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Abstract, Let g be a finite-dimensional complex simple Lie algebra and U,{g) the associated
quantum group (g is a nonzero complex number which we assume is transcendental). If V' is a finite-
dimensional irreducible representation of Ug(g), an affinization of V is an irreducible representation

V of the quantum affine algebra U,(@) which contains ¥ with multiplicity one and is such that all

other irreducible U, (g)-components of V have highest weight strictly smaller than the highest weight
A of V. There is a natural partial order on the set of U, (g)-isomorphism classes of affinizations, and
we look for the minimal one(s). In earlier papers, we showed that (i) if g is of type A, B, C, F or
G, the minimal affinization is unique up to Ug(g)-isomorphism; (ii) if g is of type It or E and A is
not orthogonal to the iriple node of the Dynkin diagram of g, there are either one or three minimal
affinizations (depending on A). In this paper, we show, in contrast to the regular case, that if Ug(g) is
of type D4 and X is orthogonal to the triple node, the number of minimal affinizations has no upper
bound independent of A.

As a by-product of our methods, we disprove a conjecture according to which, if ¢ is of type A,
every affinization is isomorphic to a tensor product of representations of U,(§) which are irreducible
under Uy (g) {in an earlier paper, we proved this conjecture whenrn = 1)

Mathematics Subject Classifications (1991). 17B37, B1R50.
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Introduction

In [2], we defined the notion of an affinization of a finite-dimensional irreducible
representation V' of the quantum group U,(g), where g is a finite-dimensional
complex simple Lie algebra and ¢ € C* is transcendental. An affinization of V
is an itreducible representation V' of the quantum affine algebra U,(§) which,
regarded as a representation of U,(g), contains V with multiplicity one, and is such
that all other irreducible components of V have strictly smaller highest weight
than that of V. We say that two affinizations are equivalent if they are isomorphic
as representations of Uy(g). We refer the reader to the introduction to [2] for a
discussion of the significance of the notion of an affinization.

* Both authors were partially supported by the NSF, DM$-9207701.
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In general, a given representation 1V has finitely many equivalence classes of
affinizations (always at least one), and it is natural to ask if there is a canonical
affinization. To this end, a natural partial ordering on the set of equivalence classes
of affinizations was defined in [2], and it was proposed to study the minimal
affinizations. In [2], [4] and [7], it was shown that, if g is of type A, B, C, I
or (, the minimal affinization is unique up to equivalence. In [6], we considered
the case when g is of type D or I, and determined the minimal affinizations of
those representations V' whose highest weight A is not orthogonal to the simple
root corresponding to the “triple’ node of the Dynkin diagram of g. We found that,
under these assumptions, there are three minimal affinizations of V', except when
A is orthogonal to all the simple roots in a ‘leg’ of the Dynkin diagram, in which
case there is only one. In this Letter, we remove this regularity assumption when g
is of type D4. We find the surprising result that, if A is orthogonal to the triple node,
the number of minimal affinizations increases with A (roughly speaking), and has
no upper bound independent of A.

Although the techniques used in the proof of this result are similar to those used
in [2], [4], [6] and [7], there is one new feature. In [6] and [7], the crucial step in the
classification of the minimal affinizations is to prove that such affinizations remain
minimal on restriction to certain type A subdiagrams of the Dynkin diagram of g
(and to the type 8, subdiagram in the nonsimply-laced case). The classification is
then deduced from that for types A and B; proved in [4] and [2], respectively. In
the situation considered in this Letter, however, it turns out that there are minimal
affinizations of representations V' of Uy(D4) which are not minimal for any of the
type Aj subdiagrams of D,. This makes it necessary to understand the structure
of certain nonminimal affinizations in the A, case. The main tool used here is
the trigonometric R-matrix associated to a pair of representations of Uq(fiﬂ). (We
thank Gustav Delius for computing the R-matrix we need — see Lemma 3.5.)

As aby-product of this more detailed study of the affinizations of representations
of U;(Ax), we are able to disprove a conjecture made in [4]. In [3], we showed that
when g is of type A, every finite-dimensional irreducible representation of U,(§)
is isomorphic to a tensor product of small representations (i.e. representations of
U, () which are irreducible under U, (g)), and we conjectured that this might extend
to type A algebras of higher rank. However, we show in this Letter that, when g is of
type Az, the 27-dimensional irreducible representation of U,(g) has an affinization
of dimension 35. This cannot be a tensor product of small representations, because
U,(g) has no irreducible representation of dimension 5 or 7.

1. Quantum Affine Algebras and their Representations

In this section, we collect the results about quantum affine algebras which we shall
need later.

Let g be a finite-dimensional complex simple Lie algebra with Cartan subalgebra
h and symmetric Cartan matrix 4 = (ai;); jer- For any 1 € I, define A; € Z{ by
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M(j) =6 forallj e I.Let P =3, ;Z. A and Pt = 5, ) N. )\ Let R
(resp. RT) be the set of roots (resp. positive roots) of g. Let a; (1 € I) be the
simple roots and let # be the highest root. Define a nondegenerate symmetric
bilinear form ( , ) on b* by (e, ;) = aij. Let Q@ = DieiZ.a; C h* be the root
lattice, and set @ = T, N .. f0 # J C I let Qs = BiesZ.; C 1" and
Q5 = ¥.esN. 0 Define a partial order > on Pby Az piff A — u € QF,

In this Letter, we shall be concerned mainly with the case when g is of type Ds.
We take I = {1,2,3,4}, with 4 being the ‘triple node’, so that the Cartan matrix
is

2 0 0 -1
0 2 0-1
A=1 45 0 2 -1
1 -1 -1 2

Let g € C* be transcendental and, for 7,7 € ¥, n 3 r, define
qn _ q—n

[n]y = =
[n]g! = [nlg[n — 1],...[2],[1),,

PROPOSITION 1.1. There is a Hopf algebra U,(p) over C which is generated as
an algebra by elements :céi, kiﬂ (z € 1), with the following defining relations:
kik;_l = k‘_flki =1, k@k‘j’ = k:jki,

kiz?:kz_l = qtougt

7

ki — k!
+ -1 3 ]
{Ii ’IJ]_(SU q_qil ’
gL
[ ] st =0 idd
»=0 q

The comultiplication A, counit ¢, and antipode S of Ug(g) are given by
Az]) = of @k, + 101},
Ale7) =7 @1+ k@27,
ARy = K ok,
daf) =0, k') =1,
S(ef)y = ok, S(ep) = -kizg, SGFH =&F
foralli e I ]
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The Cartan involution w of U,(g) is the unique algebra automorphism of U, (g)
which takes 2 — —aF, k¥ — kF! foralli e I.

Letf = I'1I1 {0} andlet A = (aij); ;e 1 be the extended Cartan matrix of g, i.e.
the generalized Cartan matrix of the (untw1sted) affine Lie algebra g associated to
p. When g is of type Dy,

2.0 0 0-1
0 2 0 0-1
A= 0 0 2 0-1],
0 0 0 2-1
-1 -1-1-1 2

with the rows and columns numbered 0, 1, 2, 3,4,

THEOREM 1.2. Let U,(§) be the algebra with generators 2 ¥, k' (i ¢ I) and
defining relations those in 1.1, but with the indices i, ] allowed to be arbitrary
elements of 1. Then, U,(§) is a Hopf algebra with comultiplication, counit and

antipode given by the same formulas as in 1.1 (but withi € i).
Moreover, U,(§) is isomorphic to the algebra A, with generators z (1€ 1,

reZ)kE (ieI) ki, (i€ I r € Z\{0})and cil/z, and the followmg defining

relations:

cE2 are central,
kk7V =k =1, V2= V22,
kik; = kjki,  kihj,. = hj .k,

kot BTV = qi“'szT,

g0
c—c T

1
[hi',ra hj,s] = ’51',—3 ;[Taij]q. _'__Tfa

J J

1 kig
(i, 23] = £ [ragloe™ 2, L,

+ + +a,, .+ ta, x 2E +
Tirt1Tss — 4 H wj,smz.r+1 q ]x: o Eherl T Thsp1 T
—8)/2 2+ - 2
LY G o

[x?,—r’x;s] = 61] ?

qg—q!

k :I: + + .+ + _ . .
Z Z 1) [ ] a1} '"x'i»""vr(k)xjrsmiyrw(k-}l) e Tirnmy T 0, i# 7,
TELm k=0
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Jor all sequences of integers vy, ..., 1., where m = 1 — a;;, X, is the symmetric
group on m letters, and the gbf; are determined by equating powers of u in the
formal power series

quzﬂ:'r'“ = kil ExXp (:I:(q_'q I)Zhi:l:s ) .

s=1

If 8 = Y icrmuc, set kg = [licr k™. Suppose that the root vector Ty of g
corresponding to 8 is expressed in terms of the simple root vectors E;" (tel)ofg
as

S E 7] )

Ty = A[dt’[ Tigs Ty 1°

Ty = A

for some A € C*. Define maps w Uy(8) — Ug(§) by
wE(a) = 2F 00 — FlakFlad,.

Then, the isomorphism f: U,(&) — .Aq is defined on generators by
flho) = k3t f(k) =k,  [2F)=ud, (i€l
fleg) = pwj ---wp (25 k7
flag) = Akaw? --wt (),

k

where u € C* is determined by the condition
ko — kg
qg-—q"’
See [11, [5] and [11] for further details.
If § # J C I defines a connected subdiagram of the Dynkin diagram of g, let g
be the corresponding simp]e subalgebra of g, and let U,(§.) be the subalgebra of
U,(5) generated by the z¥,, ¢F, and c='/2 for all i € J, r € Z. Note that there is
a canonical homomorph:sm from the quantum affine algebra associated to gy onto
Uq(@J )
Note that there is a canonical homomorphism U, (g) — U,(§) such that 2 —
£ k' v kF! forall i € 1. Thus, any representation of U,(§) may be regarded
as a representation of U,(g) by restriction.
Let 7% (resp. /%) be the subalgebra of U . (@) generated by the 23 (resp. by the
¢, foralli € I, r € Z. Similarly, let U (resp. UP) be the subalgebra of U,(p)
generated by the acz': (resp. by the k‘?ﬂ) foralli e I.

PROPOSITION 1.3.
(@ Uy(g)=U~.U°.UT.

[wa',xa] =
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(b) Uy(6) = U~.0°. U+ O

See [5] or [11] for details.
We shall make use of the following automorphisms of U,(3):

PROPOSITION 1.4. (a) Forallt € C*, there exists a Hopfalgebra automorphism
¢ of U, () such that
'l't(:1:7—L = {"z* Te(hip) = (" hisr,

1,7 i,7?
Tt(k‘?:l) = k;“, Tg(ci1/2)= C:f:l/2_

(b) There is a unique algebra involution & of U,(§) given on generators by

Gt )= —2F_,, @lhir) = —hiy,

3,—7?

G(¢F,) = &7, k') = kT,
L:,(Czl:lfz) = ¢FL/2,

Moreover, we have
(COU)o A= APow,
where AP is the opposite comultiplication of U (). o

See [2] for the proof. Note thatw is compatible, via the canonical homomorphism
U,(g) — U,(a), with the Cartan involution w of U,(g).

A representation W of U,(g) is said to be of type 1 if it is the direct sum of its
weight spaces

Wiy ={weW|kw=¢Dw} (AeP)

If Wy # 0, then ) is a weight of W. A vector w € W), is a highest weight vector
if z7.w = Oforall7 € I, and W is a highest weight representation with highest
weight A if W = U,(p).w for some highest weight vector w € W,

It is known (see [5] or [11], for example} that every finite-dimensional irre-
ducible representation of U, (g) of type 1 is highest weight. Moreover, assigning to
such a representation its highest weight defines a bijection between the set of iso-
morphism classes of finite-dimensional irreducible type 1 representations of U,(g)
and P7; the irreducible type 1 representation of U,(g) of highest weight A € P*
is denoted by V(). Finally, every finite-dimensional representation W of U,(g)
is completely reducible: if W is of type 1, then

W~ B V(a)Fm)
AePt

for some uniquely determined multiplicities m (W) € N.
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A representation V of U,(§) is of type 1 if ¢!/2 acts as the identity on V', and
if V is of type 1 as a representation of U,(g). A vector v € V is a highest weight
vector if

+ _ + g 12, _
el ,0=0, @ .o=0 0, clTv=mw,

for some complex numbers @[) . A type 1 representation V is a highest weight
representation if V' = U,(g). v, for some highest weight vector v, and the pair
of (I X Z)-tuples ((I> )ze I,rez 15 its highest weight. Note that &}, = 0 (resp.
.= 0)ifr <0 (resp. if r > ), and that Q:jo'i):‘) = 1. (In [5], hlghest weight
representations of U,(§) are called ‘pseudo-highest weight’.)
If A € Pt, let P* be the set of all I-tuples ( F;);c; of polynomials P; € C[u),
with constant term 1, such thatdeg( ;) = A(i)foralli € I.Set P = Uycpt P

THEOREM 1.5. (a) Every finite-dimensional irreducible representation of U(§)
can be obtained from a type 1 representation by twisting with an automorphism of
U, (3).

(b) Every finite-dimensional irreducible representation of Uy (@) of type I is
highest weight.

{c) Let V be a ﬁmte -dimensional irreducible representation of Uy(§) of type 1
and highest weight ((I' " )icl rezn Then, there exists P = (P, )ier € 'P such that

o0

i Pg ) o
+ 0 o deg(P) _ - T
Tgo ¢/ =¢ (o) Z ¢ u

in the sense that the left- and right-hand terms are the Laurent expansions of the
middle term about 0 and co, respectively. Assigning to V the I-tuple P defines a
bijection between the set of isomorphism classes of finite-dimensional irreducible
representations of Ug(@) of type 1 and P. We denote by V(P) the irreducible
representation associated to P.

(d) Let P, Q € P be as above, and let vp and vg be highest weight vectors of
V{(P) and V (Q), respectively. Then, in V(P)2V(Q),

.1‘?} . (’L’p@UQ) = 0, qﬁ;tr . (‘UP®UQ) = ‘I’?}(Up@’vq),

where the complex numbers ‘~IJ . are related to the polynomials P;(Q}; as the fI‘i
related o the Py in part (c). In parrzcular if PRQ denotes the I-tuple { P;Q; )ze I
then V(P®Q) is isomorphic to a quotient of the subrepresentation of V(P)YRV (Q)
generated by vp@uyg. a

See [5] and [8] for further details. If the highest weight (‘i’?})ae rrezof Vis
given by an I-tuple P as in part (¢), we shall often abuse notation by saying that V
has highest weight P.
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If o is any automorphism of Ug(g), and p : U,s(g) — End(V') is a representation
of U,(3), we denote by o*(V'} the representation p o & of U,(§). Also, we denote
by V* the vector space dual of V' provided with the action of U,(§) given by

(z. f)w) = flp(§(2))(v));

where z € Uq(g), v € V, f € V*,and S is the antipode of U, (). B
Let wg be the longest element of the Weyl group of ¢, and let ¢ — i be the
bijection I — I such that wo(e;) = —a;. It is well known that

W (V(2) = V(=wo(A)) V()" V(-wo(d)),

forall A € P*t. The following resuits are proved in [2] and [6]:

PROPOSITION 1.6. Let A € P+, P = (PB,)icr € P, and let

Ald)
Piw)= [J(1-alu) (ari € €°).
r=1

(a) Foranyt € C%, 77 (V(P)) & V(P*), where P* = (Pf);cr and

Az}
Piw)=[[(1- ta; [u).

r=1
(1) Define P* = (P)ier € P by

) A0 ,
Pe(u) = H(l — q“ar;u).

r=1
Then, there existst € C*, independent of i € I, such that
O*(V(P)) = 77 (V(PY))

as representations of Ug(g).
(c) Define P* = (P} licr € P-u(}) py

Ai)
P;*(u) = H(l - a,;'fu)

r=1

Then, there exists t* € CX such that, as representations of Ug(§),

V(P)* = i (V(P")).
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2. Minimal Affinizations

Following [2], we say that a finite-dimensional irreducible representation V' of
U,(§) is an affinization of A € P if V = V(P) as a representation of Uy(g),
for some P € ‘P*. Two affinizations of ) are equivalent if they are isomorphic as
representations of U,(g); we denote by [V] the equivalence class of V. Let Q* be
the set of equivalence classes of affinizations of A.

The following result is proved in [2].

PROPOSITION 2.1. If A € Pt and [V], [W] € Q% we write [V] =< [W] iff, for
all u € P, either

() m (V) < m, (W), or
(i) there exists v > pwith m, (V) < m, (W),

Then, < is a partial order on o, O

An affinization V of A is minimal if {V] is a minimal element of Q* for the
partial order =, i.e. if [W] € Q* and [W] < [V] implies that [V] = [W]. It is
proved in [2] that Q* is a finite set, so minimal affinizations certainly exist.

The main result of this Letter concerns minimal affinizations of representations
of U,(g) when g is of type D,. To state it, we introduce the following terminology
and notation. First, as in [2], by the ¢-segment of length » € N and centre ¢ € C*,
we mean the set of complex numbers {aq~"+! ag="t3, ... ag"~'}. Next, let A €
Pt be such that A(4) = 0,and let P = (P;);c; € P*. Suppose that i, § € {1,2,3},
i # j, are such that A(Z) > 0 and A(j) > 0. Then, if the roots of £; and I’; form
g-segments with centres o; and g;, and if

S _ q'r,+r]+4—-2r
a, ’

for some 1 < 7 £ min(r;, r;), we join nodes ¢ and j of the Dynkin diagram of g
with a dotted line, as follows:

Our main result is the following.
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THEOREM 2.2. Let g be of type Dy, let A € Pt be such that A(4) = C and
A(i) > Ofori=1,2and3, and letP = (P,)ie1 € P\

If V(P) is a minimal affinization of A, then, for all i € {1,2,3}, the roots of
P; form a q-segment with centre o, (say), where the a; satisfy one of the following
conditions:

(a);,; Fixi, 7 € {1,2,3),¢ < j,andlet {i, j, k} = {1,2,3}. Then, the condition is

a . a: }
i, £ = POTARIFZ S AOHNRA2

% or @

2k = PR G MIHNERI2,

Q; } ag

2

(b)ij Fix4, j, k as in (a); ;. Then, the condition is

or k

a ) @ .
de. — = PMOFMEHL i MERAGRN

4 or Gk

4 POrEAE % _ MDHAR2,

apr. ? a;

(c):’JS Fixi, j, k asin (a);;, and let v, s be integers satisfying

r+s=Ak)+3, 1<r <min(A(5), A(k)), 1 € s < min(A(7), A(k). (3)
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Then, the condition is

or k

i
Lo, b= QUM T _ ACYAR) -2
£33 a;
14 @
S P A or L — PAOIAE+E=2s
G, (244
B ORI L o P2,
a‘.? ' a,

Conversely, suppose that the roots of each F;, i = 1,2,3, form a g-segment of
centre a;. Then, for each i < j in {1,2,3},

(d) at least one of (a); ; and (b); ; defines a minimal affinization, and
(e) (¢);’; defines a minimal affinizaion for all v, s satisfying (3).

Finally, the two diagrams in (a), ; (resp. (b); (c)::;) define equivalent affiniza-
tions; an affinization of type (a), ; (resp. (b), ;) is not equivalent to any affinization
of any other type, except possibly (b); ; (resp. (a); ;); and an affinization of type
(c)?:_f is not equivalent ro an affinization of any other type.

Remarks. (1) We conjecture that the affinization of type (a) ;.7 15 equivalent to
that of type (b);, ; (in which case, both types would be minimal).

(2) Each of the diagrams in (a); , (b); , and ()}’ actually represent infinitely
many nonisomorphic representations of U,(g). However, it follows from Propo-
sition 1.6 that any two affinizations V(P) satisfying (a); ; (or any two satisfying
(b), ;, or any two satisfying (c);";) are equivalent.

The next result deals with the case where A is orthogonal not only to the triple
node, but also to one or more of the exterior nodes.

THEOREM 2.3. Let g be of type Dy, and let A € PT be such that A\(4) = Q.

(a) Let A(i) > 0, A(J) > O and A(k) = 0, where {i,7,k} = {1,2,3}. Then,
if P € P, V(P) is a minimal affinization of X iff the roots of P, and P; form
y-segments with centres a; and a,;, where

i _ AOEHAHD),

a,
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(b) Let A(i) > 0, A(j) = Oand A(k) = 0, where {1,7,k} = {1,2,3}. Then, if
P ¢ P, V(P) is a minimal affinization of X iff the roots of P; form a q-segment.

The proofs of Theorems 2.2 and 2.3 occupy the next two sections.

3. Affinizations in the Type A Case

The minimal affinizations of representations of Ug(g) when g is of type A were
classified in [4] (see Theorem 3.1 of that paper). We recall the result.

THEOREM 3.1. Let g = sl,41(C), and let A\ ¢ P*. Then, Q has a unique
minimal element. Moreover, this element is represented by V(P), for P € P, if
and only if, for all 1 € I such that A(i) > 0, the roots of P; form the g-segment
with centre a;, for some a; € C*, and length (1), where either

(a) foralli < j, such that A\(i) > Oand A(j) > 0,

G o PEFAEH G-+
G,

or
(b) forall i < j, such that A(1) > Qand A(5) > Q,

B G2+ M)~
a;

In both cases, V(P) 22 V() as representations of U,(g). a

To apply this result to the case where g is of type D4, we need the next
proposition. If \ € P*, P = (P;)icr € P*, and J is a nonempty subset of I, let
P; be the J-tuple (P;);es and let A; be the restriction of A: I — Z to J. Also,
define A7 € Pt by

Wiy [0 e,
v= 0, otherwise,

and P/ € P by
p _ P, ifieJ,
! 1, otherwise.

Finally, we say that § # J C {1,2,3,4} is admissible if J = {j,4} for some
je{1,2,3}%

PROPOSITION 3.2. Let g be of type Dy, let A € PY, andletP = (F;);c; € P If
V(P) is a minimal affinization of A, then, for all admissible subsets J of {1,2,3,4},
V(P;) is a minimal affinization of A y and V (PY) is a minimal affinization of . O
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This is a special case of Proposition 4.2 in [6].
From Theorem 3.1 and Proposition 3.2, we immediately deduce

COROLLARY 3.3. Ler g be of type Dy, let A € PY, andlet P = (Fi)ier € PrIF
V(P) is a minimal affinization of X, then for all i € {1,2,3,4}, either I, = 1 or
the roots of F; form a q-segment. a

As we mentioned in the Introduction, we need some information about non-
minimal affinizations in the type A case:

PROPOSITION 3.4, Let g be of type A, wheren = 2, let v = 1, be nonnegative
integers, and let a1, a, € C*. Let Py (resp. P,} be the polynomial with constant
coefficient 1 whose roots form the ¢-segment with centre a (vesp. a,) and length
71 {resp. r,,). Then, as representations of Uy(g),

s—1

",(Pla L. l,P.”) = @V((’i"] - t)}‘l + (Tn - t)/\n)a
t=0

ifay/a, = g1t tnt1-25) for some | <8<y, and
V(P,LL,...,,P) 2 V(rA) @ V(rnA,)
otherwise.
Note that, tn view of Proposition 1.6, the assumption r| > r,, involves no loss
of generality.

Proof. Note first that, by Theorem 3.1, V( Py, 1,...,1)and V(1,...,1, P,) are
minimal affinizations of | A; and 7, A,,, and that they are isomorphic as represen-
tations of Uy(g) to V(r1 A1) and V(rpA,,), tespectively. Next, by Theorem 1.5(d),
V(P 1,...,1, P,) is isomorphic as a representation of U,(3) to a subquotient of
the tensor product V(1,...,1, P,)®V (P, 1,...,1) and, hence, as a representation
of U,(g) to a subrepresentation of

ViraAn)@V(rAy) =2 éV((rl — 8)A 4 (rn — 8)An)- )

s=0
To proceed further, we need the following lemmas.

LEMMA 3.5. Let Py and F,, be as in Proposition 3.4. Then, there exists a homo-
morphism of representations of Ug(§)

I2V(L L P)RV(PL L. D) = V(P L DRV, L L By
of the forin

o s—~1 rn—1
| = Z H (] _ “_lqr.+r,.+n+1—2r> H (a_l _ q'r'1+rn-|—n+l~2'r> Pr,.
aﬂ an

s=0 \r=0
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where, fors = 0,1,...,7y,,
Pry: V(:"RA“)@V(T'])U) — V('Pl)n)@V(Tn)\n)

is a homomorphism of representations of U,(g) (independent of a1 and a,,) whose
image is the unique Uy(g)-subrepresentation of V(r1A1)@V (r,Ay) isomorphic to

V{((r - .s))q_—l—_ (Ta — 8)An). _
Proof. This is proved by using the techniques of [9]. We omit the details. O

From now on, we denote the unique U, (g)-subrepresentation of
V(... 1, B)@V(P,1,...,1)
isomorphicto V{((r(—8)A 1+ (7, —8)A,) simply by V{((r| —s) A1 +(rn — $)An).
LEMMA 3.6. Ler P, and P, be as in Proposition 3.4. Then, the tensor product
V(1,...,1, P)eV(A,1,...,1)

is reducible as a representation of Ug(g@) for only finitely many values of the ratio
a1/ ay.

1 /P:oaf For the duration of this proof, we abuse the notation by writing V( P, B,,)
forV(1,...,1, B )®@V(h,1,...,1).

Note first that, by Proposition 1.6(a), the reducibility or otherwise of V{( Py, Fy,)
depends only on the ratio @ /a,. Note also that, because each irreducible U, (g)-
subrepresentation of V( Py, P,,) occurs with multiplicity one (see (4)), V(P;, P,)
has only finitely many U,(a)-subrepresentations, Thus, it suffices 1o prove that a
given U,(g)-subrepresentation M of V (P, ;) is actually an irreducible U,y(§)-
subrepresentation for at most finitely many values of a1/a,,.

Let {mi,...,ms} be a vector space basis of M, and extend it to a basis
{my,...,m:} of V(Py, P,) (these bases being independent of 2, and a,). Then,
M is aU,(§)-subrepresentationof V'(1,...,1, P,)®@V (P, 1,...,1) if and only if,
foreach 1 € u < s, a;(')f' .my and zj . m, are linear combinations of my, ..., ms.
From the form of the isomorphism f in Theorem 1.2, it is clear a priori that

i
+ —
T M=) CunMo,

u=1
where each coefficient ¢, is of the form

o -1 A |
Cay = Cyplly + Cunln s

with ¢/, and ¢}, independent of @, and a, (and similatly for z; . m,). There are
two possibilities: either

(a) ¢, =cii, =0forall v > s, or
(b) the condition ¢,,, = O for all » > s holds for, at most, one value of a;/a,,
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(and similarly for = . m,). We claim that possibility (a) cannot hold for both 3:6"
and z . It follows that possibility (b) must hold either for zg or for z; (or both),
But this means that M is a U,(§)-subrepresentation for, at most, one value of
ay/ay,.

To prove the claim, suppose for a contradiction that (a) does hold for both
zf and zj. Then, M is a U,(§)-subrepresentation of V( Py, P,) for all values of
ay/y. Taking ap fa, = 7137 H1-25(0 < 5 < 7)), we have

ker(1) = D V{(r1 = )A1 + (rn — D)),
=0
and taking a,/a, = ¢~ Hratntl=23) (05 < 7)), we have

ker(]) = é V((Tl - t)/\l + (T‘n - t)'\'n)-

i=s+1

Note that these kernels are U, (g)-subrepresentations of V( Py, Py) (for the appro-
priate value of a;/ay). Since M is irreducible under Ug(g), it must either be
contained in, or intersect trivially, each of these representations. It is clear that this
is possible only if M is itreducible under U,(g). But, by Theorem 3.1, M cannot
be irreducible under U, (g) for all values of a; /a,. 0

We now return to the proof of Proposition 3.4, Taking @/ a,, = ¢~ {"i+7ntn+1-2s5)
where 0 € s < rp,, we see that the image of 7 is a representation of U, (§) isomorphic
1o

k4

BV - A + (= )
t=0

as a representation of U,(g). Moreover, by Theorem 1.5(d), the image of 7 is an
affinization of V{rA| 4+ rpAy). In view of Proposition 1.6(b) and (c), to complete
the proof of the first part of Proposition 3.4, it suffices to prove that the image of
I is irreducible as a representation of U,(g). We prove this, and the second part of
Proposition 3.4, as follows.

Now let w] (resp. w;) be a U,(g)-highest (resp. lowest) weight vector in
V{(r1 = s)A1 +(r,, — s)A,), and let

T VIPLL L, DRV, 1, P = VIPL L. DRV, 1L Py)

be the projection onto V({71 — s)A1 + (rn, — $)A,). As in the proof of Lemma 3.6,
it is clear that

m[)" .w;r = al_lul + a,,:lun,
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where u; and u, are vectors in V (P, 1,...,1)®V(1,...,1, F,) which do not
depend on e, or a,,. Moreover, since 7 . wg has weight (ry — 1)A; + (1, — 1),
and since the weight space
(V(Ph L., 1)®V(11 RN lvpn))(‘rl—l)A;+(7'n—l)An
= V(riA 4 mada)ri- a4 (=120 © Cwf,

it follows that
mi(ed . wd) = (dia7 + Aya; wt,

where the complex numbers A; and A,, do not depend on a; or a,. By the
discussion immediately following the proof of Lemma 3.6, we know that this
component vanishes if ¢1 /a, = g~ ("1t +7+1) It follows that, for any ay, an,

iz . wl) = Bi"(a;lqr1+r"+n+1 — a7 Hwt,

for some Bf € C which is independent of ; and a,,. Note also that B]'" # 0, for
otherwise V(71 A1+, A, ) would be a U,(g)-subrepresentationof V(1,...,1, P)®@
V(P,1,...,1) for every value of @1 and a,, contradicting Lemma 3.6.

Similar arguments show that, forall 0 < s < 7y,

mo(xg . wly) = B (ag'qn TR — oo, (5)
and that forall0 < s < 7y,

m(zd . wy) = By (a7 g2 _ oo, (6)

where the BY ¢ CX are independent of a; and a,,. It follows easily from (5) and
(6) that

(i ifa1/an — q—(m+rn+n+l—23), then
im(1) = @ V((r1 = DA + (rn — 1)An)
t=0

is an irreducible U, (§)-subrepresentationof V( Py, 1,..., 1)@V (1,..., 1, B,);
(i) if aj/a, = g1 T+ H1=25 then

s
coker([]) = EB V{(r1 = )A1 + (rn — t)An)
=0
is an irreducible U,(§)-quotient representation of V{(F,1,...,1)®
V(l,...,1,P;); and
(iii) if a1 /a, # gE( e +t2+1-29) for any 0 € s < 7y, then I is surjective and
vih,1,...,1)®V(1,...,1, P,) is an irreducible representation of U,(§).
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These three statements together establish Proposition 3.4. o

EXAMPLE. We consider the case n = 2, A = 2| + 2}, a;/a; = ¢°. By
Proposition 3.4,

I/(Pl,Pz) = V(2A1 + 2/\2) D V(A] + A7)

as representations of Uy(g). Thus, V( Py, P») is not small (i.e. it is not irreducible
under U,(g)). On the other hand,

dim(V(2)\1 + 2)\2)) = 27, dlm(V()\l + )\2)) =8,

sodim(V (P, B,)) = 35; since U,(g) has no irreducible representations of dimen-
sions 5 or 7, V (P, %) is not isomorphic to a tensor product of small representa-
tions.

As we mentioned in the Intreduction, this example disproves a conjecture made
in [4].

4, Proof of the Main Theorem

In this section, we give the proof of Theorem 2.2. We shall not discuss the proof
of Theorem 2.3, since it is similar to, but much easier than, that of 2.2.

Suppose first that V(P) is a minimal affinization of A € P*, where A(4) = 0
and A(i) > Ofori = 1,2,3. Let U;, for ¢ = 1,2,3, be the subalgebra of U,(g)
generated by the xf, k;-“ in Proposition 1.1 for which j € {1,2,3,4}\{#}. For
each 7, there is an obvious canonical epimorphism U,(A3) — U;, so that, by
restricting to U;, any representation of U,(g) may be regarded as a representation
of Uq (/13)

Assume that

a 1 ~2s
;L_l#qt(}\(l)+>\(2)+4 2s)
2

for all 1 < s < min{A(1), A(2)). We show that V' (Pyy 34y) and V(Pyy44) are
irreducible as representations of I/ and Uy, respectively, so that by Theorem 3.1
we are in case (a)) , or (b); 5. Suppose then that at least one of V(Py34y) or
V(Pya,3,4}) is reducible, say V(P 34})- Let Q € P* be such that, for i = 1,2, 3,
the roots of ¢}; form a g-segment with centre b;, where

? V() SVE IR J _Ib;z RTINS 7
3 3
We claim that [V(Q)] < [V(P)]. This contradiction to the minimality of [V (P)]
will prove our assertion.

Letm,(V(Q)) >0, where g = A—n,n = Ejle nja,, n, € N. We need the
following lemma from [7] (see Lemma 3.2 in that paper).
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LEMMA4.1. Let O # J C I define a connected subdiagram of the Dynkin
diagram of g. Let A\ € PY,P € P andpp € X — QY. Then, if V is any highest
weight representation of U,(a) with highest weight P and highest weight vector
v, we have m,(V) = m,,(Vs), where V; = U,(ds).ve. Moreover, if V is
irreducible, so is Vy, and the highest weight of V; is Py, (]

Since, by Theorem 3.1, V{(Qy, 3 43) and V(Qy5 3 43) are irreducible under U;
and /1, respectively, it follows from this lemma that » and n; are strictly positive.
The next iemma, a special case of Lemma 4.3 in [6], shows that n4 > 0 too.

LEMMA 4.2. Let A € P+, Q € P, i € {1,2,3}, and assume that the roots of Q;
form a q-segment. Let u € P be of the form p = A = 3 ;cynja;, where nj > 0
forallj, and ng = 0. If m,(V(Q)) > 0, then n; = Q. o

Next, since b1 /by = (=) s clearly not of the form =M1 +4(2)+4-29) for
any 1<s € min{A(1), A(2)), it follows from Proposition 3.4 that

V(Quip4)) = V(Pp12.4)) 2 VA1DADBV(A(2)2)

as representations of Uz, If n3 = 0, Lemma 4.2 implies that m,(V(P)) =
m(V(Q)) (take J = {3}). Onthe other hand, if n3 > 0, taking ' = o+ a3 +ay,
we have A — ' > A — pand m)_,(V(P)) > 0, because V(Py; 343) is not irre-
ducible as a representation of Uz by assumption, while mm)—(V{Q}) = 0, because
V(Qq1,3,4)) is irreducible as a representation of U. This completes the proof that
ViQ) < [V(P))

We have now shown that, if P does not satisfy condition (a) or condition (b} in
2.2, then, forall1 €+ < 5 <3,

G _ RO+ +4-25,))
a,- ’

for some 1 < s;; < min(A(7), A(5)). It is easy to see that these inequalities and the
caondition

are consistent only in the following three cases (together with the other three in
which all the arrows are reversed):
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| m

s12+ 83— 513 = A(2) +2 sizt 83 —sn=A{11+2 syt s —s=A03)+2

We remind the reader that diagram I, for example, means that

Ez = q}\(l)+k(2)+4—25]2 ?—3- = qA(2)+A(3)+4_252]
) ? ) )
U3 _ MO 28

aj

We must show that cases I-1II can correspond to minimal affinizations only if one
of si2, 812 and sj3 1s equal to 1.

Consider case I, for example. Note that s > 2, for otherwise s23 > A(2) + 1,
contradicting s23 £ min(A(2), A(3)). Similarly, sy3 > 2 and 812 > ;3. It suffices
to show that 513 = 1,

Assumethat s;3 > 1.LetR € P* be suchthat Ra = P5, R3 = P; and the roots
of £21 form a ¢-segment with centre ¢y, where a3/¢ = gMD+23)+2 Note that

12 _ A2 s )
€l

We show that [V(R)] < [V(P)], giving the desired contradiction.

Suppose then that m,,(V(R)) > 0, where v = A—k, k = 1L, njoy, n; € NIT
ny = 0,thenm, (V(P)) = m,(V(R))by Lemma4.1,since P, 3 43 = Ryz3 43.On
the other hand, if n; > 0, then by Lemma 4.2, n4 > 0 too. If, in addition, n3 > 0,
let v = A — oy — a3 — ay. Then, v < ¢’ and m.(V(R)) = 0, m,(V(P)) > 0
by Lemma 4.1 again. The only case left to consideris 7 > 0, ng > Oand n3 = 0.
But we have [V(Ryj24))] < [V(P{2,4})] by Proposition 3.4, and so another
application of Lemma 4.1 deals with this case.

We have now shown that, if V(P) is minimal, one of the conditions (a)-(c)
in Theorem 2.2 hold. For the converse, we show first that a minimal affinization
V (P) of one of the types (a) or (b) cannot be related under the partial ordering < to
any minimal affinization ¥V (Q) of type (c). Suppose, for example, that P is of type
(a); 5, Q is of type (¢), and [V(P)] < [V(Q)]. We may assume that A(2) < A(3)
without loss of generality; note that s;3 > L. If p = A — A(2)(e2 + a3 + a4),
then m,(V(P)) > 0 and m,(V(Q)) = 0 by Proposition 3.4; and if v > p and
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m,(V(Q)) > 0, we must have ¥ = A — r{as + @3 + a4) for some 7 < A(2) by
Proposition 3.4 again, and then m,(V(P)) = m,(V(Q)). Thus, we cannot have
[V(P)] < [V(Q)]. Similar arguments apply in the other cases.

To complete the proof of the converse, we have to show, say when P and Q are

of type (c),

3
A

uﬂ"

|
|
|
: Sa3 |
|
I

—— = sl .

that [V (P)] and [V (Q)] are unrelated by < unless 33 = #;3 and sp3 = 133. Note
that

313 + s23 = tis + i3 (= 4),

so if $p3 < tp3, then ¢33 < sy3. Then, considering {2, 3,4} shows that we can-
not have [V (Q)] < [V(P)), and considering {1, 3,4} shows that we cannot have
[V(P)] = [V(Q)]. Finally, the fact that the two diagrams in (a); ; (resp. those in
(b); ;» those in (c)"?) correspond to equivalent affinizations follows from Proposi-
tion 1.6. a
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