III  can correspond to minimal affinizations only if one 
of  s12,813 and '323 is equal to 1. 

Consider case I, for example. Note that 812 ~ 2, for otherwise '323 >/),(2) + 1, 
contradicting ,S23 ~ min(),(2),  ),(3)). Similarly, '323 ) 2 and '312 > '313. It suffices 
to show that'313 = 1. 

Assume that s13 > 1. Let R E ?;~ be such that R2 =/: '2,  R3 = P3 and the roots 
of  R1 form a q-segment with centre el, where a3/cl = q~(1)+~(3)+2. Note that 

__(L2 = q.X(1)+)~(2)+4-2(SlZ-S13+l) 
el 

We show that [V(R)] -< [V(P)],  giving the desired contradiction. 
4 Suppose then that ra~,(V(R)) > 0, where u = ) , -  ~;, t~ = ~ i = l  ni~i, ni E I'q.If 

rq = 0, then m , ( V ( P ) )  = m , ( V ( R ) )  by Lemma4.1 ,  since P{2,3,4} = R{2,3,4}. On 
the other hand, if nl > 0, then by Lemma 4.2, n4 > 0 too. If, in addition, 7~ 3 ~> 0, 
let u' = ), - oq - o~ 3 - o~4. Then, u < /f  and m u , ( V ( R ) )  = 0, ~r~u,(V(P)) > 0 
by L e m m a  4.1 again. The only case left to consider is nl > 0, n4 > 0 and n3 = 0. 
But  we have [V(R{1,2,4}) ] -< [V(P{I,2,4}) ] by Proposition 3.4, and so another 
application of  L e m m a  4.1 deals with this case. 

We have now shown that, if V(P )  is minimal, one of  the conditions (a)-(c) 
in Theorem 2.2 hold. For the converse, we show first that a minimal affinization 
V(P)  of  one of  the types (a) or (b) cannot be related under the partial ordering _ to 
any minimal affinization V ( Q )  of  type (c). Suppose, for example, that P is of  type 
(a)2,3, Q is of  type (c), and [V(P)] _ [V(Q)].  We may assume that ),(2) _< ),(3) 
without loss of  generality; note that '323 > 1. If # = ), - ),(2)(c~2 + c~3 + c~4), 
then rau(V(P)) > 0 and r a u ( V ( Q ) )  = 0 by Proposition 3.4; and if v > # and 
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ra~,(V(Q)) > 0, we must have v = ,~ - r(o~2 + o~3 + o~4) for some r < )~(2) by 
Proposition 3.4 again, and then ra~(V(P))  = m~,(V(Q)). Thus, we cannot have 
[V(P)] ~ [V(Q)]. Similar arguments apply in the other cases. 

To complete the proof of  the converse, we have to show, say when P and Q are 
of  type (c), 

/ / / I / /  / I 

! _ ~ :  " ~ ' - - ~ . .  "X I -~" 

P Q 

that [V(P)] and [V(Q)] are unrelated by _ unless 813 = tl3 and 823 = t23. Note 
that 

813 + 823 = t13 + t23 (=  4), 

so i f  823 < t23, then t13 < 813. Then, considering {2, 3, 4} shows that we can- 
not have [V(Q)] -< [V(P)], and considering {1, 3, 4)  shows that we cannot have 
[V(P)] ___ [V(Q)]. Finally, the fact that the two diagrams in (a)i,j (resp. those in 

(b)i,j, those in ( c ) ~ )  correspond to equivalent affinizations follows from Proposi- 
tion 1.6. [] 
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