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w Introduction 

One of the most fascinating subjects of Celestial Mechanics is the study 
of planetary or satellite systems whose rotational or revolutional periods are 
close to an exact resonance. More precisely one can distinguish between 
"orbit-orbit" and "spin-orbit" resonances. In the first case one considers a 
three body problem which presents an exact commensurability among the 
mean motions. In the spin-orbit problem one deals with a two body system, 
e.g. a satellite S and a central planet P, where the satellite S is supposed to 
be characterized by two main periods: a rotational period Trot about an 
internal spin-axis and a revolutional period Trey around the central body. 
We define a spin-orbit resonance of type p : q (for some integers p, q), when 
the ratio Trev/Tro~ amounts to p/q. 

The classical example of a spin-orbit resonance is provided by the 
Moon-Earth system. As is well known the Moon always points approxi- 
mately the same face towards the Earth. This implies that the periods of 
rotation and revolution of the Moon are approximately equal. Therefore the 
Moon is observed to be very close to an exact 1:1 (or "synchronous") 
spin-orbit resonance. However, due to the torque exerted by the Earth, such 
commensurability is not precisely exact, but presents dynamical librations 
about the synchronous position. 

An astonishing fact is that all the evolved satellites of the solar system 
are trapped in a 1:1 resonance, namely they always point the same face 
toward the host planet. The only exception to this rule is provided by the 
Mercury-Sun system, since radar observations have shown that the ratio 
between the periods of rotation and revolution of Mercury amount to 
~. (1 +_ 10-4). In other words, after two revolutions about the Sun, Mercury 
makes three rotations about the spin-axis. 

In this paper we intend to investigate the stability of the synchronous 
resonance applying perturbation (i.e., Birkhoff-KAM) techniques. More 
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precisely, we introduce a mathematical model which describes an approxi- 
mation to the real physical situation. The assumptions we make are pretty 
well satisfied by most satellites of the solar system. Using Hamiltonian 
formalism our model is described by a nearly-integrable Hamiltonian func- 
tion of the form 

yZ 
H ( y , x , t ) = - ~ + e V ( x , t ) ,  y 6 R ,  ( x , t ) ~ ( R / 2 r c Z ) 2 - T  2, (1) 

where V(x, t) is a trigonometric function and e is the perturbing parameter, 
representing the equatorial oblateness of the satellite. 

Notice that the phase space S associated with (1) is three dimensional: 
therefore any two dimensional invariant surface divides S in two separate 
regions, providing a strong stability property in the sense of confinement 
of the motions. 

The phase space around the synchronous resonance has a pendulum-like 
structure. Therefore one has small librational surfaces whose mean diameter 
increases as the chaotic separatrix is approached. Such separatrix divides the 
region of librational regime (i.e., oscillations of finite amplitude about the 
equilibrium position) from the region in which rotational surfaces (corre- 
sponding to a complete rotation of the pendulum) are found. The confi- 
nement of the motion corresponding to the synchronous resonance (or, 
more widely, of orbits "close" to the exact resonance) can therefore be 
obtained either proving the existence of two rotational invariant surfaces 
bounding the motion from above and below or by proving the existence of 
a librational surface surrounding the motion we want to confine. 

The first claim was already investigated in [5, 6]. Here we intend to 
present a method for the construction of librational trapping surfaces. To 
this end we make some symplectic changes of variables in order to obtain 
a Hamiltonian function which is adapted to the description of librational 
motions. We first center the Hamiltonian to the 1:1 periodic orbit and 
expand in Taylor series around the new origin. We then diagonalize the 
quadratic terms obtaining a harmonic oscillator plus higher degree and 
time-dependent terms. We finally transform the Hamiltonian using the 
action-angle variables (/, q~) of the harmonic oscillator. After these succes- 
sive changes of variables we obtain a Hamiltonian function of the form 

H(I, qg, t) - o I  + eh(I) + ~R(I, cp, t), I E R, (q~, t) ~ T 2, (2) 

where ~o ~ c~(e) is the frequency of the harmonic oscillator. We could 
implement KAM theorem directly on this Hamiltonian but, as was shown 
in [10, 11], one generally obtains better results applying the theorem after 
reducing the perturbation to higher orders in e by a close-to-identity 
change of variables (/, q~, t ) ~ ( I ' ,  q~', t'). Therefore, following [14] we ap- 
ply the Birkhoff normalization procedure to (2) in order to obtain a new 
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Hamiltonian of the type 

H~(I ' ,  q) ', t) = o~I' + ~h~(I'; ~) + e k+ I R k ( I '  , (p' ,  t),  (3) 

for some integer k. Finally we apply the KAM theorem (adapting the set 
of estimates provided in [7]) to the Hamiltonian (3). Notice that, as 
already remarked in [11], there is an optimal order of normalization, say 
k = k * ,  in the Birkhoff procedure, after which the combination of 
Birkhoff-KAM estimates provides worst results. 

We apply this technique to two specific examples, namely the Moon- 
Earth and the Rhea-Saturn systems, both observed to move on orbits close 
to the synchronous resonance. In the Moon-Earth case we are able to 
establish the existence of invariant surfaces corresponding to a libration of 
about 8.79 ~ . Unfortunately we are able to state this result for values of the 
oblateness parameter whose ratio with the real physical value is about 
0.19. On the contrary we obtain significant results in the Rhea-Saturn 
system for values of the parameters which are consistent with the astro- 
nomical observations. In particular we are able to confine any motion of 
librational amplitude less or equal than 1.95 ~ around the synchronous 
orbit. 

This paper is organized as follows. In w we introduce the equation of 
motion describing the mathematical model we want to study. The structure 
of the phase space and the strategy of confinement of the motions are 
discussed in w The construction of librational tori is presented in w 
Some concluding remarks are given in w 

w The model 

In this paragraph we simplify the spin-orbit problem making some 
assumptions and we introduce the equation of motion governing such 
reduced model. Suppose that the principal moments of inertia of the 
satellite S are A < B < C. Let P be the central planet around which the 
satellite moves. Moreover assume that, 

i) the orbit of the satellite around P is a fixed Keplerian ellipse (i.e., 
neglect the secular perturbations of the orbital parameters); 

ii) the spin-axis coincides with the direction of the axis of the ellipsoid 
whose moment  of inertia is largest (i.e., it coincides with the shortest 
physical axis of the satellite); 

iii) the spin-axis is perpendicular to the orbit plane (i.e., neglect the mean 
obliquity between the spin-axis and the orbit normal); 

iv) the external dissipative torques as well as forces induced by other 
planets or satellites can be neglected. 
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This model provides an accurate description of the spin-orbit interaction 
in most significant applications of the solar system. For what concerns the 
Moon-Earth coupling the first hypothesis which should be removed in a more 
meaningful model is iii), since actually the spin-axis makes an angle of about 
6~ ' with the orbit normal. However in a first approximation we retain 
hypothesis iii), reserving the idea of removing such assumption in future 
works. Another questionable point is assumption iv), which implies to 
approximate the system by a conservative model, since we are neglecting 
dissipative torques. The contribution of the dissipation is relevant for the 
explanation of the evolutionary history of the satellites and the consequent 
capture into resonance. In fact, it is generally believed that the satellites rotated 
fast around their spin axes and that they evolved to the present slower state 
by means of a dissipative mechanism. Though presently the contribution of 
the dissipative term may be assumed much smaller than the conservative part, 
it should not in principle be neglected. However we do not intend to provide 
explanations about the capture into resonance, but we claim to prove the 
stability of the periodic orbit, in which the satellite is actually observed, by 
means of the construction of librational invariant surfaces. To this end one 
can use, as a first approximation, the conservative model introduced above. 

The equation of motion governing the model i)-iv) can be derived from 
Euler's equations for a rigid body (see, e.g., [12]). After normalizing the mean 
motion 27r/Tre v to one, the main equation has the form 

~ + 2 ~ sin(2x - 2f)  = 0, (4) 

where a is the major semiaxis of the Keplerian orbit, r and f are respectively 
the instantaneous orbital radius and the true anomaly, while x is the angle 
between the longest axis of the ellipsoid (belonging by iii) to the orbit plane) 
and the periapsis line (see Fig. 1). 

Notice that the angle 0 =- x - f ( F i g .  1) gives the amplitude of librations 
around the synchronous resonance, being indentically zero for exact 1:1 
resonance. 

Due to the assumption of Keplerian orbit, both functions r and f are 
2re-periodic in time and depend on the orbital eccentricity e. Therefore the 

Figure 1 
Relative position between the satellite S and the t,/'~ X 
planet P. P 
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term (a/r) 3 sin(2x - 2 f )  can be expanded, using standard Keplerian formu- 
lae, in Fourier series. After some manipulation (see, e.g., [4]) one obtains in 
place of (4) the equation 

2 + e  W , e s i n ( 2 x - m t ) = 0 ,  (5) 
m r O , m  = - -  o o  

where we refer to e -3 ( (B  - A ) / C )  as the equatorial oblateness perturbing 
parameter and where the coefficients W(m/2, e) decay as powers of the 
orbital eccentricity e as l~P(m/2, e)o~e Im-21. For example the first few 
coefficients are given by the following formulae: 

5 13 4 ffl(1, e ) = l - ~ e 2 + ~ - ~ e  +O(e  6) 

- 3 7 123 e3 W ( ~ , e ) = ~ e - ~  +O(e  s) (6) 

~(2 ,  e) = ~ e 2  115 4 ~-- e + O(e6). 

Since it is more convenient to work with a finite number of terms in the 
series expansion of (5), we truncate the series according to the following 
criterion. Due to the assumption iv) we neglect in our model all the 
dissipative external torques, among which the most important contribution 
is due to the internal non-rigidity of the satellite. In order to take into 
account such effect, one should add at the r.h.s, of (5) an additional term T, 
called "dissipative tidal torque". The explicit expression of T can be given 
in different forms, according to the assumptions one makes on the internal 
structure of the satellite (see, e.g., [15]). We do not intend to give the precise 
formulation of T, but we just mention that in most common situations its 
average effect is much smaller than the contribution of the gravitational 
term. Therefore, since according to iv) we neglect such a dissipative force, 
we will as well neglect in the series expansion of (5) those terms whose size 
is of the same order of magnitude as the average effect of T. Notice that the 
coefficients I~(m)2, e) are themselves infinite series in the eccentricity. Since 
they decay as powers of e, we truncate the series (see (6)) up to a suitable 
order in the eccentricity. The order of truncation depends on the physical 
values of the parameters related to the concrete model one intends to 
consider. For simplicity of notation we do not explicitely indicate the order 
of truncation. We just denote by W(m/2, e) the truncated expression of the 
coefficient W(m/2, e). Finally we obtain a finite-sum equation of the type 

2 + ~  ~ W ,e  s i n ( 2 x - m t ) = 0 ,  (7) 
m C - O , m = N  1 

where the integers N1, N2 depend on the physical parameters of the model 
we want to consider. 
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w The structure of the phase-space and the stability of periodic orbits 

Equation (7) is equivalent to Hamilton's equations associated with the 
Hamiltonian 

H ( y ,  x, t) - h (y )  + eV(x,  t), y ~ R, (x, t) ~ T 2, (8) 

where 

W e cos(2x - m r ) .  (9) h(y)  = 2 ' V(x,  t) = --2m~0. =N, 

The Hamiltonian function (8) describes a nearly-integrable system, since for 
e = 0 Hamilton's equations are trivially integrated as y =Y0, x = y o t  + Xo. 
Moreover any plane {Y0} x T 2 is invariant under the flow associated with 
(8)-(9)  and motions on such surfaces are either periodic or quasiperiodic, 
depending on the initial conditions. 

Let us define in the standard way the rotation number of an invariant 
surface as ~-= f~(Y0) -= Oh(yo)/~y. For non-zero, but sufficiently small val- 
ues of e, KAM theory ([ 17, 1, 20]) ensures the existence of an invariant 
surface with rotation number fl, say ~ ( ~ ) ,  for the perturbed system 
provided two assumptions are satisfied, namely 

a) non-degeneracy of the unperturbed Hamiltonian, i.e. 

02h(y)  
•y2 r  Vy ~R;  

b) strong irrationality of the rotation number, i.e. there exists a positive 
constant C such that 

p - 1  
- < C q  2, Vp, q e Z ,  q r  (10) 

We shall often refer to (10) as the diophantine condition on ~. Notice 
that hypothesis a) is trivially covered by (8)-(9),  since identically 
a2h(y) /ay  2 = 1. 

One of the outcomes of KAM theory is to provide an explicit rigorous 
algorithm to give a lower bound on the perturbing parameter, say 
e r -  er(fl), ensuring the existence of an invariant surface ~ ( f l )  (for the 
perturbed system) with rotation number ft. 

If we let e increase, we reach a critical value, say ec = ec(fl), at which the 
KAM torus breaks down and leaves place to so-called Aubry-Mather sets 
([3, 19]), which are dosed, invariant and are graphs of Cantor sets. We 
remark that under some general assumptions one can compute an "experi- 
mental" value of the critical break-down threshold ec(fl), applying for 
example the numerical algorithm developed by J. Greene in [16]. 
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The connection between the stability of periodic orbits and the existence 
of invariant tori is provided by the analysis of the structure of the phase 
space 5p associated with (8): 

= {(y, x, t)/y = 2 e R, (x, t) ~ T2}. 
Since 5 f is three dimensional, any KAM surface will separate J in two 
invariant regions with the property that any motion starting in one of the 
two portions of phase space will remain forever in it. In higher dimensional 
systems (when the number of degrees of freedom is greater than two) the 
KAM tori do not separate anymore the constant energy surfaces and 
"Arnold diffusion" is allowed (see [2]). However in our lower dimensional 
case we can still have the escape of the motions by means of another 
mechanism: when the perturbing parameter increases up to ec(fl), the 
invariant KAM torus becomes an Aubry-Mather set and the orbits can 
diffuse through the gaps of the Cantor set. 

Let us now look at the shape of the phase space. If we draw a Poincar6 
section associated with the orbits of (8)-(9)  we obtain a pendulum-like 
structure. Zooming on the synchronous resonance, we find that the periodic 
orbit, which is just described by a point on the Poincar6 map, is surrounded 
by small curves, giving the amplitude of the librational oscillations around 
the synchronous position. The librational amplitudes increase as the chaotic 
separatrix is approached. The chaotic separatrix provides a border between 
the region of librational motion and the region in which invariant rotational 
curves are found. 

Since the analysis of curves inside the librational regime differs signifi- 
cantly according to whether they are close to the periodic orbit or to the 
separatrix, we shall distinguish between proper librational curves (see Fig. 
2b) and close-to-separatrix orbits (Fig. 2c). 

According to the phase-space structure presented in this paragraph we 
conclude that the confinement of the synchronous resonance in the phase 
space can be obtained in two ways: 

a) proving the existence of a librational surface enclosing the periodic orbit; 
b) proving the existence of two rotational surfaces bounding the syn- 

chronous resonance from above and below. 

We remark that the dissipative term will in general destroy such invariant 
surfaces. Anyhow, if the dissipation is small compared to the conservative 
term, then the invariant surfaces will in general behave as adiabatic invariants 
on a dynamical time-scale. 

The construction of invariant rotational trapping surfaces has already 
been investigated in [5, 6], using the KAM algorithm developed in [8]. 

We briefly report the results for the two satellite-planet systems, which 
we are going to consider in the following paragraph. Let 7 be the golden 
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Figure 2 
Poincar6 map of  (8) (9) (with N l = 1, N 2 = 5) around the synchronous resonance, a) Periodic 1 : 1 orbit, 
b) librational curve, c) close-to-separatrix librational curve, d) chaotic separatrix, e) rotational invariant 
c u r v e s .  

ratio: 7 - ( w / ~ -  1)/2. We  remark  that  any irrat ional  n u m b e r  o f  the type 
1 _+ (1/(k + 7)), for  any integer k > 2, satisfies the non- resonance  condi t ion  
(10) with a d iophant ine  cons tant  C - Ck - k + 7 (see [5]). Then we have the 
fol lowing statements.  

Moon-Earth: Consider  the system descr ibed by the Hami l ton ian  func- 
tion ( 8 ) - ( 9 )  with N~ = - 1 ,  N2 = 5 and fix the eccentricity e = 0.0549. Let  
Cobs = 3.45 �9 1 0  - 4  (i.e., the observed physical  value o f  the equator ia l  oblate-  
ness o f  the M o o n ) ;  then for any e --- eob~, there exist ( t rapping)  ro ta t ional  
invariant  surfaces ~-~(f~), ~-~(f~2) with f~l--  1 - ( 1 / ( 4 0 + 7 )  ) ~-0.9753, 
f~2_~ 1 + ( 1 ( 4 0 + 7 ) )  -~ 1.0246. 

Rhea-Saturn: Consider  the Hami l ton ian  ( 8 ) - ( 9 )  with N1 = 1, N2 = 5 

and let e = 0.00098. Let  eob~ = 3.45 �9 10 -3 (i.e., the observed value);  then for  
any e < Cobs, there exist ( t rapping)  ro ta t ional  invar iant  surfaces J~(f21), 
~-~(9~2) with f~l ~ 1 - (1/(10 + 7)) -~ 0.9058, f~2 - 1 + (1/(10 + 7)) - 1.0941. 

w Existence of librational invariant surfaces 

In order  to cons t ruc t  invariant  surfaces close to the periodic orbit ,  we 
need to cons t ruc t  a Hami l ton ian  funct ion which suitably describes libra- 
t ional  surfaces. The outl ine o f  the strategy is the following. We center the 
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Hamiltonian function on the 1:1 periodic orbit and expand in Taylor series 
around the new equilibrium position. We obtain a perturbed harmonic 
oscillator which we reduce to diagonal form by a further canonical change 
of variables. We finally transform to action-angle variables (I, ~o) for the 
harmonic oscillator, obtaining a Hamiltonian function of the form 

H ( I ,  q), t) = c o I  + a/7(I) + eg(I, qo, t), 

for some analytic functions /T, g. We can now remove the perturbation to 
higher orders in e; to this end we apply a close-to-identity transformation 
(L q~, t)--->(I', (p', t) (with generating function containing terms up to the 
order e k, for some k e Z) to obtain a new Hamiltonian of the form 

H k ( I ' ,  qo', t) = h~(I';  e) + e k+ ~ R k ( I ' ,  q)', t; e). 

We apply the KAM algorithm (developed in [7]) to the last Hamiltonian, in 
order to obtain the existence of an invariant librational torus surrounding 
the 1 : 1 resonance. 

For simplicity of exposition we subdivide this paragraph in several 
subsections describing the changes of variables, the Birkhoff-KAM applica- 
tions and the results. 

4.1. Center  on the periodic  orbit  

Let us rewrite the Hamiltonian (8)- (9)  putting into evidence the cosine 
term which corresponds to the synchronous resonance: 

~ - -~ - - - eacos (2x - -20 - - -~  ~ W ,e  COS(2X-- 
m :/- 0,2 

mt), 

(11) 

_ 1 W(1, e). Next we where for shortness we introduced the coefficient a = 5 
perform the linear symplectic change of variables 

x '  = 2x  - 2t 
y ,  = l ( y  _ 1), 

which moves the unperturbed position of the synchronous resonance to the 
p o i n t x '  0, y '  1 = = 5. We next shift the resonance to the point (0, 0) by using 
the change of variables 

= y  - ~ ,  

such that (11) (up to an inessential additive constant) takes the form 

H(jS, 2, t ) = 2 ) 5 2 - e a c o s ~ - ~  ~ l~ e 
m :~ 0,--2 2 ' 

x [cos )2 cos m t +  sin ~ sin mt], (12) 



70 A. Celletti ZAMP 

where/~ - ee and we have rescaled the coefficients W by a factor e as 

lYv(m;2,e)=!w(m--~2,e)  �9 

In the pendulum approximation (i.e. setting # = 0 in (12)) one obtains a 
conservative system showing librational motions for values of the energy 
]E I < ea. Each unperturbed librational curve is labeled by a level energy 
defined by the relation 

237 2 - -  ea cos 9~ = eaS with [g[ < 1 

(actually ~-will be chosen very close to - 1  in order to have small curves 
around the synchronous resonance). Notice that in the # - - 0  approxima- 
tion, the angle 97 is exactly the double of the libration angle 0 introduced in 
Fig. 1. 

{: 
with 

4.2. Series expansion around the equilibrium point and diagonalization 

We next expand (12) in Taylor series around the unperturbed equi- 
librium position s =37 = 0, for [~[ < 1. It is easily shown that in the 
unperturbed situation (i.e. setting # --0), the librational curve is described 
by the equation 

2372-k~.X'2=Z with z - e a ( 6 +  1). (13) 

We then diagonalize the time-independent quadratic terms in order to 
obtain a harmonic oscillator in canonical form. Therefore we make the 
further symplectic change of variables 

= / ~ g  

X//2 (ga) l/4 
- ( ~ a ) ' / "  /~ - ~ - '  

so that we obtain the Hamiltonian 

(,0 2 ( q4 
H(p, q, t) = -~ (p + q2) - ea\ 4~-~4 

#2 ~ I~(  m+22 
m ~ 0 , - - 2  

+ sin(mt) 3!fl3 + 

q6 ) 

6!fl~ + . .  

e/rcos m  tl   q4 ) 
qS (,4, 
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where the frequency co of  the harmonic  oscillations is defined as 

co - 2 ~ - a .  

The Taylor expansion converges provided Iq/~l < 1 and the new unper- 
turbed librational curve is described by the equat ion 

p2 + q2_ ~-~ 

with z as in (13). 

4.3. Action-angle variables for the harmonic oscillator 

Let (p, q) ~ (L ~o) be a t ransformat ion to action-angle variables for the 
harmonic  oscillator: 

,/ cos 
x / ~  sin qo. (15) 

If  we let # = 0 the value of  [II represents the radius of  the librational circle 
in the (p, q)-variables. Let II01 be the value corresponding to the level energy 

x ~  ( 6 +  1). 1/01=-5- 
Performing the change of variables (15) on (14), after some manipula t ion  
one gets the Hamil tonian  

( I  2 513 ) 
H(I,q~,t)=col--ea 1 ~  4 2"6!/3 ~ + ' ' "  

I I2 12 13 
- ea -- 12/~----- ~ cos 2~p + 4 - ~  cos 4~p + 4.6!/~ - - - - ~  

�9 ( 1 5 c o s 2 ~ o - 6 c o s 4 ~ + c o s 6 ~ o ) +  . . . /  

2 ~ if/" e cos(rot) 1 (1 - -cos  2q0 
m~0,--2 2 ' 2!~ 2 
12 I 3 

+ 8 " 3!~ --------~ " (3 -- 4 COS 2~0 + COS 4q0) 4" 6!fl 6 

" (10- -  15 COS 2q) + 6 COS 4~0 -- COS 6~0) + ' ' ' /  

+ sin(rot) sin qo 12fl3 (3 sin qo - sin 3qo) 

+ ~-~ 5.--~ (10 sin ~o - 5 sin 3~o + sin 5~) + �9 �9 �9 , (16) 
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where the dots are short for terms of order greater than three in the action 
variable. 

Remark: In practical applications we choose 6-so  that  fixing ]I0] = 
( x / ~ / 2 ) ( 3 - +  1), the terms of order (1101/ 2) 7/2 are of  the same order 
of  magni tude of the dissipative tidal torque, that  we have neglected in 
writing the equat ion of our  mathematical  model  (see assumption iv), 
w Therefore, for sake of  simplicity we decide consistently to neglect 
those terms in the series expansion of  (16) which are of  the order of  
(llol/B2) 7/2. 

We rewrite (16) (or, more  precisely, the t runcat ion of  (16) according 
to the remark above) in a compact  form as 

H(I,  <p, t) =coI  + eh(I) + eh(I, <p) + eel(I,  qo, t), (17) 

with an obvious meaning of the symbols. Notice that  we have reintroduced 
ee in place of  #. 

Let us define the domain  of  analyticity of  the Hamil tonian (17) as 
follows. Denote  by z~o, zt the complexified (angle) variables 

Z~p = C icp, Z t = C it. 

Let us denote by 

D(Io; O, g) =- {(I, z~, z,) ~ C 3 / ] I -  Io[ < O, e -~ < [z~ ] < er e -~ < Iz,[ < 

for suitable parameters q > 0 and ~ > 0. Since the change of variables (15) 
is singular at the origin, we need to fix ~ in such a way that  the annulus 
{ I / ] I - I o l  < ~} does not  contain the origin. In practical applications we 
shall fix 

Q _~1Io [ 2 = + 1) .  

Moreover,  the condit ion under  which the Taylor series converges, i.e. 
]q/fll < 1, becomes now 

Therefore we will choose the analyticity parameters ~ (or, equivalently, 6-) 
and 4, so to satisfy the last inequality. 

To give an idea of the values of the analyticity parameters in practical 
applications, we ment ion that  in the Moon-Ear th  case we fix ~ = 1.21 �9 1 0  - 4  

and ~ = 0.6, while in the Rhea-Saturn application we take ~ - - 3 . 8 5 . 1 0  .5 
and ~ = 0.6. 
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4.4. Birkhof f  normalization 

We now proceed to apply the Birkhoff normalization procedure in order 
to remove the perturbing function g(I, qo, t) - h(I, (p) + e f  (I, q~, t) in (17) up 
to the order ek + 1 for some k e Z__. Following [ 14], we perform a canonical 
transformation with generating function close to the identity: 

k 

I'~o + ~ #q~j(I', qo, t) 
j = l  

for some integer k. The induced transformation is given by 

k ~?Oj(I', q0, t) 
I = F +  ~ ~J 

j= 1 0~o 

a % ( r ,  ~o, t) 
~o' =~o + ~ ~J (18) 

s= 1 0I' 

t '  ---= t,  

where the functions ~j's have to be chosen so that inserting (18) in (17) one 
obtains a function which does not depend on the angle variables (p, t) up to 
O(ek+ 1). Therefore one constructs the function 

k 

~k(I ' ,  (P, t) =- Z eY*J( I ' ,  q), t) 
j = l  

in such a way that the expression 

( ~o\r+ 0e ] + + a~0 ] V~-~' 

( c~q~k ) c3qJkc3---7- (19) + e e f  I ' + ~ - , q o ,  t + 

is independent on (q), t) up to O(ek+~). For example, expanding (19) in 
Taylor series in a, the first term q)l solves the equation 

aqb, (I', qo, t) aq)l (I', (p, t) 
co -~ + h(I',  qo) + e f  (I', q), t) = O. 

Oq~ Ot 

Expanding ~1 (I', q~, t) in Fourier series as 

60 I([', q~, t) -= E ~(nl)m(I') ei("~+mt) 
n,m ~ O  

the coefficients $~1m) are determined by 
^ / 

~(~(I ' )  =-- i g,~m(I ) 
con + m ' 
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where gn,, (1') is the Fourier coefficient of the function 

g(l ' ,  q~, t) - h(l' ,  r + e f  (l ' ,  ~o, t). 

We refer to the terms 1/(oon + m) as "small divisors"; obviously in order to 
define properly 01 one has to check that ]~n + m [  ~ 0  for any pair of 
integers n, m belonging to the set of Fourier indexes of the function g. Up 
to second order the Hamiltonian (in the mixed set of variables (1', ~0, t)) is 
given by 

/J1 (1', q~, t) - /~,  (1'; e) +/~2R 1 (1', q~, t), 

where 

/71(1'; e) =-- col '+ eh(I') + e (g  )(I ' )  

(with (h(I ' ,  ~0, t))  = (1/2re) 2 j'r2 h(I', qg, t ) d o  dt =- (h ) ( I ' ) )  and 

~1 601 0Ol], -RI (I', ~o, t) = h)(I ' )  " ~ -  + h)(I ' ,  ~o) . --ff-~ + ef'z(I', qg, t) -ff--~-_] 

where h'~-  Oh/OF and analogous formulae. Inverting the system of equa- 
tions (1 8) as 

k 

I = I ' +  ~ Ej(I ' ,  q~', t)e j 
j = l  

k 

j = l  

t = t', 

for some analytic functions Ej, Aj, the Hamiltonian function expressed in 
the new set of variables (I', ~p', t) becomes 

H1 (I', ~0 ', t) = hi (I'; e) + e2Rl (I', q~', t), 

with 

h,(I'; ~) =- col" + eh(I') + e (g ) ( I ' ) .  

We do not need the explicit expression of the new perturbing function R1, 
but just a bound on its norm which can be obtained as follows. We define 
the norm of a function a - a(F, ~o', t) as 

]la(I', ~o', t)]t.',r Sup la(I', (p', t)l. 
D(Xo,e',r 

Then the new perturbing function R1 can be estimated through the norms of 
El, A1, as well as/7, g, by 

IIRI( I' ,  q~, t)lle',r <-lIE)(/')II~',~'" Ilz, II~'v 

+ []g)(I', q~' + A, t)]IQ,,~,. ]lZl ]t~,,~,, 
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where the new parameters  0', ~' have to be chosen in order to define 
properly the new analyticity domain.  More  precisely, let 0, 4 > 0 be the 
analyticity parameters associated with the initial Hamil tonian  function 
(17). The new parameters  0 ' <  0 and 4 ' <  4 are defined as follows. In the 
style of  [14, 7] we impose some condit ions which ensure the correct defini- 
t ion of  the analyticity domain  in the new set of variables (I', q~', t) as well 
as the invertibility of the t ransformat ion (18). Therefore, the new parame- 
ters ~o', 4 ' - 4 -  6 are chosen in order to satisfy the condit ions (see, e.g., 
[7]) 

O~k < 

and 

fLI a2% I o,~ a~,~ } max,.  ~/__~_~1 , - - 7 -  .8  -1 < 1 .  
II aI I1~',: 

We conclude this part  remarking that  the functions Ej, Aj can be 
estimated in terms of  O~ by (see [14]) 

For  what  concerns the higher order terms of  the generating function 
ud~, they are obtained by the recursive formula 

0 (I)] 1 a ~ l  aej ~,j  j_lgf) E ' 
co ~ + 7 / +  ~= l! Jl +- .. +s,=J- 1 aq~ &o 

a,j  +aej  
- co-ff-~ -~7- + Nj(I ' ,  cP, t), 

where j ~ , . . .  ,Jl > 1 and g~O ==_ Ug/8I< The new Hamil tonian  is given by 

H,,(I', (p', t) = hk(I'; e) + a k+ 'Rk(I ' ,  ~o', t; e), (20) 

with 

k 
he(F; a) =-- col '+ gE(I') + ~ (Nj ( / ' ,  q), t)>a j, 

j = l  

where again <.  ) denotes the average on the angle variables (~o, t ) e  T 2. 
The per turbat ion Rk is bounded  by 

k 

{IR~ IIo',~ ' - < Z  Ilg~"z![l~162 E I/ZJl b , r  " ]lz,[lo,,r ,, (21) 
= J l + ' ' + J l  = k  

where j l ,  . . . ,]l -> 1. 
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4.5. Definition o f  the rotation number 

Define an approximate  center ~ - ( x / - ~ / 2 ) ( 3 - +  1) and let ~-= 
~x /~ (6 -+  1). In this formulae we fix e equal to the observed physical value, 
say e = eobs, while 3- plays the role of  a parameter  which will be chosen in 
order that  the K A M  algori thm (see next section) converges. For  a given 
we obtain a rotat ion number  

(j) f i  ~ (2)(l) - - /ha  4 2 { ~ 6 ) '  where  e = eob,~. 

In concrete computa t ions  we obtain a numerical value for ~ which is 
t runcated up to the precision of  the computer .  In order to have a diophan- 
tine rotat ion number  we proceed as follows. For  a given integer M, let 
[a0, a l , . . . ,  aM] be the cont inued fraction expansion of ~.  Obviously the 
number  M of the terms in the expansion depends on the number  of digits 
with which ~ has been computed.  It is now necessary to work with the full 
cont inued fraction expansion, but  one can retain only a few terms 
[a0, 11, � 9  aN] (N  < M ) ,  providing an arbitrary approximat ion to ~. Now 
we obtain a diophant ine number  adding to [a0, al, . .  �9 aN] an infinite tail of  
l's. Therefore let the new rotat ion number  f~ be defined as 

~--[a0, a l , . . .  ,aN, 1, 1, 1 , . . . ] .  

The new frequency f~ is a noble number  and by number  theory results it 
satisfies the diophant ine  condit ion with a constant  C which can be evaluated 
as in [9]. Now we adjust the real center I0, comput ing  a new value of  the 
action variable I satisfying the relation 

( / ~  15I~ '~ 
co(e) - ea 4 2" 6!f16J = ~ '  t = ~oOs. 

Notice that  after applying the Birkhoff procedure (at any order k) we have 
to adjust the new center, say I = I~0 k~ as follows. Let hk(I'; e) be the new 
unper turbed Hamiltonian;  having fixed a rotat ion number  f~ we define I(0 k) 
as the value of  the action variable which satisfies the relation 

ih~(I(~ = F~. 

We remark that  for small values of e, as in the applications we shall 
consider later, the correction to the frequency is quite small as the order k 
of  the Birkhoff normalizat ion is increased. 

4.6. Application o f  K A M  theorem 

Once obtained the new Hamil tonian Hk we can proceed to apply the 
K A M  theorem following closely the algori thm developed in [7]. We just  
sketch the idea of the proof,  referring to [7] for the details. 
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Rename the initial Hamiltonian (20) as 

Ho(I,  qo, t) = ho(I) + #fo(I, ~o, t) (# =- ek), 

which is real analytic in the domain D(I0; 00, G0) with center I0. Let ~ be a 
fixed diophantine rotation number. The idea is to construct a sequence of 
Hamiltonians {Hi} of the form 

Hj(I ' ,  (p', t) = hj(I '  ; #) + #~fj.(I ' ,  (p', t; #), 

analytic on smaller domains D(/j; Qj, ~j). The new center Ij relative to H s is 
chosen so as to keep the frequency fixed, i.e. hj (/j) = ft. A new Hamiltonian 
Hs+l can be obtained from Hj applying a (close to identity) canonical 
transformation cgs: (L (?, t) ~ (I', p ' ,  t). The transformation cg s can be 
defined under smallness conditions on the perturbing parameter #. These 
conditions consist in a set of estimates, controlling the quantities involved in 
the proof. The invariant torus ~ ( ~ )  is finally obtained as the limit of the 
composition 

% ~  . . . . .  } • r 2 )  �9 

The set of conditions to be imposed for the convergence of the proof  are 
collected in the Appendix A of [7]. We apply that scheme with only one 
modification in the estimate of the small divisor series. More precisely a 
crucial point of the proof  is the estimate of quantities of the form 

In]k1 e ,(Inl+lml), k, e {0,1, 2}, k2~{1,2} 
S~l,k~(r/) = Z (nn  m) k2 

(n ,m) ~ Z2\{0} 
(22) 

for some ~ < 1. One could use the diophantine condition in order to 
estimate (22). However a substantial improvement is obtained evaluating by 
computer a certain number of terms in the sum and estimating the remain- 
der using the diophantine condition. The explicit formulae are given by 
Lemma 9 of [8]. 

We conclude this part by mentioning that in order to construct the 
functions (I)j of the Birkhoff procedure and to control the KAM algorithm, 
we make use of a computer. However the computer introduces rounding-off 
and propagation errors. In order to control the numerical errors we apply 
the so-called "interval arithmetic" technique which was introduced in 
[18, 13]. 

4. 7. Results  

We provide the application of the scheme presented in the previous 
sections to the Moon-Earth and the Rhea-Saturn systems; both examples 
are observed to move closely to a synchronous resonance. 



78 A. Celletti ZAMP 

We remark here that increasing the order k of  the Birkhoff normaliza- 
tion does not imply to obtain better results. More  specifically, one of  the 
input data of  the K A M  theorem is given by the estimate of  the perturbing 
function Rk which is bounded as in (21). The convergence of  the K A M  
algorithm strongly depends on the size of  Rk, in the sense that the increase 
of  its norm causes a slower convergence until the algorithm fails to 
converge. The estimate (21) depends on the order of  the Birkhoff normaliza- 
tion; for example, in the Moon-Ear th  case one finds approximately that 
Rk+ 1 ~- 103Rk, k -> 1. In practical applications, one starts with a Birkhoff 
normalization at the first order and checks the convergence of  the K A M  
algorithm. If the algorithm converges, the Birkhoff procedure can be pushed 
to higher orders until the divergence of  the K A M  scheme (see [11]). For  the 
systems we consider in this paper, 
Moon  and k = 4 for Rhea. 

The initial perturbing function 
applying the Birkhoff procedure we 
contains 1920 Fourier  coefficients at 

the optimal orders are k = 5 for the 

contains 82 Fourier  coefficients; after 
construct a generating function which 
the order k = 4 and 3475 coefficients at 

k = 5. The computer  time needed to construct the generating function 
amounts to about  50 s of  CPU time on a VAX 6000 at the order k = 4. The 
computer  execution time multiplies by a factor ~ 12 for the programs in 
which interval arithmetic has been implemented. 

Moon-Earth: Consider the Hamiltonian ( 8 ) - ( 9 )  with N 1  = - -  1, N2 = 5. 
Let e = 0.0549 and eobs= 3.45. 1 0  - 4  (i.e.~ the real physical value). More- 
over, let 6 = - 0 . 9 7 6 6  and ~ =0.6 ;  then there exists an invariant torus 
corresponding to a libration of  8~ for any e <- eob,/5.26. 

Unfortunately in this case we cannot draw conclusions for values of  the 
perturbing parameter which are consistent with the astronomical value. 
However  one obtains significative results in the Rhea-Saturn system as 
follows. 

Rhea-Saturn: Consider the Hamiltonian (8 ) - (9 )  with N1 = 1, N2 = 5. 
Let e = 0.00098 and eobs = 3 .45 .10  -3 (i.e., the astronomical value). More- 
over, let 6 - = - 0 . 9 9 7 6  and ~ =0.6 ;  then there exists an invariant torus 
corresponding to a libration of  1~ for any e -< eobs. 

w Conclusions 

Though we are not able to draw definite conclusions about  the stability 
of  the Moon,  we still believe that one can improve the results using a 
different K A M  algorithm. In particular, the results based on the p roof  of  [7] 
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(which make use of a sequence of canonical transformations as in w are 
worse than those obtained applying the method developed in [8] (which was 
used to prove the existence of rotational invariant tori). However the 
scheme of [8] cannot be applied straightforwardly to our problem. A new 
set of estimates in the style of [9] has to be developed. 

Anyhow our approach applies for example to the Rhea-Saturn system 
and gives an insight on the stability of the synchronous resonance associated 
with our particular mathematical model. It might be interesting to explore 
the stability of higher order resonances by applying the same method 
presented here. An analogous approach can also be used in the construction 
of close-to-separatrix curves, where instead of expanding around the equi- 
librium position, one might use directly action-angle variables for the 
pendulum Hamiltonian h(~, 2) = 2)7 2 -  e a  cos 2 of formula (12). 
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Abstract 

We investigate the stability of the synchronous spin-orbit resonance. In  particular we construct 
invariant librational tori trapping periodic orbits in finite regions of phase space. We first introduce a 
mathematical model describing a simplification of the physical situation. The corresponding Hamilto- 
nian function has the form H(y, x, t) = (y2/2) + eV(x, t), where V is a trigonometric polynomial in x, t 
and e is the "perturbing parameter" representing the equatorial oblateness of the satellite. 

We perform some symptectic changes of variables in order to reduce the initial Hamiltonian to a 
form which suitably describes librationat tori. We then apply Birkhoff normalization procedure in order 
to reduce the size of the perturbation. Finally the application of KAM theory allows to prove the 
existence of librational tori around the synchronous periodic orbit. Two concrete applications are 
considered: the Moon-Earth and the Rhea-Saturn systems. In the first case one gets the existence of 
trapping orbits for values of the perturbing oblateness parameter far from the real physical value by a 
factor ~ 5. In the Rhea-Saturn case we construct the trapping tori for values of the parameters consistent 
with the astronomical measurements. 
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