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TECHNICAL NOTE 

Games with Vector Payoffs 

H. W. C O R L E Y  1 

Communicated by P. L. Yu 

Abstract. Two-person games are defined in which the payoffs are 
vectors. Necessary and sufficient conditions for optimal mixed strategies 
are developed, and examples are presented. 
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1. Introduction 

An unresolved question in game theory has been whether there exists 
a theory for vector payoffs similar to standard results. Blackwelt established 
in Ref. 1 an asymptotic  analog to the minimax theorem for such payoffs, 
however, that is used in repeated games. Recent work by Nieuwenhuis (Ref. 
2) and Corley (Ref. 3) suggests a generalization to vector payoffs using the 
following notion of vector maximization (or efficiency or Pareto optimality). 
Let u = ( u i , . . . , u , ) ,  v = ( v i , . . . , v , ) ~ D c R " .  I f  ui<~v~, i = l , . . . , n ,  and 
u s < vj, for some j, we write u < v or v > u. The point u e D is said to be a 
vector max imum of D, denoted u e v max D, if u g: v, for all v e D. Vector 
minima and v min D have similar definitions. 

A two-person (noncooperative) bimatrix vector-valued game is defined 
as follows. Player I has r strategies and Player II  s strategies. The payoff 
with respect to I is represented by an r x s  matrix A = [ a o ]  of  n-tuples 
a~ = ( a ~ , . . . ,  a~) ~ R", so A comprises the n real payoff matrices Ak = [a~], 
k = 1 , . . . ,  n. Similarly, the payoff with respect to II  is represented by an 

= (b i~ , . . . ,  b~i) E R ~ determining n real r x s  matrix B=[b~j] of  n-tuples b~ 1 
payoff matrices Bk = [b~], k = t , . . . ,  n. Thus, when I plays his ith strategy 
and I I  his j t h  strategy, the payoff is ( a ~ , . . . ,  a~) to I and ( b ~ , . . . ,  b~) to 
II. Mixed strategies are allowed as usual. Player I assigns a probability x~ 
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to choosing strategy i, and II assigns yj to strategy j. These mixed strategies 
are given by the column vectors by the column vectors x -= (x~ , . . . ,  xr)' and 
Y = (Yl , . - . ,  Y,-)' that are members, respectively, of the sets 

( -, ]. Y= y: y ~ - , y j ~  s 
j = l  

The expected payoff of this game is therefore 

i i  ° ' x'Ay = (xiyjab,..., xiyja o) = (x A ly , . . . ,  xtA,y), (1) 
i = l  j = l  

f o r / ,  and 

÷ ÷  o , , ., . . ,  x Bny), x'By = ,.,,_, (xiyjbb,.. xyjbo) = (x Bly,. (2) 
i=1  j = l  

for II. The strategy pair (2,)3) is said to be an equilibrium point for this 
game if 

tAft g: x'A)3, x 6 X, (3) 

and 

~'B~g.~'By, y e  Y; (4) 

the associated expectations ~'A)~ and 2'Bfi are called equilibrium values. 
When B = - A ,  the result is a zero-sum vector-valued game. In that case 
(3), (4) can be combined into 

x t A ~  ~'A~:~ ~'Ay, x c X ,  yc  Y, (5) 

and ~'A)~ is the equilibrium value. It is obvious that the above definitions 
reduce to the standard game-theoretic concepts (see Refs. 4 and 5) when 
n--1.  

Two related notions for zero-sum vector-valued games are generalized 
minimax and maximin points. A strategy pair (~,)3) for a zero-sum vector- 
valued game is said to be a minimax point if ~'A)) is a member of 

v min i  U vmax{x tAy :xcX}] ;  (6) 
L y ~ Y  

~'Ay is the associated minimax value. A maximin point is similarly defined 
with respect to the set 

v max[  U vmin{x~Ay:y~Y}].  (7) 
L x ~ X  
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These definitions again reduce to the usual ones when n = 1, in which case 
the concepts of an equilibrium, minimax, and maximin point are equivalent 
due to the minimax theorem (see Ref. 4). 

In this note, we present the following results. In Section 2, we establish 
necessary and sufficient conditions for a strategy pair (x, y) to be an 
equilibrium point of a bimatrix vector-valued game. The existence of  equili- 
brium points and the fact that a bimatrix vector-valued game is equilvalent 
to a parametric linear complementarity problem are corollaries. In Section 
3, examples are given in which some equilibrium points are computed and 
certain differences between standard games and vector-valued games are 
illustrated. In particular, the minimax theorem does not have a direct 
generalization to (6) and (7). 

2. Results 

We first state an immediate consequence of (3), (4), and the definition 
of a vector maximum. 

Lemma 2.1. Let 

Xy = {~ ~ X :  ~ A y  ~ v m a x { x ' A y  : x ~ X}}, 

Yx ={)3e Y : x'B)3 c v m a x { x ' B y  : y c Y}}. 

Then, ()~,)3) is an equilibrium point of  a bimatrix vector-valued game if and 
only if ~ c X~ and )3 c Y~. 

Theorem 2.1. A strategy pair (x, y) is an equilibrium point for a 
. . . . .  ^ A A A 

bimatnxvector-valued game if and only if there exist scalars r~, 0, a ~ , . . . ,  a, ,  
/31, . . . , /3, ,  A b . . . ,  &, t21, . . . , /2 ,  for which (~,)3) and these scalars satisfy 

~kaq)) + a~ = rt, i = 1 , . . . ,  r, (8) 
k=l  j = l  

i x, = t, (9) 
i = 1  

A~xi =0,  i =  1 , . . . ,  r, (10) 

A~,xi>~O, i = l , . . . , r ,  (11) 

i ~ ~kbi jx i+tz j=O,  j = t  . . . .  ,s,  (12) 
k = l  i = 1  
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• y j = l ,  
j= t  

k~jYj = 0, 

Otk, ~k > O, 

(13) 

j = l , . . . ,  s, (14) 

j =  1 , . . . ,  s, (15) 

k =  1 , . . . ,  n. (16) 

Proof. Since x t A y  is linear in x for fixed y and since x~By is linear 
in y for fixed x, it follows from Lemma 2.1 and Ref. 6 that (~,)3)is an 
equilibrium point if and only if there exist scalars ~1,. .  •, ~n,/3~, • • . , /3 ,  > 0 
[i.e., condition (16)] such that £ solves the scalar linear program 

maximize x ~ akAk , 
x l 

subjectto ~ x~= 1, (18) 
i=1 

x i ~ O ,  i =  l , .  . . ,  r, (19) 

and ~ solves the scalar linear program 

maximize ~ /3kBk , 
Y \ k = l  

subject to ~ y j = l ,  
j= l  

yj~>0, j = l , . . . , s .  

Consider problem (17). The linearity in x of both the objective function 
and the constraints implies that the Kuhn-Tucker conditions for (17) are 
both necessary and sufficient (see Ref. 7). These conditions are (8)-(12), 
where -q is associated with (18) and the Ai with (19). Conditions (12)-(16) 
are similarly obtained from problem (20) to complete the proof. [] 

The multipliers ~ and 0 in (8) and (12) represent, respectively, the 
optimal values of the objective functions in (17) and (20) for fixed O~k, /3k 
and can be algebraically eliminated. All equilibrium points can be obtained 
theoretically from (8)-(16) as, say, in Ref. 8 by varying the ak, i lk>0.  
Obviously a large, even infinite, number of equilibrium points may be 
obtained (as illustrated in the next section), and thus a player might place 
secondary criteria on his strategies. If such criteria are formulated as linear 
constraints (as in goal programming), the proof of Theorem 2.1 can be 
extended easily to account for these additional constraints. It is for this 
reason that the Kuhn-Tucker conditions were applied in the above proof 
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after the scalarizations (17) and (20). Otherwise, the following consequence 
of these scalarizations and Ref. 9 is perhaps prefererable, where e,, denotes 
an m-dimensional column vector of t's. 

Corollary 2.1. Suppose that 

k b~>0, i = l ,  r , j = t  . . . .  , s , k = l ,  . n. a i j ,  • . . , • .  , 

Then, a bimatrix vector-valued game is equivalent to the following para- 
metric linear complementarity problem with parameters ak, flk>0, k=  
1 , . . . ,  n, 

L k = l  O g k A k  0 Le~J 

x iz i  = O, i = 1 , . . . ,  r, (21) 

y j w j  = O, j = l ,  . . . , s, 

xi ,  zi  >~ o ,  i = l , . . . , r ,  

yj ,  w i > ~O  , j = l , . . . , s .  

A positive constant can be added to the elements of the Ak, Bk without 
affecting the equilibrium points, so Corollary 2.1 is a general equivalence. 
Any method for solving linear complementarity problems (as in Ref. 7) 
may be applied; a solution (x, y) to (21) determines an equilibrium point 
( x / x t e , , y / y t e , ) .  The scalarizations in Theorem 2.1 also establish the 
existence of equilibrium points for vector-valued games from existence 
results for scalar games in, for example, Ref. 10. 

Corollary 2.2. There exists an equilibrium point for a bimatfix vector- 
valued game. 

3. Examples 

Two examples are now presented. For simplicity, both represent the 
zero-sum case. In Example 3.1, all equilibrium points are obtained utilizing 
Theorem 2.1, and it is demonstrated that two scalarizations (i.e., both the 
c~k and ilk) are needed to obtain all equilibrium points. Example 3.2 
illustrates some differences between vector-valued and scalar games; for 
instance, (6) and (7) are not necessarily equal. 
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Example 3.1. Consider a zero-sum game with 

A I = [  01 ~1' A 2 = [ - 0 2 - ~ ] "  

Conditions (8)-(16) can be directly solved to yield the set of  equilibrium 
points 

{(x,y): 0<~x l<1 ,2<x l  ~< 1, x2 = l - x 1 ;  0~<y,<1,2<yl<~ 1, y2 = 1 - y ~ }  

u { ( x ,  . ~ 2 y ) . x < x ~ < x ,  x2= 1-x~; Yl=O, y2 = 1} 

U {(X, y): X 1 = 1, X 2 = 0; 1 < Yl < 32-, Y2 = 1 -- y,}. 

In particular, 

~ = ( 0 ,  1), 33=(0, 1) 

determine an equilibrium point. But (~, 33) cannot be obtained with a single 
scalarization (i.e., oek =/3k > 0), since the substitution 

x2 = 1 - x l ,  y2 = 1 -Yl  

would require 

Xl(2O q - c~2) ~< 0 <~ Y l ( a l  -- 2a2), 

for 

0~<x1~<1, 0~<y~<l .  

This inequality dictates as = a2 = 0, a scalarization that says that any strategy 
(x, y) is an equilibrium point. We conclude that in the linear case, as in 
the nonlinear case studied by Nieuwenhuis (Ref. 2), a single scalarization 
cannot yield all equilibrium points. He did not resolve the issue, however. 

Example3.2. Consider a zero-sum game with 

A I = [ ~  1 0 ] ,  A2=[10 1tl. 

With the substitution 

xz = 1 - x l ,  y2 = 1 -y~,  

we have 

x t A y  = ( x l  + Y l  - 2 x l y l ,  1 - y ,  + x l y a ) .  (22) 

For this game, we show that, contrary to the case for scalar games as 
discussed in Ref. 4, two equilibrium points (~, 33), (if, 37) do not necessarily 
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determine an equilibrium point (2, 27). To see this fact, observe that 

~ = 0 , 0 ) ' ,  ~ = ( 1 , 0 ) '  

determine an equilibrium point for (22), as does 

~ =(¼,~),, ~ 3 ,  = ( a ,  a). 

The strategy pair ()~, y), however, is not an equilibrium point. 
We next illustrate that a strategy pair (x, y) yielding an equilibrium 

value x'Ay may not itself be an equilibrium point. As before, note that the 
pair 

~ = 0 , 0 ) ,  ~ = ( t , 0 )  

is an equilibrium point for (22) giving 

~ 'a~  = (0, 1). 

The pair 

i f=(0,  1), )7=(0,1) 

also gives 

)TtA)7 = (0, 1). 

But ()~,)7) is not an equilibrium point. 
This game also demonstrates that the minimax theorem for scalar games 

does not generalize to the equality of (6) and (7) for n >i 2. It is an interesting 
exercise to deduce that, for this game, (6) becomes the set 

M-- {(~, 1 -  ¢): 0~< ~< 1} 

and (7) the (nonclosed) set 

N = {2s ~2 -2~:+ 1, 2s ~ -  ~:2): 0.< ~: < ½}. 

It is evident that M and N are not equal. One explanation is that the inner 
vector extremizations in (6) and (7) cannot be formulated as linear con- 
straints, and thus the duality theory of linear programming (either the 
standard theory or that of ReE 3) cannot be applied. 

4. Remarks 

Vector-valued games involving Pareto optimality have been defined 
here; extensions include n-person games, differential games, and vector 
criteria other than Pareto optimality. There are also two areas of this note 
in which further work is needed. First, there may be a way to obtain all 
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equilibrium points without resorting to the impossible task of solving all 
possible scalarizations. It is conceivable that one could obtain parametric  
solutions (x, y) to (21) in terms of the ak, /3k. Second, it is not clear how 
minimax and maximin points are related to equilibrium points, except that 
a joint minimax and maximin point is obviously an equilibrium point. 
Determining the relationship might lead to a suitable generalization of the 
minimax theorem for n i> 2. 
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