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On Stochastic Games with Additive Reward 
and Transition Structure 
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Abstract. In this paper, we introduce a new class of two-person 
stochastic games with nice properties. For games in this class, the payoffs 
as well as the transitions in each state consist of a part which depends 
only on the action of the first player and a part dependent only on the 
action of the second player. 

For the zero-sum games in this class, we prove that the orderfield 
property holds in the infinite-horizon case and that there exist optimal 
pure stationary strategies for the discounted as well as the undiscounted 
payoff criterion. For both criteria also, finite algorithms are given to 
solve the game. An example shows that, for nonzero sum games in this 
class, there are not necessarily pure stationary equilibria. But, if such 
a game possesses a stationary equilibrium point, then there also exists 
a stationary equilibrium point which uses in each state at most two pure 
actions for each player. 

Key Words. Game theory, stochastic games, pure stationary optimal 
strategies, additive stochastic games. 

1. Introduction 

We consider  stochastic games of the form 

F = ( S ,  {A,; s ~  S} ,{B, ;  s ~  S}, r,p). 

Here, S := {1, 2 , . . . ,  z} is the state space and  the finite sets A~ and  B, are 

the action spaces, avai lable  to the players I and  II0 respectively, in state s. 
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Further, r = ( r l ,  r2) is a vector-valued function with domain 

T:= {(s, i,j); s~S,  iEAs, j~Bs} 

and range R z, where rl and rz are the reward functions of players I and II, 
respectively. Finally, 

p ={p(t]s, i,j); tE S, (s,  i,j)E T} 

prescribes the law of motion, where p(t[s, i, j) denotes the probability that 
the state moves from s to t when i and j are the actions 'of  the players in 
state s. Of  course, for the transition probabilities, we have 

p(t[s,i,j)>-O and ~,p(tls, i , j )=l ,  
t 

for all (s, i,j)~ T. 
We say that the game F possesses additive rewards if, for all (s, i,j) ~ T, 

rl(s, i,j) = rll(s, i)+ r12(s,j), 

r2(s, i,j)= r21(s, i)+ r22(s,j), 

for some functions rll, r12 , r21, r22 on the appropriate domain. The game F 
is said to be controlled by one player, say player II, if 

p(tls, i , j)=p(t[s,  i',j), 

for all i, i' ~ As and all s, t ~ S and j ~ B~. We write 

p(tls, i , j )=p(tls ,  j), 

if no confusion is possible. Thus, in such games, the transition probabilities 
are not influenced by player I. The game F is said to be a switching control 
game if the states can be partitioned into two sets S~ and $2, such that 

f o r s ~  S~,p(t]s, i , j )=p(tls ,  i), 

for s ~ $2, p(tls, i, j) = p(tls, j). 

That is, the  law of  motion from states of  $1 is independent of  the action 
of player II, and similarly the law of motion from states of $2 is independent 
of the actions of player I. 
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The game F is said to possess additive transitions if, for all (s, i,j) ~ T, 

p(t]s, i , j )=pl(t ls ,  i)+ pz(t]s,j), 

where Pl is a function of the state and the action of  player I and P2 is a 
function of the state and the action of player II. 

The game is called a zero-sum game if rl + r2 = 0 on T. Otherwise, the 
game is called a nonzero-sum game. In the following, we suppose that the 
players have an infinite horizon. A play proceeds as usuat in stochastic 
games (cf. Reg. 1). We will be concerned with both discounted and undis- 
counted payoffs. The state and actions on the r th day will be denoted by 
s ,  i ,  and j ,  

A stationary strategy f for player I consists of a z-tuple f =  
( f l , f 2 , . . -  ,f~), where f ,  is a probability distribution on As. Intuitively, this 
means that, when the game is in s, player I, when adopting f as strategy, 
chooses an action according to f~. A behavioral strategy I* is a sequence 
/* = ( /*o ,P . l , . . . )  where, on the r th day, /*~(so, io, Jo, sa, i l , j l , . . . ,  
i~_~,j,_~, &) is a probability distribution on A~, which depends on the 
history h~ = (So, io, Jo, s~,... ,J,-1, &) up to the r th day. A stationary strategy 
f for player I is called pure if f ,  is degenerate for each s 6 S; i.e., fs selects 
a particular action with probability 1. Let g and v be similarly defined as 
stationary and behavioral strategy, respectively, for player II. 

Let Vt~(/~, v)(s) denote the pair of  expected jO-discounted rewards when 
/.~ and u are the strategies of  players I and II, s is the starting state, and 
the discount factor equals 13 6 [0, 1). Thus, 

oO oo  

Here, E ~  denotes the expectation with respect to bt, u and initial state s. 
The second important evaluation rule in vogue is the so-called undiseounted 
payoff (or average payoff), defined by 

= E 1 i . j~)~,  V,(I~, v)(s) \(limingT~°° "~ ( ' T ' ~  ,=o ~ r,(s~, / 

• . { 1 r i . j ~ ) ~ .  
hm mf  E~,  ,_-----7 ~ r2( s ,  / /  r-,~o \ T +  1 ~=o 

Here again, So = s is the starting state. When r~ + r2 = 0, we denote by V~, 
111, etc., the payoff corresponding to player I. 

In this paper, special attention is paid to the class of stochastic games 
with additive rewards and additive transitions (ARAT games). Zero-sum 
ARAT games turn out to have nice optimal strategies, and there are simple 
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algorithms to solve such games, as we will see in Section 2. In Section 3, 
some results for nonzero sum ARAT games are derived. 

2. Zero-Sum Case 

A zero-sum stochastic game is said to possess a value if, for each s 6 S, 

infsup V~(tz, v) (s)=sup inf V~(/x, r,)(s) =: V~(s). (1)" 

Here, Eq. (1) corresponds to the undiscounted case if fl = 1. Strategies/~* 
and ~,* for players I and II, respectively, are called optimal strategies if, for 
each s ~ S, 

inf Vt3(/z*, v)(s) = Vt~(s), sup V~(lx, v*)(s) = V~(s). (2) 

Shapley introduced stochastic games and showed in his fundamental 
paper (Ref. 1) that fl-discounted stochastic games have a value and that 
both players possess stationary strategies which are optimal for each starting 
state. That is, inf and sup can be replaced by rain and max in Eq. (1) for 

~ [0, 1). However, for undiscounted stochastic games, the existence of a 
value was unknown till recently (cf. Mertens and Neyman, Ref. 2). In 
general, however, optimal strategies even in the class of behavioral strategies 
may not exist for this evaluation rule. Thus, without further restrictions on 
the rewards or the law of motion, one cannot hope for stationary optimal 
strategies. 

If  stochastic games have to be solved in finite steps, one has to hope 
for the orderfietd property. A zero-sum stochastic game is said to have the 
orderfield property if the coordinates Vt3(s) of the value of the game and 
the coordinates of suitable optimal strategies lie in the same ordered subfield 
of the reals as the data of the stochastic game. 

Stern (Ref. 3), in his PhD thesis, first proved the existence of a value 
in stationary strategies for undiscounted stochastic games controlled by one 
player. Parthasarathy and Raghavan (Ref. 4) showed that, for this class for 
both discounted and undiscounted payoffs, the orderfield property holds. 
Also, they gave a linear programming algorithm for solving these games, 
when the payoffs are discounted. Vrieze (Ref. 5) and independently Hordijk 
and Kallenberg (Ref. 6) gave a linear programming algorithm for solving 
these games with undiscounted payoffs. Filar (Ref. 7) proved the existence 
of a value in stationary strategies for switching control stochastic games, 
and he proved that the orderfield property holds also for this class. Vrieze 
et aI. (Ref. 8) have given a finite-step algorithm to solve these switching 
control games. 
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In looking for stochastic games with the orderfield property and optimal 
stationary strategies, one needs conditions on the immediate payoffs, or the 
transition probabilites, or both. We note that one-player control games and 
switching control games can be considered as subclasses of games with 
additive transition functions. For such games, 

p(tls, i,j)=pl(tls, i)+p2(tts, j); 

and, ifp~ = O, then such a game reduces to a player II controlling stochastic 
game; and if, for each s ~ S, 

p,~(tls, i)=O , foratl(t , i)~SxA,, 

o r  

p2(tls, j)=O, forall(t,j)cSxB~, 

then the game corresponds to a switching control stochastic game. Thus, a 
natural question to ask is whether games with additive transition functions 
admit stationary optimal strategies and whether the orderfield property 
holds for this more general class. 

Shaptey's theorem implies the existence of  stationary optimal strategies 
in the discounted case. For the undiscounted case, we have good indications 
that optimal stationary strategies eixst. However, we have not yet been able 
to prove this. The following example shows that the orderfield property 
does not hold. 

Example 2.1. Let 

p l = q l = ( 1 , 0 )  and p 2 = q 2 = ( 0 , 1 ) .  

Consider the zero-sum stochastic game with 2 states given by 

0 -1  

_~P q 

I l t 

(state 1), 

(state 2), 
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where a box 

corresponds to an immediate payoff e and a jump with probability 3/ to 
state 1 and probability 1 - y  to state 2. This game possesses additive 
transitions. The game can be seen as a kind of mixture of the player I 
control game 

pl 
Ft: (state 1), 

and the player II control game 

F2: ~ q ~  ~ (statel), 

(state 2), 

(state 2), 

Both matrix games are completely mixed, resulting in 

v, = l(  /3 vl (2 +/3v2) - ( -  1 + ½/3vl + ½/3v2)2), 

/)2 =1(/301(1 q-/3/')2) -- (-1 + ½/3vt +½/3v2)Z). 

Combining (3a) and (3b) yields 

4vl -/3/)1(2 +/3/)2) = 3v2 -/3v1(1 +/3/)2), 

/)z = ½(4 - /3)  vx. 

0+/3vl -1  +1/3vl+½/3v21 
vl =val  -l+½/3vl+½/3v~ 2+/3v2 J '  

0..t_/3/)1 - l+½/3v ,+½/3v21 
v2 = val _ t + ½/3vl + ½/3v2 1 +/3v2 J" 

(4a) 

(4b) 

(3a) 

(3b) 

which corresponds to the following game situation. 
Each day, the players observe the current state and then choose one 

of their possible actions. After the players have chosen their action, an 
unbiased coin decides whether the transitions are according to the player 
I control game F 1 or to the player II control game F 2. For/3 ~ [0, 1), the 
/3-discounted value (V~(1), V0(2)) is given by the unique solution of 
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Substitution of (4) into (3a) results in 

4vt = I3v1(2 +½/3 (4- /3)  v~) - ( - 1  +½/3vl +~/3(4-/3)vl) z, 

which leads to 

12(a2 - /3)  - 12, / ( t44-  24/3) 
V~(1) = Vl-  _2/32(1_/3 ) 

- 6  
= (1 - /3 ) (12- /3  +#(144-24/3)" (5) 

Since the value of the undiscounted game with initial state s = 1 equals 
lim¢¢~(1 - /3)  Vt~(1 ) (Ref. 2), it follows by (5) that neither for the discounted 
case nor for the undiscounted case does the orderfietd property hold, by 
noting that-VI(1) is irrational, while the game parameters all are in the 
rational field, and by noting that, for the rational discount factor/3 = t /2 ,  
V~(1) is also irrational. 

This example gives an indication that, in order to obtain a nice solution 
of the game, one has to look for a further constraint on the game components. 
Such a constraint is additivity of the rewards. When the rewards and the 
transitions are both additive, the problem is manageable, as we will show 
below. Related work on additive games can be found in Parthasarathy and 
Raghavan (Ref. 9), and Himmelberg et al. (Ref. 10). A main result for ARAT 
zero-sum games is given in the following theorem. 

Theorem 2.1. Let the rewards and transitions be additive in a zero-sum 
stochastic game F. Then, there are pure optimal stationary strategies for 
both players for discounted as well as undiscounted payoffs. Furthermore, 
the orderfield property holds for both criteria. Also, there are pure stationary 
strategies for both players which are uniformly optimal for all discount 
factors sufficiently near to one. 

Proof. The following is well known (cf. Bewley and Kohlberg, Ref. 11). 
For a zero-sum stochastic game with finite state and action spaces, there 
exists a series 

K 

W(c~)= Y wk(a(1-a) - t )  k/x', 
k = - c o  

in fractional powers of a(1 - a) -1 and vectors wk ~ R z as coefficients, such 
that, for each/3 ~ (0, 1) sufficiently near to one, W(/3) equals the value V~ 
of the /3-discounted game. Moreover, W(a) satisfies, for each s~ S, the 
so-called limit discount equation 

W;(c~) = vat [as(w(ce))] ,  (6) 
As×Bs 
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where the (i,j)th cell of the matrix game [Gs(W(a))] has content 

g(s, i , j )= r(s, i , j )+ a E p(tls, i,j) Wt(a). (7) 
t 

Here, the matrix game [G,(W(a))]  is a game in the field of real Puiseux 
series (cf. Bewley and Kohlberg, Ref. 11). 

Furthermore, it is known that the value of the undiscounted stochastic 
game equals (cf. Mertens and Neyman, Ref. 2) 

wK = tim (1 - a) W(a) .  (8) 

In general, optimal actions for the matrix game in (6) are quite complex 
and belong to the same Puiseux field as to which W(a)  belongs. However, 
for an additive game, G~(W(a)) can be decomposed as follows: 

~ ( w ( ~ ) )  = GI~(W(~)) + G2s(W(~)), 

where 

gl(s, i,j) = rl(s, i) + a ~ p~(tls, i) Wt(a), 
t 

g~(s, i,j) = r2(s,j) + c~ • p2( tts, j ) Wt(a). 
t 

So, Gls(W(a)) has identical columns and Gzs (W(ot)) has identical rows. 
But then, when solving G,(W(a) ) ,  player I only needs to consider 
Gls(W(a)) and player II only needs to look at Gzs(W(oz)). This observation 
results in the fact that both players have optimal real pure actions in the 
limit dfscount equations. Let f* be a pure stationary strategy for player I 
such that f~, is an optimal action in [Q(  W(a))] for each s c S, and let g* 
be similar for player II. Then, by Theorems 6.1 and 6.2 of Bewley and 
Kohlberg (Ref. 11), it follows that f* and g* are uniformly discount optimal 
and optimal for the undiscounted case. 

That, for each /3 c [0, t), both players have optimal pure stationary 
strategies can be shown in a similar way. Namely, when in (6) we replace 
a by a fixed/3 ~ [0, 1) and W(a)  by V~, we obtain Shapley's equation for 
the /3-discounted game. Again, the matrix game [G~(V¢)] can be decom- 
posed into a part independent of player I and a part independent of player 
II. Application of Shapley's theorem does the rest. The orderfield property 
for the discounted case follows from the fact that, for a pair of stationary 
strategies, the associated discounted payoff is a rational function of 13 and, 
for the undiscounted case, then the orderfield property follows from (8); 
cf. Ref. 4. [] 

Knowing now that the orderfield property holds for ARAT games, this 
gives hope that there exists a finite algorithm as was the case for one-player 
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control games and switching-player control games. We do not know whether, 
for ARAT games, there exists a one-step solution method, like solving one 
linear program. But, indeed, for the discounted and also for the undiscoun- 
ted criterion, we will indicate now a finite-step solution method. For the 
discounted ARAT game, the method of Hottman and Karp (Ref. 12) can 
be used, which proceeds as follows. 

(i) Choose 

Vo = M( I  - / 3 ) - ' l z ,  

with 

M : =  rain r (s ,  i , j )  
(s , i , j )c  T 

and 

lz = (1, t , . . . ,  1 ) ~ - ' .  

Put r := 0. 

(ii) Determine for player I a pure stationary strategy 

f f  = ( f ~ , f ~ ,  . . . , f ~ ) ,  

such that f~ is an optimal action for player I in the matrix game [Gs(v~)] 
for each s c S; cf. (6) and (7). 

(iii) Solve for player II the discounted Markov decision problem 
which results when player I fixes f t .  This can be done, for example, by 
solving one linear programming problem. Let v,+l be the optimal value of 
this problem. 

(iv) If v,+l ~ v,  put r := z+  1 and return to (ii); else, stop. 

It is straightforward to show that v~+t > v~ componentwise and when 
f f  is not optimal then v~+~ # v,  That, in step (ii) of  the algorithm, player I 
possesses optimal pure actions in [Gs(v~)] follows again from the fact that 
G s ( v , )  can be decomposed into a part only depending on player I and a 
part only depending on player II. Since, in each iteration, player I strictly 
improves his strategy, and since there are a finite number of pure stationary 
strategies, it is clear that the algorithm stops after a finite number of 
iterations. 

For the undiscounted additive game, a finite-step algorithm can be 
developed which resembles the algorithm of  Vrieze e t  aI. (ReE 8). Like the 
algorithm above of  Hoffman and Karp, also this algorithm can be described 
by the term "value-oriented policy iteration." We will not give this algorithm 
in detail here, but indicate how the algorithm of Vrieze et aL (Re£ 8) should 
be adapted. The notations in their paper are used. Throughout the algorithm, 
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we have 

S I = S  and S2=Q.  

Further, 

c . o-¢(r)={crk(r),k~S1}, r = 0 , 1 , 2  . . . .  , 

is a pure stationary strategy now, with the consequence that F(o-C(r+ 1)) 
is a Markov decision problem. This Markov decision problem can be solved 
by the same LP1. More changes are not needed. The proof that also this 
modified algorithm stops after a finite number of iterations proceeds in the 
same way as in Vrieze et al., using the fact that there are a finite number 
of pure stationary strategies. 

3. Nonzero-Sum Case 

For nonzero-sum games, the concept of equilibrium points is relevant. 
A pair of strategies (Ix*, v*) forms an equilibrium point if, for all strategies 
Ix and v, 

v,,(~, ~,*)<- v~,,(~*, ~,*), 

ve=(ix*, v)-< v~=(~*, v*). 
(9) 

Again, in (9), to/3 = 1 we associate the undiscounted case. 
It is well known, for the discounted case, that there exist equilibrium 

points of stationary strategy pairs (Refs. 13 and 14). For the undiscounted 
version, in general, the existence of equilibria is unknown. For different 
subclasses of stochastic games, this problem is settled by Rogers (Ref. 14), 
Federgruen (Ref. 15), Parthasarathy and Raghavan (Ref. 4), and 
Parthasarthy, Tijs, and Vrieze (Ref. 16). In view of the results of the zero-zum 
case, the question arises whether for nonzero-sum ARAT games, there exist 
equilibrium points of pure stationary strategy pairs. The following example 
answers this question in the negative. 

Example 3.1. Let 

x 1 = (0, 0, 0,1), x 2 = (1 1 0, 0), 

y '  = (0, 0, ½, 0), yZ = (½, 0, ~, ~), 

a = (0, 0), b = (1, -6) ,  e = (0, 0), d = (2, 0). 



JOTA: VOL. 47, NO. 4, DECEMBER 1985 461 

Consider the ARAT stochastic game with four states, where state 1 is given 
by 

and the absorbing states 2, 3, 4 are given by 

~ (state2)' I ~  (state3)' (state4). 

Both players have two pure stationary strategies corresponding to choosing 
their first and second action, respectively, in state t. Let us denote these 
startegies b7¢ fl, f2, gl, g2, respectively. Take ./3 = 1/2. When we compute 
v~:,(f k, g~), for n = 1, 2, k = 1, 2, and l = 1, 2, then we obtain 

71[  (2, 2) (4 2 ,2~)  l 
.f: [(13,-6~) ( 4 ~ , - 6 ~ ) J "  (10) 

gl g2 

For example V~l(f 1, g2) can be computed as the unique solution v of 
13  

~(1  +~a(1-½)-I3, 

resulting in 

73=43 , 
From (10), it can be seen that there exists no equilibrium point in pure 
stationary strategies and that, for this example, the unique equilibrium point 
in stationary strategies is completely mixed. 

Also for the undiscounted case, examples of ARAT games can be 
constructed without an equilibrium point in pure stationary strategies. Like 
in the general case, also for non-zero-sum ARAT stochastic games there 
may be several equilibrium points with different payoffs to the players. 
Furthermore, examples show that, for such games, the ordered field property 
fails to hold. In the following, for xe~ ,  We define car(x) as the set 

car(x) := {k; xk ~ 0} 

and, for a finite set T, ITI denotes the numberabf elements of T. 
For discounted nonzero-sum additive stochastic games, we have the 

next remarkable theorem, 
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Theorem 3.1. If, for a discounted nonzero-sum ARAT stochastic game, 
the pair (f*, g*) forms an equilibrium point of stationary strategies, then 
there exists an equilibrium point (f, ~), such that 

v~,(f*, g*) = v~,(~, ~), 

v ~ ( f * ,  g*) = v~2(f, ~), 

and such that 

]car(fs)l <- 2, 

[car(gs)l-< 2, 

for each state s c S. 

Proof. Let (f*, g*) be a stationary equilibrium point, and let 

V* = V~I(f*, g*), 

V~* = V~2(f*, g*). 

This is equivalent to 

max(rl(s, i, g*)+ fl Z p( tts, i, g*) V*( t)) = V*(s), (11) 
i t 

max(r2(s,f'~,j) + ~ • p( tls, f~s,j) V*( t)) = V*(s), (12) 
J t 

where the maximum in (11) is reached at least for each i~ car(f'~) and in 
(12) the maximum is attained at least for each j ~ car(g*). By the additivity 
of  the game, (11) and (12) are equivalent to 

max(r11(s , i) + fl ~ pl( t l s, i)V*(t))+r~2(s, g*) 

+t~ 2p2(tls, g*) v*(t)  = v~(s),  (13) 
t 

r2~(s,~)+ # Y~p,(tls, F )  v*(t) 
t 

+max(r2z(s 'J)+ fl ~ Pz(tls'j) V*(t)))  = (14) 

Put 

W1 = r12(s, g*~)+~ Y, p2(tls, g~)V*l(t). 
t 

Since 

g~ ~-> r12( s, g~) + ~ Z p2( t ] s, g~) V*l ( t ) 
t 
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is a linear function of the weights g,( j )  on the pure actions, there exists a 
g,, with 

c a r (g , ) cca r (g* )  and Icar(g,)[~2, 

such that 

IAq = r,2( s, g, ) + fl Z p2( t [ s, g, ) v*(  t ). 
t 

Hence, replacing g* by g~ does not disturb Eqs. (13) and (11)" and, since 

car(g~) c car(g*), 

the maxima in (14) and (12) are reached for each j  ~ car(g~). This procedure 
can be carried out for each state s ~ S and also for player I by considering 

wz= rzl(s,~) + ~ 2 p( t ls ,~) V*( t). 
r 

This leads to 

max(rl(s, i, ~,,) + fi 2 p( t[ s, i, ~ )  V*a ( t)) = V*(s),  (15) 
i t 

max(r2 ( s , f , , j )+  ~ 2 p( tIs, fs, j )  V*( t)) = V*(s) ,  (t6) 
J t 

for each s e  S, where in (15) the maximum is attained at least for each 
i E car()~) and in (16) the maximum is reached at least for each j c car(g,). 
Hence, (f,, g) forms an equilibrium point and 

v~,(], g) = v~* = v~,(f*, g*)0 
v~2(~, ~ ) :  v~* = v~2(f*, g*). 

We conclude with some remarks. 

(i) Example 3.1 above shows that Theorem 3.1 cannot be sharpened. 
(ii) An analogous statement like Theorem 3.1 can be given for the 

undiscounted case. The proof  uses Markov chain theory and Markov 
decision theory. We do not give this proof, because it would take too much 
space. 

(iii) We do not know whether, for the undiscounted ARAT case, 
equilibria of  stationary strategies always exist, though we have good reasons 
to believe that this indeed is the case. 
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