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TECHNICAL NOTE 

Directional Derivatives in Nonsmooth 
Optimization 1 

A .  B E N - T A L  2 A N D  J .  Z O W E  3 

Communicated by O. L. Mangasarian 

Abstract. In this note, we consider two notions of second-order direc- 
tional derivatives and discuss their use in the characterization of minimal 
points for nonsmooth functions. 

Key Words. First-order and second-order directional derivatives, opti- 
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1. First-Order and Second-Order Directional Derivatives 

Let f be a real functional on a real vector space X. We assume 
throughout that the following directional derivatives exist at ff in all direc- 
tions h and z 

f ' ( ~ ;  h) := lim Z-l [ f (~7+ Ah) - f ( 2 ) ] ,  (1) 
A->0 + 

f'(Y; h):= lira A-2[f(~ + Ah) - f ( )~)  - Af'(ff; h)], (2) 
A..O + 

f"(~;  h, z) := lim A-2[f(Y~+Ah+A2z)-f(Y~) - * f ' (2 ;  h)]. (3) 
X-~O + 

(1) is the classical directional derivative. The proposal  (2) for a second 
directional derivative is studied, e.g., in Demyanov  and Pevnyi (Ref. 1) and 
Hiriart-Urruty (Ref. 2). The stronger notion (3) of  a curved second direc- 
tional derivative was introduced by the authors (see Ref. 3). We emphasize 
that the above limits exist for a large class of  nonsmooth functions arising 

1 This research was supported by NSF Grant No. ECS-8214081, by the Fund for Promotion 
of Research at the Technion, and by Deutsche Forschungsgemeinschaft. 

2 Associate Professor, Technion-Israel Institute of Technology, Haifa, Israel. 
3 Professor, University of Bayreuth, Bayreuth, West Germany. 

483 
0022-3239/85/t200-0483S04.50/0 © 1985 Plenum Publishing Corporation 



484 JOTA: VOL. 47, NO. 4, DECEMBER 1985 

in applications. This class includes, e.g., the ll-function, the max-function, 
and the exact penalty function; see Ben-Tal and Zowe (Ref. 4). I f f  is C ~ 
with Fr6chet-derivative f ' (x ) ,  then the mean-value theorem gives, for small 
A > 0 and suitable 0 <~ 0h <~ 1, 

A -2[f(~ + Ah + A 2z) -f(~7) - Af'(2; h)] 

= A-2[f()~ + Ah + A2z) - f ( 2  + Ah)] 

+ A-2[f(97 + Ah) - f ( ~ )  - Af'(2; h)] 

=f'()2 + Ah + OxA2z)z+A-2[f(Yc+Ah) -f(Yc) -Aft(R; h)]. 

Hence, for Cl-functions, 

f'(97 ; h, z)=f ' (X)z+f ' (Y~;  h). (4) 

I f f  is even C 2 with second Fr6chet-derivativeif(x), then a Taylor expansion 
of the bracketed terms in (1)-(3) shows that 

f ' (~ ;  h)=f '()7)h,  

f'()7; h)=-~'(X)(h,  h), 

f"(~;  h, z) = f '(N)z+½f"(~)(h, h ). 

(5a) 

(5b) 

(5c) 

In the next two sections, we will characterize the minimality of 97 via 
the above directional derivatives. The necessary conditions (6), (7), and (8) 
are certainly not new. We cite them here only to show what has to be added 
to reach sufficient conditions. The sufficient conditions of Theorem 3.2 are 
new. Furthermore, it does not seem to be well known in the literature that 
the Lipschitz condition is essential for the sufficient conditions stated in 
Theorem 3.1. Examples and counterexamples are given. 

2. Necessary Conditions 

As an immediate consequence of the definitions (1), (2), and (3), we 
obtain the following theorems. 

Theorem 2.1. 

f ' (2 ;  h) i> 0, 

Theorem 2.2. 

f ' (~ ;  h)~O, 

If  ff is a local minimizer of f, then 

for all h c X .  

If ~ is a local minimizer o f f ,  then 

for all h ~ X, 

(6) 

(7a) 
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and 

f ' (~ ;  h) = 0 implies f'()~; h) ~> 0. (7b) 

Theorem 2.3. If ~ is a local minimizer o f f  then 

f ' (~ ;  h ) ~ 0 ,  for all h ~ X ,  (Sa) 

and 

f ' (~ ;  h) = 0 implies f"(~;  h, z)/> 0, for all z c X. (Sb) 

For a C2-function, we get from (5) that (7) and (8) coincide and reduce 
to the standard necessary conditions in smooth optimization 

f ' (~ )  = 0 and f"(JT)(h, h)/> 0, for all h e 32. 

For a Cl-function, the conditions (7) and (8) become identical, because of 
(4). However, for general nonsmooth f condition (8) is superior to (7); it 
can exclude nonoptimal points not excluded by (7), We give two examples. 

Example  2.1. Let X = ~2 and 

-1.- 2 2 f ( x )  = x, + [2xl , xl +x2[. 

The origin ff = (0, 0) r is not locally optimal, since, for - 2  ~ xl < 0, 

f ( x l ,  ~/-2xl - Xl 2) = xl < 0 =/(•).  

The directional derivatives for some special h and z are (we omit some 
straightforward arithmetic) 

f'(ff;(h~, h2) r) = h~ +2lh~[, for all (h~, h2), 

f"()7; (0, h2) r) : h~, 

f"(Y; (0; h2) r, (c~, 0) r)  = -c~ - h~, a < - h2/2. 

Obviously, condition (8) is violated for the choice o~ ~ ( - h  2, -h~/2) ,  whereas 
(7) does not exclude the nonoptimat ~. 

Suppose that the domain of definition o f f  is a proper subset S of X 
and )~ is a local minimizer o f f  on S. Then, the above inequalities (6), (7), 
and (8), respectively, hold for all directions h and z for which the corre- 
sponding directional derivatives exist. Again, the curved directional deriva- 
tive f " ( g ; . ,  • ) provides a more refined tool than f'()7; • ). 

Example  2.2. Let X = Lq 2, a = ( -  1, 0) 

s~ = {(x,, x~)~-[(x~- ~)~+ x~> ~}, 
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with fixed parameter a < 0, and define a function f~ on S, by 

f~(x)=(x-a)T(x--a), for x c  S~. 

Obviously, the origin 97 = (0, 0) T is the point in S~ closest to a = ( -1 ,  0) T 
in the /2-norm whenever a ~<-1; i.e., g minimizes f~ on S~ if and only if 
a < ~ - l .  

The directional derivatives f ' ( ~ ;  h) and f ] ( f f ;  h) exist for all h with 
h~ ~> 0, and one has 

f'~(~; h ) =  2(97- a)Th =2hl ,  hl~>0, 

f"o,(~;h)=hTh, hl>~O. 
Hence, the necessary conditions (6) and (7) hold, no matter if a ~<-1 or 
not. Now, consider condition (8). One easily checks that ~ + hh + h2z ~ S~, 
for all A, h = (0, h2) r, and z = (h2/2a, 0) r. For this special choice of h and 
z, one gets 

f"(~;  h, z) = hrh +2(ff - a ) r z  = h~(1 + l/a). 

Hence, (8) tells us that ~ cannot be optimal for a > -1.  

3. Sufficient Conditions 

The directional derivatives characterize f along halflines and certain 
curves only. Hence, one cannot expect that replacement of I> by > in (6), 
(7), and (8), respectively, provides a sufficient condition. Suitable topologi- 
cal assumptions have to be added. Some progress in this direction is reported 
in the following theorems. We restrict ourselves to finite-dimensional X;  
otherwise, the condition (6), for example, has to be strengthened to: 
f ' (~ ;  h)>/o~ [[h [[, for all h and some fixed positive a ;  see Ref. 5. Following 
the sufficient conditions, we will discuss their interrelations and give some 
counterexamples. 

Suppose that dim X < co and f is Lipschitz continuous Theorem 3.1. 
in a neighborhood of ~; i.e., there are L >  0 and e > 0 such that 

I f (x0- f (x2) [  <~ Lnxl- x21[, whenever [[xi-xl] ~< e, i=  1, 2. 

If  
f ' (~ ;  h ) >  0, forallh~X,h~O, (9) 

then ~ is a strict local minimizer of f 
The proof of Theorem 3.1 uses a similar indirect argument as the more 

difficult proof of the following partial counterpart to Theorem 2.2. 
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Theorem 3.2. Suppose that dim X < oo, and l e t f  be Fr6chet-differenti- 
able in a neighborhood of  ff with Lipschitz continuous f ' ( -  ) at R; i.e., there 
are L > 0 and e > 0 such that 

IK'(x)-f'()2) I1 ~ Ll l x -  x II, whenever t l x -  xlJ ~ e. 

If  

f ' ( f f )  =0 ,  

and 

f"(ff; h) > O, f o r a l l h c X ,  h ¢ O ,  

then ~ is a strict local minimizer of f 

(lo) 

( l l a )  

(11b) 

Proof. We proceed by contradiction. Suppose that there is a sequence 
Xl, x2, • • . ,  with 

x~ ~ )7 and x. ~ )~, but f ( x . )  ~<f(2), for all n. 
t l  --~ o o  

A compactness argument in the finite-dimensional X says that, for a suitable 
subsequence, 

, / 7 ~ 0 .  (x. -x)/llx. -~11 
n --~ ¢G 

Hence, 

x, = ~ + A~/~+ r~, 

and 

with An := tlx, -~11, 

r . /A . - - - -*  O. 
n ~ ¢ o  

By assumption, 

0 >~f(x.)  - f ( Y Q  

= [ f ( 2  + A .t~') - f 0 ? )  - A,f(2)/~] + [ f ( x . )  - f ( 2  + 2, ./Y)]. (12) 

The mean-value theorem implies that the second bracket is equal to 

f ' ( 2 + A . h + O . r . ) G ,  for suitable 0<~ 0" <~ 1. 

We add f ' (2 ) rn  = 0, divide by A~, and use the Lipschitz continuity o f f '  to 
see that 

<~ *~:LIIA.h+ O.r. II H r. l[ = L II h + O. ( r . /  A. ) lj " [I r . /  A. [I ~ O. 
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The first bracket in (12) divided by A 2 tends to i f (g ; /7)  as n~oo.  Hence, 
f ' (£ ; /~)  <~ 0, which contradicts (11). [] 

When restricting the objective function f to a special class (including 
the /l-function, the max-function, and the exact penalty function), we can 
establish a direct counterpart to Theorem 2.3; see Ref. 4 for a proof  and 
for explicit formulas of the various directional derivatives. 

Theorem 3.3. Suppose that dim X < oo, and let f be of the type 

f ( x )  = i~i qi(max f~(x)), (13) 

where qi ~ C 2, qi nondecreasing, f j  ~ C 2, I and J; for i ~ I are finite index 
sets. If 

frO/; h) >~0, for all h, (14a) 

and 

if(X; h) = 0 and h ¢ 0 impliesff(~; h, z ) > 0 ,  for all z e X ,  (14b) 

then ~ is a strict local minimizer of f 
We start with an example demonstrating that Lipschitz continuity in 

Theorem 3.1 cannot be weakened to just continuity. 

Example 3.1. Let X = R 2 and 

I lxzt- 2x 2, if Ix21 >1 2x 2, 

f(x):=~(Ix2l-2x~)(Ix=l-x~,), if2x~>>.[x=l>~x~, 
( Ix1[-,/~-~2t, if x 2 I> Ix2t. 

It is easily checked that f is continuous, but  not Lipschitz continuous, at 
= (0, 0) T A simple geometric argument tells us that, for h, with h2 # 0, 

f '(2; h) = limo+ ,k-l[t)th2[- 2;t 2h 2] = [h2[. 

Furthermore, 

f ' ( 2  ;(hi, 0) T) = [h,I. 
Hence, (9) holds. Nevertheless, X is not a local minimizer, since, for example, 

f(a,~a2)=-(½o~2)(½ai)<O=f(:~), for a > 0 .  

For C2-functions, the conditions (11) and (14) coincide and reduce to 
the standard sufficient conditions in smooth optimization [use (4)], 

if(X) = O, ff(2)(h, h) > 0, for all h ~ 0. (15) 
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But note that there are important functionals which are of type (13) or 
which are C ~, but not C2; for these functionals, (14) or (11), respectively, 
applies but not (15). As an example for the latter, consider 

f ( x )  := [max{0, g(x)}]  P, with g ~ C 2, 

which plays a role in the context of exterior penalty functions [see, e.g., 
Auslender (Ref. 6) and Ben-Tal and Zowe (Ref. 4)]. This function is C ~ 
for p > 1, but in general not C 2 for p ~< 2. 

Further, (4) tells us that (11) and (14) become identical for C ~- 
functions. But note that we encounter different situations in Theorems 3.2 
and 3.3. In Theorem 3.2, we study the C x-case. This differentiability assump- 
tion is essential. For the function f from Example 2.1, which is not C ~, one 
has 

f ' ( 2 ;  h) ~0 ,  for all h, 

and 

f ' ( 2 ;  h) = 0 and h # 0 implies i f ( x ;  h) > 0; 

nevertheless, 2 is not optimal. 

To show that Theorem 3.3 may fail for functions not of type (t3),  one 
needs a significantly more tricky function. Here is one. 

Example 3.2. Let X = R 2, and consider, with fixed e > 0, 

[Ix~l-I~d -~, iflx~l~lx£ ~', 
~ - ~ X  1 f (x) :=  ~(Ix£+~i lx~f)( Ix~l-~lx,  l~+~), iflx, l ~+" ~!x~t >-' ~+~ 

( (~Ix, l ~+~ - Ix~I)~+~),  if ~lx, l ~+~ >11~1. 

The directional derivatives at 2:= (0, 0) T exist for all h and z, and a rather 
straightforward calculation shows that 

f ' ( 2 ;  h) = Ih2l, 
and 

I lira. ;~-:[l,~?z:l- IAhl+ A:zl 1 :÷~ ] = Iz:t, 
A 0 

f ' ( g ; ( h l ' O ) r ' z ) =  hm" A -2[~tAhl + A 1  2z1 [2+e]2/~2+~> =~lhd, 
~.A ~ 0  + 

i f z 2 ~0 ,  

if z2 = 0. 

Hence, (14) is satisfied, but 07 is not optimal since, for example, 

f (~ ,  2 2+e, ,1 2+ex/1 2+e~ ~a ) = - t ~ a  )t~a ) < 0 = f ( 2 ) ,  for a > 0. 
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