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The cyclic d-integral as a criterion for fatigue crack growth 

K. T A N A K A *  

Fatigue Testin9 Division, National Research Institute for Metals, 2-3-12, Nakameouro, Me#uroku, Tokyo, 153, Japan 

(Received February 24, 1981; in revised form April 29, 1982) 

ABSTRACT 
The definition of the cyclic J-integral is offered and its physical significance for fatigue crack growth is discussed using 
the Dugdale model on the assumption that the crack closure, cycle dependent creep deformation, and crack 
extension under cycling can be neglected. It is shown that the cyclic J-integral for small scale yielding is equivalent to 
the J-integral for linear elastic crack independent of loading processes, while the value for large scale yielding varies 
with the loading processes. However, in both cases, the cyclic J-integral remains constant during the reversal of 
loading under a constant stress range, if the first monotonic loading stage is excluded. In this situation, the cyclic J- 
integral can be applied as a criterion for fatigue crack growth, since it is evaluated as a generalized force on 
dislocations to be moved or the energy flow rate to be dissipated to heat by the dislocation movements in an element 
just attached to the fatigued crack tip during one cycle of loading. It is suggested that the available experimental data 
of different materials for fatigue crack growth can be generalized to a unified formulation on the basis of the energy 
criterion. It is also deduced that the threshold AJ corresponding to AKth should be larger than 47 where 7 is the 
surface energy of the material. Finally the operational definition of the cyclic J-integral on single load versus 
displacement curves is given for center cracked plate with wide uncracked ligaments in tension. 

1. Introduction 

In  recent  work  the J - in tegra l  [1] has been es tabl ished as a failure cr i ter ion for s table or  

uns tab le  c rack  g rowth  [2, 3]. This  concep t ion  has been ex tended  to app ly  for the analysis  of  

fatigue c rack  growth  rates [4-6] .  The  la t te r  app l i ca t ion  is based  on the view tha t  the pa th  

i ndependen t  J - in tegra l  is an average measure  of the crack t ip elast ic-plast ic  field [2]. 

However ,  as po in ted  ou t  by  Dowl ing  and  Begley [4],  the mos t  re levant  unanswered  quest ion 

is whether  the J - in tegra l  concept  has mean ing  relat ive to the changes occurr ing  in the crack  

tip stress and  s t ra in  fields dur ing  the load ing  half  of  one fatigue cycle. 

This  pape r  offers the defini t ion of  the cyclic J - in tegra l  and  discusses its physical  

significance for fatigue crack  g rowth  using the Dugda le  model .  

2. Definition of the cyclic J-integral 

The J - in tegra l  is defined for two-d imens iona l  p rob lems  [1] as 

= fr(Wdxz - T m  C3Um/CgXl ds), J (1) 

where Xl and  x2 are rec tangu la r  coord ina tes  no rma l  to the crack front, x2 being per-  
pendicu la r  to the crack  surface; ds is an  increment  of arc length a long any contour ,  F, 

beginning  a long t h e b o t t o m  surface of  the crack  and  ending a long the top  surface, Tm is the 

surface t rac t ion  exer ted on the mate r ia l  within the contour ;  Um is the displacement .  The  

* Presently at Mechanical Engineering Department, Technological University of Nagaoka, Kamitomioka 
Nagamine, Nagaoka City, 949-54, Japan. 
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repeated suffix is summed over the values 1, 2 and 3. The quantity W is the strain energy 
density; 

fl "n W = W(e,..) = akl deu, (2) 

where o-u and ekt are the stress and strain tensors, respectively. 
The cyclic J-integral for a non-extending crack relevant to loading change from (aa)i to 

(cra) j may be evaluated as 

AJj/i  = fr(A W d x 2  - A T,,,, OAUm/OX 1 ds), (3) 

where A W, A Tm and Au,, are the relative changes between the values corresponding to the two 
states and given, respectively, as 

f 
( ~ , - , , ) s  

A W = [a u - (a,,,)J deu, 
J (~-,.h 

A T= = (T,.)j - (T,,), (4) 

and 

A u , .  = ( u , . ) j  - (urn),. 

In the description of this paper the subscripts i and j are used for the values relevant to the 
external applied stresses (aa)i and (aa)j, respectively. 

The cyclic J-integral in Eqn. (3) is path independent as proven in Appendix 1, if the strain 
energy is a single-valued function of the strain during the loading change and if the stress and 
strain fields outside the end-region [-3] are specified for the original state i. The use of a total 
strain theory will be justified for the situation where the strain field outside a non-extending 
crack receives approximately proportional loading. Everywhere in the region outside the 
end-region [-3], the effective stress will not decrease for the loading stage from state i toj  and it 
will not increase for the unloading stage. 

3. The cyclic J-integral for elastic crack 

The cyclic J-integral in (3) for elastic crack has the form 

A Jill = fr(Aam.Aem./2 dx2 - A 7"., OAum/OX 1 ds), (5) 

where dCrmn = (amn)j --  (aran)i and Ae=. = (em.)j - (e=n)i. 
I fF  is chosen as a circle of radius r approaching zero, only the singular terms specified by 

stress intensity K contribute to the integral. An explicit calculation based On the difference 
between the singular terms corresponding to the two states j and i leads to (plane stress) 

ZJj/ ,  = AK~/ , /E ,  (6) 

where AKj/~ = K j  - K~. 

4. The cyclic J-integral for elastic-plastic crack 

If the components of the plastic strain tensor remain in constant proportion to one another at 
each point of the plastic strain region as in the case of the total strain theory, this permits a 
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Figure 1. The schematic illustration of load sequence. 

general treatment of the response to cyclic loading through the plastic superposition method 
developed by Rice [7]. On the assumption of the proportional flow, the cyclic J-integral for 
elastic-plastic crack is calculated using the Dugdale model. 

It is supposed that a cracked body undergoes the loading cycles as illustrated in Fig. 1. 
The resulting deformation procedures occurring at the crack tip are as shown in Fig. 2, where 
c is the crack length and the region between c and a is the associated plastic zone. At the stage 
of monotonic loading when the external applied stress is changed from aat to era2, the plastic 
zone extends from at to a2. The change in stresses during this process is evaluated by the 
subtraction of those for oa2 from those for crax (Fig. 2(b)). On unloading from era2 to aat, 
reverse plastic flow produces a new plastic zone of reversed deformation imbedded in the 
plastic zone accompanying the original loading (Fig. 2(c)). When flow is proportional, the 
changes in stresses, strains, and displacements due to load reduction are given by a solution 
identical to that for original monotonic loading, but with the loading parameter replaced by 
the load reduction Aaa = O'A2 - -  O'AI and the yield strain and stress replaced by twice their 
values for original loading [-7] (Fig. 2(d)). The stresses and displacements in the reversed zone, 
ca3, are obtained when the changes due to load reduction are subtracted from the distribu- 
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Figure 2. The variations of stress and dislocation distributions at crack tip under load sequence in Fig. 1. The arrow 
marks indicate the direction of remotely applied stress or stress change. (a) State 1; Loaded state at era = erA1, (b) State 
1 --* 2; Loading from ira1 to trA2, (c) State 2; Loaded state at ¢,t = erA2, (d) State 2 ~ 3; Unloading from aA2 to tral, (e) 
State 3; Unloaded state at ira = erA1, (f) State 3 --, 4; Reloading from tra~ to aa2. 
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tions corresponding to the original monotonic loading (Fig. 2(e)). On reloading from aax to 
aA2 , neglecting the possibility of crack closure and crack extension, the plastic superposition 
is valid up to the point where the reversed plastic zone is equal in size to the original plastic 
zone accompanying monotonic loading (Fig. 2(f)). Thus, for unloading, reloading and 
subsequent load cycles, the reversed plastic zone size and cyclic variations in stresses, strains, 
and displacements depend only on the load fluctuation, AaA [71. 

Following Rice [ i] ,  we make the convenient choice of shrinking F down to the upper and 
lower surfaces of the plastic zone for a Dugdale crack, ca~, in Fig. 2. Since dx2 = 0 in (1) for this 

choice of F, (1) becomes 

Ji = -- .Ir(Tm)i O(u.,)i/ Oxl ds 

= - (~2)~a[v2(x~)]~/Oxt dxi 

= (a22)i[D(xl))idxl, (7) 

where o-2z is the stress in the plastic zone, V(xl) is the relative displacement between the upper 
and lower surfaces of the plastic zone and D(xO dx~ is the number of dislocations with unit 
Burgers vector in any distance dxi. D(xO is related to v(xO by 

D(xl) = --Ov(xi)/OXl. (8) 

Goodier and Field [-8] obtain these values for the Dugdale crack under plane stress as 

v(xl) = (2/zO(%sa/E){cos 0 ln[sinZ(/~ - O)/sinZ(B + 0)] 

+ cos//ln[-(sin//+ sin O)Z/(sin ~ - sin 0) 2] } (9) 

and 

D(xl) = (2/zO(ars/E)ln[sin2(fl + O)/sin2(fl - 0)], (10) 

where oys is the yield stress, 0 = cos-  l(xl/a) and 

fl = (rc/2)(a A/ays) = cos-  1(c/a). (11) 

The cyclic J-integral for the Dugdale model during loading change from (aa) i to (aA) i is 
given from (3) referring to (7) as 

;~j / i  

AJj/i = [(a22)j - (a22)i]{[D(xa)]j- [D(xO]i} dxi, (12) 

where the value for larger plastic zone between aj and ai is chosen as aj/i. 

5. Physical interpretation of the J-integral 

The J-integrals and the cyclic J-integrals corresponding to the situations as exhibited in Fig. 2 
are calculated, where the stress distributions are schematically illustrated by solid curves and 
the dislocation distributions by dotted ones. The detailed procedures of calculation are shown 
in Appendix 2. The Ji and -/2 values and A J3~2 value are explicitly given as 

J1 = (8/n)(a2rc/E) ln[sec(rca Ai/2ay)], 

.]2 = (8/rc)(aZc/E) ln[sec(na A2/Zar)] (13) 
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and 

AJ3/2 = (32/n)(a~c/E)ln[sec(nAa a/4ar)]. 

The results of calculation are shown as a function of stress ratio, R = ~A2/O'A1, in Fig. 3. 
J-integrals are normalized by the elastic J-integral relevant to loading aA:, KZ/E. The 
calculation was done for two cases; one is for aAZ/ay = 0.1, being representative of small scale 
yielding and the other is for aA2/ar = 0.9, being representative of large scale yielding. 

In the case of small scale yielding, Ja and A J3~ 2 a r e  coincident with J1 and AJz/~, 
respectively, within the error of computation. These values are almost equal to those for 
elastic J-values as 

Jx ~- Ja ~- K~/E, 

dz ~- K2/E (14) 

and 

AJ3/2 ~- d J2~ t ~ AK2/E, 

where AK = Kz - K1. This suggests that the J-integral and the cyclic J-integral for small 
scale yielding are uniquely determined by applied stress as in the case of linear elastic crack. 
However, as is demonstrated in Fig. 3(b), for large scale yielding,/3 is not equal to J1 and AJ2/1 
is not equal to A J3~ 2. This indicates that the J-integral and cyclic J-integral for this case are 
determined depending on loading processes or histories. 

The J-integral is a generalized force acting on a crack tip [9] or the energy flow towards 
the crack tip per unit of crack extension [-3]. It is evident in Fig. 3 that the difference in the 
J-integrals, the generalized forces or the energy flow rates corresponding to different states, 
Jj -- Ji, is not equal to AJj/i defined in (3) and (13) except the special c a s e  Of~Tai = 0 for small 
scale yielding. For linear elastic crack, J reduces to crack extension force or Irwin's linear 
elastic energy release rate. Thus, Jj - Ji, for elastic crack is interpreted as the difference in the 
crack extension forces between two different states. 
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Figure 3. Normalized J-integrals and cyclic J-integrals as a function of stress ratio R = GA2/aA1. (a) Small scale 
y i e l d i n g  (aa2/ay = 0.1), (b) Large scale yielding (O'A2/O'y = 0.9). 
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For elastic-plastic materials, the cyclic J-integrals may depend on the loading sequences 
as shown in Fig. 3(b). Furthermore, even in the case of small scale yielding when the cyclic J- 
integrals are evaluated to be equal independent of loading sequences, the physical situations 
occurring at the crack tip are different between the first loading (Fig. 2(b)) and reloading 
stages (Fig. 2 (f)). However, fortunately the cyclic J-integrals remain constant and equivalent 
to A J3~2 for load cycles unloading from 2 to state 3, reloading from state 3 to 4 and subsequent 
load cycles, since the reversed plastic zone size and cyclic variations in stresses, strains, and 
displacements depend only on the load fluctuation [7], when the crack closure, cycle 
dependent creep deformation, and crack extension under cycling are neglected. 

Cyclic plastic straining at the fatigue crack tip motivates the crack growth [7, 10]. Thus, 
the dislocation movement in the cyclic plastic zone would be the main factor controlling the 
fatigue crack growth rate. In the case of Dugdale crack, the J-integral defined in (7) is 
equivalent to the generalized force or the Peach-Koehler force on dislocations in the plastic 
zone directly ahead of the crack tip [-9]. In a similar way, the cyclic J-integral in (12) is defined 
as the generalized force on dislocations to be moved in the cyclic plastic zone ahead of the 
crack tip during unloading or reloading. However, the physical situations of the generalized 
forces between monotonic and cyclic loadings are somewhat different as schematically 
illustrated in Fig. 4. This shows the relationship between the restraining stress, a2z, and the 
separation distance, v(c), in the element just attached to the crack tip (at xl = c). On 
monotonic loading from state 0 to 2 in Fig. 1, the separation distance varies from 0 to v(c)2 and 
the plastic work corresponding to area 00'22' is dissipated to heat as a result of dislocation 
movements. On unloading from state 2 to 3, the pertinent relationship follows the way, 
2 ~ 2' ~ 2" ~ 3. In this case, the plastic work corresponding to area 2'2"33' is dissipated to 
heat, while the part 22'3'33" contributes to the reversible potential energy change. The same 
situation occurs on reloading from state 3 to 4. Hence, the generalized force directly effective 
in the movement of dislocations in the cyclic zone at the crack tip during unloading from state 
2 to 3, (AJp)3/z, is evaluated by 

(A dp)3/2 = ( -- ay)A v(c) (15) 

and that for reloading from state 3 to 4, (AJp)4/3, by 

(AJp),,/3 = a,{--  Av(c)]. (16) 

Consequently, the generalized force corresponding to the plastic work dissipated to heat in 
the cyclic plastic zone at the crack tip during one cycle loading is given by 

(AJp)3/2 + (A Jr,)4~3 = 2(AJt,)3/2 = A J3~2. (17) 

ay T' ~ 2,4 

3' 2' 
0 V(c)3 -z~Y(c) V(c)Zor4 

-fly . . . . . . . . .  2 "  

V(c) 

Figure 4. The schematic illustration of relationship between restraining stress v e r s u s  separation distance in an 
clement just attached to a crack tip under monotonic and cyclic loadings. 
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The right hand relation of this equation is derived in Appendix 2. 
According to another explanation of J-integral analogous to that by Broberg [3], (17) 

may be interpreted as the irreversible part in the energy flow towards the crack-tip during one 
cycle loading. It is probable that the reversible part contributes to the extension of the crack 
tip on the loading stage, and the retraction of the crack tip on the unloading stage. Thus, both 
processes would be compensated by each other and so the reversible part would be totally 
ineffective for the crack extension during one cycle loading. However, there is a large 
possibility that the irreversible movements of dislocations at the fatigue crack tip during one 
cycle loading would result in its extension. This would be related to the irreversible part in the 
energy flow defined by (17). In other words, (17) is the physical interpretation of the cyclic J- 
integral for elastic-plastic crack as a fatigue crack growth criterion. Although this interpre- 
tation is justified only for the highly simplified elastic-plastic model developed by Rice [7], it is 
expected one can apply the cyclic J-integral concept for explaining the gross features of 
elastic-plastic fatique crack growth. That is, the more general expression of (17) is given by 

AJ = ~Adp, (18) 

where ~ is a parameter. When the cyclic plastic deformation at the crack tip is sufficiently 
constrained by internal stress field induced by the monotonic loading as assumed in the 
Dugdale model, ~ will be equal to two. This will be strictly fulfilled for small scale yielding 
condition in all types of specimens and even for large scale yielding condition in a center- 
cracked plate with sufficiently wide uncracked ligaments in tension, a will be larger than two, 
when the constraint is not sufficient as in the case of deeply notched plate under large scale 
yielding. Conversely, ~ will become smaller than two when the crack closure mechanisms are 
operated [11]. 

6. Energy expression of fatigue crack growth data 

Bates and Clark [12] pointed out that the striation s vs. AK  curves for various materials can 
be normalized using the parameter, AK/E.  Tanaka et al. [13] suggested that in order to 
complete the normalization, it is more reasonable to represent the crack length, c, by c/b and 

the parameter A K / E  by AK/Ev /b ,  where b is the Burger vector of the material. They showed 
that a majority of experimental data on dc/dN vs. AK  and s vs. AK  curves for three different 
metals in the intermediate range of crack growth rate at R = 0 are coincident by the general 
formulation, 

and 

(dc/dN)(1/b) = 103(AK/IOEx//b) " (19) 

s/b = 103(AK/IOEx/~) 2, (20) 

respectively. These equations can each be expressed in J-integral form by replacing AKZ/E 
with AJ (1) and Eb/20 by 7, the surface energy of material, [14] to obtain 

(dc/dN)(1/b) "~ 103{AJ/103(27)} m/2 (21) 

and 

s/b ~- A J~2?, (22) 
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respectively. It is noted that the final form is related to the Griffith criterion when s = b and 
AJ = J. These facts indicate that the fatigue crack growth and the striation formation are 
intrinsically controlled by the energy criterion, even though they are exhibited as continuum 
phenomena. 

The advantage of the energy criterion also appears in the analysis of data on the 
threshold range of fatigue crack growth rate. Figure 5(a) shows the threshold values of AK, 
AKtn , against stress ratio, R, for five different metals, which are collected from the literature 
[15-29]. Although the results are dispersed considerably even in the same material, particu- 
larly for the smaller R-value, they are clearly dependent on material; steels and nickel alloys 
have the highest AKth-values, while aluminum alloys the lowest ones. However, they are in 
excellent agreement with each other, when they are replotted in Fig. 5(b) using the normalized 
AJ expression, A J t h / 2 T ,  w h e r e  / I J t h  - -  (1 - v2)AK2/E on the assumption of plane strain 
condition. The Young's moduli, E, and Poisson's ratios, v, and surface energies, y, for these 
materials used in this calculation are listed in Table 1 [14-30]. The normalized AJth-Values 
decrease monotonically as R increases from 0 to 0.9, and then they decrease rapidly to nearly 
two as R approaches one. This seems to be very reasonable as discussed below. 
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Figure 5. Experimental data on AKth against R collected from literature (a) and their normalized dJ  expression (b). 
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TABLE 1 
Material parameters 

Alloys E v y 
(GPa) (Jm -2) 

Aluminum 70 0.34 1.00 
Copper 130 0.34 1.65 
Nickel 216 0.30 2.00 
Titanium 117 0.34 1.72 
Steel 206 0.28 2.00 

In the threshold level of fatigue crack growth rate, the crack closure mechanism operates 
strongly at the smaller R level [31]. The crack closure becomes weaker as R increases [1 lJ, 
which explains the decreasing tendency of A Jth/27-value as the increase of R. The ideal state of 
non-crack-closure will be attained in the extreme case of R = 1. In this state, it can be 
postulated for the minimal condition for the occurrence of fatigue crack growth that 

A J, > 27. (23) 

That is, the generalized force for plastic work relevant to the movement of dislocations at a 
fatigue crack tip during half cycle loading should overcome the force for the irreversible 
creation of metal surface. The latter can be the order of 27. Therefore, assuming that c~ = 2 in 
(18), the AJth-value should satisfy that 

AJth/27 > 2. (24) 

7. Estimate of AJ from single load-displacement records for the case of Dugdale crack 

Values of AJ for a non-extending Dugdale crack may be determined from load versus 
displacement curves as was done by Rice et al. [32]. 

Consider a rectangular plate of width 2 W with a Dugdale crack or a plane stress crack of 
length 2e centrally located, where 2W >> 2c. Suppose the applied force per unit thickness, 
2P = 2aaW, to be centrally applied and write 6 for the load point displacement due to the 
presence of the crack. 

An alternate and equivalent definition of J is given by [32] 

J = f~  (~6/~c)~, dP 

or  

(OJ/OP)~ = (06/~3c)e. (25) 

Generally the J-integral for a plane stress crack as for a Dugdale one must have the form [33] 

J = cf(P/W) (26) 

where c ~ W. Making use of (26) Eqn. (25) becomes 

(t35/0C)e = (c/W)f'(P/W) (27) 

or  

6 = (c2/2W)f'(P/W) = (e/2)(~J/OP)c. (28) 
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Integrating (28) leads to 

;o J = (2/c) 6 dP. (29) 

Hence 

fpb 
~J~/, = (2/c) (~ - ~ i ) d e -  (3O) 

i 

Values of cyclic J-integral for a Dugdale crack are determined from areas under load 
versus displacement lines during cyclic loading as illustrated in Fig. 6. This is constructed 
using (29) and (30) for the case that ~At/cry = 0.9 and R = 0.2. The 6 and cyclic 5 are obtained 
substituting (13) into (28) and (29) as 

6 = ( 2 a f z / W E )  tan(rcaA/2a r) (31) 

and 

A6 = (4%c2/WE) tan(TzAa a/4ar). (32) 

The operational definition of cyclic J-integral employed is essentially coincident with 
that by Dowling and Begley [4] on a load versus deflection curve for a C T  specimen with the 
neglect of crack closure. However, there are some differences in the evaluations of J-integral 
between the two types of specimens; center-cracked plate with wide uncracked ligaments in 
tension (present study) and deeply notched plate subject to bending (Dowling and Begley [4]). 
The cyclic J-integrals are evaluated from the hatched area divided by the crack length for the 
former and by the ligament length for the latter. The hatched areas differ by twice the area of 
hysteresis loops between the two specimens. It is curious that although the cyclic J refers to 
the general force plastic work in the cyclic plastic zone just attached to the crack tip, the area 
of hyteresis loops, the total plastic work dissipated in the specimen by the presence of crack 
during one cycle loading, is not included in the derivation of the cyclic J for the case of the 
Dugdale model. There is not yet any clear explanation for this rather "paradoxical" result. 
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Figure  6. Ope ra t i ona l  defini t ion of cyclic J - in tegra l  for the case tha t  aa2/trr = 0.9 and  R = 0.2• 
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8. Concluding remarks 

The definition of the cyclic J-integral is offered in (3) and its physical significance for fatigue 
crack growth is discussed using the Dugdale model. The cyclic J-integral for small scale 
yielding can be determined independent of loading processes and equivalent to the value for a 
linear elastic crack as in the case for the "monotonic" J-integral, whereas the cyclic J-integral 
for large scale yielding depends on the loading processes. However, in both cases, the cyclic 
deformation occurring in the cyclic plastic zone can be assumed to remain constant during 
cyclic loading under a constant stress range, if the crack closure, cycle dependent creep 
deformation and crack extension are neglected. In this situation, the cyclic J-integral is 
evaluated as a generalized force motivating plastic work dissipated to heat in the cyclic plastic 
zone during one cycle loading. From this point of view, the cyclic J-integral can be adopted as 
a criterion for fatigue crack growth. According to this energy conception, the available 
experimental data of different materials for fatigue crack growth, striation spacing, and the 
AKth values can be generalized respectively to a normalized formulation. It is also deduced 
that the threshold A J-value (= (l - vZ)AK2h/E ) should be larger than 4~ in the extreme case of 
R = 1. Finally it is suggested that the cyclic J-integral for center-cracked plate with wide 
uncracked ligaments in tension can be determined from single load versus displacement 
record, although in reality the precise measurement of the displacement may be very difficult. 
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Appendix 1. Path independence of the cyclic J-integral 

The path-independence of the J-integral is shown according to Rice [-1] (see p. 210 in his 
paper). 

Consider two curves F1 and F2, suppose F2 to enclose Fx, and let AJx, AJ 2 be the 
associated values of the integral in (3). Then, assuming that the region between F1 and F2 
enclosed by the curves and the crack surfaces A(F2, F~) is simply connected and free of 
singularities, A J2 - A J1 is the integral contraclockwise of the integrand in (3) around the 
boundary of the region, since both terms of the integrand vanish on the flat surfaces. On the 
assumption that the stress and strain fields in A(F2, F~) is known for the initial state i, 
transforming to an area integral and employing Cartesian coordinates 

[-8d W/t~x 1 -- dtTkt 8(Aekt)/SXl] dx l  dx 2 = 0 (A1) A J2 A J1 
Ja (r2,rl) 

since 

8A W / d x l  = 
f@,n.)j 

d/axt | [au - (o',.,,)i] dekt 

= O/SX1 JO ak ldek l -  ak ldSk l -  07mn)i(Smn)J 

+ (o,.Oj(~,~O~} 
= (~mn)j a(~,.n)~/ax~ - (~n)~ a(em.)~/ax~ - (~m.)j a ( ~ , J J & ~  

- -  (~,n.)~ a(e,~.)~/ax~ + 2(o-,J~ a(e,~.)~/ax~ 

= [ ( ~ . . . ) j  - ( o - . . ) , ]  [a(~m.)dax~ - a(~m.)daxd 

= Aat, 8Aek, /&l .  

Appendix 2. The cyclic J-integral calculation for elastic plastic crack 

The "monotonic" and cyclic J-integrals for loading sequence from states 1 through 4 in Fig. 1 
are calculated using (7) through (12). 

1. State 1 

The prescribed stresses are given in Fig. 2(a), where aa = aA1, ars = ay, (0"22)1 = O'y. Hence 

Jx = ar[v(c)]l = (8/n)(a2rc/E) ln(al/c), (A2) 
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where 

al/c  = sec(rco.al/2o-y). 

2. State 2 

The prescribed stresses are given in Fig. 2(c), where O'A = O-A2, o'ys = o-y and ( 0 " 2 2 ) 2  = o-y. Hence 

J2 = o'r[v(c)]2 = (8/rc)(o'Zc/E) ln(a2/c), (a3) 

where 

a2/c = sec(rcA2/2o-y ). 

3. State 1 ~ 2 

The prescribed stresses are given in Fig. 2(b). 

I f  2 
AJ2/i = [(o-22)2 -- (o.22)l]{[D(xl)]2 -- [D(Xl)]I } dxl  

f.2[ ( ) ][o( )] o-y - -  0"22 1 X 1  2 dxi.  
, J a l  

(A4) 

[D(xi)] 2 is evaluated by substituting o.rs = o.r, 0 = cos - l(x l/a2) and/~ = cos-  1(c/a2) into (10). 
(o'22)1 is the stress outside the plastic zone produced by the application of load, o.al. The latter 
stress can be solved analytically, but has a very complicated form as given by Hahn  and 
Rosenfield [34]. Equat ion (A4) is calculated numerically using (10) and the analytical 
equation given by Hahn  and Rosenfield. 

4. State 2 ~ 3  

The prescribed stresses are given in Fig. 2(d). Since the changes in the distributions of 
dislocation, AD(xl),  and displacement, Av(xl), accompanying the state change from 2 to 3 
are given substituting aA = --AO.A, o.rs = --2O- r, and (o.22)2 = --2o. r into (9) and (10). 

AJ3/2 = [(o.22)3 - (o-22)2{[D(xl)]3 - [D(xl)]2 } dxl  

= (--2o-y)AD(xi)dx i = (-2o.,)Av(c) 

= (8/Tz)(4o.Zc/E)ln(a3/c), (A5) 

where 

a3/c = sec(Aa A/4ar). 

5. State 3 

The prescribed stresses are given in Fig. 2(e). Since D(xi) 3 = [D(x1)]2 -1- AD(xl) and (0"22)3 
= (0-22)2 -F Ao22, 

f 
2 

J3 = (o-22)3[D(x1)]3 dx1 



104 K. Tanaka 

f 
3 

= (ay - 2ay){[D(xl)]z + AD(xl)} dx i  

"l- (fly "[- O-22)['D(x1)] 2 d x l .  (A6) 
3 

Aa22 in the right hand of(A6) is the stress field outside the cyclic plastic zone produced by the 
application of load f luc tua t ion , ,  AaA, and calculated under the situation as illustrated in Fig. 
2(d) using the Hahn and Rosenfield solution. The integral was done in a similar way to that in 
the calculation of (A4). 

6. State 3 ~ 4 

The calculation was identical to that in (A5), but the sign of stresses was conversed. Thus 

AJ,/3 = (2ay)E- Av(c)] = AJ3/2. (A7) 

RI~SUMI~ 
On pr6sente la d6finition de l'int6grale J cyclique et sa signification physique darts le cas d'une croissance de fissure de 
fatigue est discut6e en utilisant le module de Dugdale et l'hypoth6se que la fermeture de la fissure, la d6formation de 
fluage li6e au cycle, et l'extension de la fissure au cours du cycle peuvent &re n6glig6es. On montre que l'int6grale J 
cyclique est, darts le cas d'6coulement plastique/t faible 6chelle, 6quivalente/t l'int6grale J utilis6e pour les fissures 
61astiques lin~aires ind6pendamment des processus de mise en charge, tandis que la valeur de d&formation plastique 
macroscopique varie avec le processus de mise en charge. Cependant, dans les 2 cas, rint6grale J cyclique demeure 
constante au cours du renversement de charge appliqu6e/t tension constante si l'on exclut le premier stade de raise en 
charge monotone. Darts cette situation, l'int~grale J cyclique peut ~tre appliqu6e comme crit6re de la croissance d'une 
fissure de fatigue puisqu'elle repr6sente une forme g6n&alis6e de force, un effort sur les dislocations ~i mouvoir ou/t  
l'6coulement d'6nergie dissip6e en chaleur par les mouvements de dislocation dans un 616merit imm6diatement 
solidaire de rextr~mit~ de la fissure de fatigue, au cours d'un cycle de raise en charge. On sugg~re que les donn~es 
exp6rimentales disponibles sur diff6rents mat6riaux pour la croissance d'une fissure de fatigue puissent &re 
g6n6ralis6es fi une formulation unifi~e, sur base d'un crit+re d'6nergie. On d6duit +galement que le seuil AJ 
correspondant fi AKth devrait &re plus grand que @, off ~ est l'6nergie de surface du mat6riau. Finalement, la 
d6finition op6rationnelle de l'int6grale J cyclique sous simple charge en fonction des courbes de d6placement est 
fournie dans le cas d'une plaque comportant une fissure centrale et de larges ligaments non fissur6s, soumises/t 
traction. 


