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Abstract. Using Balakrishnan's epsilon problem formulation (Ref. 1) 
and the Rayleigh-Ritz method with an orthogonal polynomial function 
basis, optimal control problems are transformed from the standard 
two-point boundary-value problem to a nonlinear programming 
problem. The resulting matrix-vector equations describing the optimal 
solution have standard parallel solution methods for implementation 
on parallel processor arrays. The method is modified to handle 
inequality constraints, and some results are presented under which 
specialized nonlinear functions, such as sines and cosines, can be 
handled directly. Some computational results performed on an Intel 
Sugarcube are presented to illustrate that considerable computational 
savings can be realized by using the proposed solution method. 
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1. Introduction 

Optimal control theory for nonlinear systems is well developed. 
Conventional computat ional  solution methods for optimal control problems 
are, however, highly serial in nature. Usually algorithms involve an iterative 
process of solving the system equations forward in time, the adjoint 
equations backward in time, and then making some sensible adjustment to 
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the control functions before repeating the process, As a result, real-time 
implementation of nonlinear optimal control theory necessitates extremely 
fast solution times for these computationally intensive, two-point boundary- 
value problems, and the theory is rarely implemented in actual control 
hardware. New, computationally powerful parallel processors offer extremely 
high computation rates, and it is now possible to solve nonlinear optimal 
control problems quickly by adapting the problems for solution on parallel 
processors. 

The authors have previously outlined and demonstrated a method in 
which many processors can be used concurrently to solve nonlinear 
optimal control problems (Ref. 2). This is accomplished by casting the 
dynamic optimization problem in its integral epsilon form (Ref. 1) and 
then using the Raleigh-Ritz method with the Walsh functions as a basis to 
convert the problem into a nonlinear programming problem. 

This parametrization of the optimal control problem is unique and is 
quite different from recent efforts reported in Refs. 3, 4, 5 in that no 
differential equation (system or adjoint) is solved explicitly because the 
epsilon method is employed. It is this feature that allows a parallel 
implementation of the proposed method; i.e., the traditional sequential 
nature of generating solutions to differential equations either forward or 
backward is completely eliminated. 

1.1. Epsilon Method. For readers not intimately familiar with the e 
method, some of the convergence results are summarized below. We follow 
the derivation of Frick (Ref. 6) rather than that by Balakrishnan 
(Refs. 1, 7). Consider optimal control problems of the form 

min G(x, u; t) dt, (1) 
u 

subject to the dynamic constraints 

2(t) = f ( x ,  u; t), 

where 

(2) 

x(O) = x~. 

For the problem (1)-(2), the composite cost functional 

T 

J(e, x, u) = fo (t/2~) t{e(t; ~;)tl 2 "t- G(X, lg; t) dt (31 
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is constructed, where the error function in the system dynamics is given by 

e(t; s) = x ( t )  - x ,  - f ( x ,  u; ~) d'c. 

The composite cost functional (3) is now minimized simultaneously with 
respect to both x and u for a given e > 0. If necessary, the process is 
subsequently repeated for a smaller value of e or even a whole sequence 
{e j} which decreases monotonically. This penalty type process is repeated 
until the error in the system dynamics is sufficiently small. 

Convergence, subject to the usual boundedness, continuity, and 
convexity assumptions, is assured by the following result (Ref. 6). 

1.2. Convergence Result. Consider the sequence of scalars {~s} $0 
monotonically decreasing. For the corresponding sequence of minimizing 
solutions to the integral 8 problem [that is, J(e; x, u) of (3)] denoted by 
{xo(ej), u0(ej)} and the associated sequence of error functions {%(@},3 we 
have the sequences 

{uo%)} -~ u*, 

{Xo%)} -,  x*, 

{ eo(e.j)/ej } -~ )~*, 

{eo(gj)} .~ O, 

{J(~j, xo(~,), Uo%))} 1' V(x*, u*), 

as e $ 0. Here, x*, u*, and V(x* ,  u*)  are the optimal control, state, and cost 
for the optimal control problem (1)-(2). 

Viewing the minimization of the composite functional J(e, x, u) of (3) 
as an optimization problem in 5°2(0, T), either gradient methods (Ref. 6) 
or the Raleigh-Ritz method (Ref. 7) were used in solving problems of this 
type. For problems that require several values from the sequence {ei} to 
reach a satisfactory problem solution, greater numerical stability is assured 
by adding an additional term to (3) as first proposed by Hestenes (Ref. 8). 

The Raleigh-Ritz method (Refo9) with a trigonometric base was 
employed by Balakrishnan in solving the original differential epsilon 
problem (Refs. 1, 7). The use of the trigonometric functions posed two 
major practical problems. First, since either the differentiation or integra- 
tion of the state variables is required, the full Fourier series (both sine and 

3Note that the minimizing state, control, and error functions for a given e depend on the size 
ofe>O. 
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cosine functions) had to be used, which makes the incorporation of the 
boundary conditions very difficult indeed. The second problem is that, in 
truncating the approximating series to N terms say, the product of any two 
functions (in nonlinear systems for example) will now require 2N terms in 
the series. Difficulties in the incorporation of the initial conditions was 
first recognized by Jones and McCormick (Ref. 10) and motivated the 
development of the integral epsilon formulation (Ref. 6), the Sobolev space 
formulation by di Pillo etal. (Refs. 11, 12), and the use of gradient 
computational methods in the corresponding function space, to solve the 
epsilon problems. 

The authors have demonstrated in Ref. 2 that using the Walsh func- 
tions as the set of basis functions in the Ritz method eliminates the above- 
mentioned problems associated with the use of the trigonometric functions. 
Two key properties of Walsh functions, and in particular the ease by which 
finite integrals for a Walsh series can be represented by a Walsh expansion 
and the finite group property of the Walsh functions (Ref. 13), are sum- 
marized in Appendix A (Section 7). In the process of applying the Walsh- 
based Ritz method, the optimal control problem is reduced to a nonlinear 
programming problem. By adopting a fairly simple vector-matrix notation 
(Ref. 14), the resulting nonlinear programming problem can be solved on 
any one of a number of types of parallel computers (Ref. 2), such as systolic 
processor arrays or conventional MIMD machines. 

In this paper, it is shown that the proposed method can be imple- 
mented using orthogonal polynomial functions such as the Legendre and 
Chebyshev polynomials instead of the Walsh functions. An extension of the 
previous results is also provided by the formulation of a mechanism for 
dealing with nonpolynomial nonlinearities and inequality constraints when 
the Walsh function basis is used. 

The proposed parallel solution method's utility for traditionally 
troublesome nonlinear optimal control problems such as the minimum time 
problem and nonlinear optimal control problems with inequality constraints 
is illustrated in a number of computational examples, using an Intel Sugar- 
cube with eight processors operating in parallel. 

2. Rayleigh-Ritz Solution of the Integral Epsilon Problem Using Legendre 
Polynomials 

In Ref. 2, we outlined the procedure for converting an optimal control 
problem into a nonlinear programming problem. This can be accomplished 
by formulating the optimal control problem into its integral epsilon form 
(Ref. 6) and then using Walsh functions as a basis to convert the 
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unconstrained functional into a static function that can be minimized with 
respect to the Walsh function coefficients. Because Walsh functions were 
used to approximate the time-varying functions (state and control func- 
tions), the resulting optimal solutions have a distinct stair-step character. 

We now show that the same development is possible with orthogonal 
polynomials such as the Legendre or Chebyshev polynomials. 

2.1. Linear Case. To illustrate the procedure, we use a generic set of 
orthogonal polynomials as the set of basis functions for the development of 
the computational method. In Section 5, we illustrate the procedure by 
presenting computational examples using both the Walsh functions and the 
Legendre polynomials. 

Consider, therefore, the following linear time-varying optimal control 
problem with a quadratic cost function: 

~(t) = A(t) x(t) + B(t) u(t) + C(t), (4) 

with initial conditions 

x(0) = xs 

and cost functional given by 

V(x, u) = (1/2) { [x(t), Qx(t)] + [u(t), Ru(t)] } dt, (5) 

where x(t) ~ R n, u(t) ~ R m, and u(t) represents the inputs or controls. 
This linear, time-varying optimal control problem can be solved using 

the integral epsilon method (Ref. 6). Consider the integral form of the 
system equation (4), 

x ( t ) = x  s+ A ( r ) x ( r ) d r +  B(r )u ( r )dr+joC(r )d~ .  

If the system equations are viewed as a constraint, they can be adjoined to 
the cost functional by forming the error function 

e(t) = x ( t ) -  x s -  A(T) x(r) d r -  B(r) u(r) d r -  C(r) dr 

and incorporating it into the cost functional (5) to form 

tf 
J(x, u, e) = (1/2~) fo lie(t, e)ll 2 dt+ V(x, u). 
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In a similar manner, final state conditions (equality constraints at the final 
time) can be incorporated in the form of an additional penalty term with 

p =- Xs + f]IA(t) x(t) dt + I]JB(t) u(t) dt + f]SC(t) d t -  xf, 

where xf is the desired final state, yielding the composite cost functional 

e )=  (1/25) I 'i He(t)H 2 dt+ [tpll2 + V(X, u). (6) J(x, u~ 
Jo 

The composite cost functional (6) is now minimized simultaneously with 
respect to both x(t) and u(t) for a given e > 0. If necessary, the process is 
subsequently repeated for a smaller value of e or even a whole sequence 
{ej} which decreases monotonically. Convergence of the epsilon method is 
discussed in some detail in Refs. 1 and 6 and is not repeated here. 

If the time-varying functions in (6) are approximated by a series of 
basis functions, then the dynamic optimization problem (6) is converted 
into a static optimization problem. We have, for example, 

x(O = x s ( t ) ,  

or  

e(t; e) = ES(t), 

where X and E are matrices of coefficients and 

S( t )  = [So(t), S l ( t ) , . . .  , SN_ I(t) ] T, 

is a vector 
stituted into (6), giving an approximated composite cost function 

/ 
J =  Jl, {(1/2e) St( t)  ErES(t) + (1/2) ST(t) XrQXS(t) 

+ (1/2) sT(t) UrRUS(t)} dt+ (1/25) sT(t) ~T¢s(t). 

of orthogonal polynomials. These approximations are sub- 

(7) 

As is shown in the Appendix (Section 7), Eq. (7) can be simplified to yield 

J =  trace{(1/2e) SV(t) Er(t) EYES(t) 

+ (1/25) {T{ + (1/2) XTQX+ (1/2) UTRU}. (8) 



JOTA: VOL. 79, NO. 1, OCTOBER 1993 37 

By using the matrix-vector notation 4 of Brewer (Ref. 14) and the following 
resultS: 

vec(QX) = (IN ® Q) vec(X), 

Eq. (8) can be written as 

J =  (1/2e) vec(E) r (O ® In) vec(E) + (1/2e) vec(~) T (O ®/~) vec(~) 

+ (1/2) vec(X) r (O ® Q) vec(X) + (1/2) vec(U) r (O ® R) vec(U), (9) 

where 

and 

vec(E) = {vec(O~)- veC(Gs)- [(HT® I.)A~] vec(X) 

- [(Hr® I.) AS] vec(U)- (Hr®I.)  vec(C)}, (10) 

4Here, vec(X) denotes a nN-vector formed by stacking the N columns of X above one another. 
5® denotes the Kronecker matrix product described in Appendix 7.1. 

vec(~) = vec(Gs) + F~vec(X) + F s vec(U) + FL. vec(C) - vec(Gz). (11) 

In (9), O is a matrix which results from the orthogonaI property of the 
polynomials. In (10) and (11), A and F are matrices of polynomial coef- 
ficients and H is the integration matrix for orthogonal polynomials (see 
Appendix A). To minimize J, the gradient is calculated simultaneously with 
respect to both vec(X) and vec(U) and set equal to zero: 

Vveo(x)J = (1/e)(Iu,-- ( H r ®  I,) A:) r ( o T ( ~ [ n ) { ( l u n  -- ( H T @ I n )  A:) vec(X) 

- ( [Hr®I,]  As) vec (U)-  vec(G,) } + (l/e) Fr=(Or®I,){vec(G,) 

+ F~ vec(X) + F~ vec(U) + F c vec(C) - vec(Gf) } 

+ ( O r ®  Q) vec(X) = 0, 

Vvec(v)J = --(1/e)[HT®I,] A~) r (Or®I,){(Ix,  -- (Hr®I, )  A~) vec(X) 

- ( [ H r ® / , , ]  AS) vec (U) -  vec(Gs)} + (l/e) F~ (Or® I,,){vec(Gs) 

+ F~ vet(X) + F s vec(U) + F c vec(C) - vec(Gs) } 

+ ( o r ®  R) vec(U) = 0. 

The resulting system of equations can be written in very simple form, 

K2, Ka2J[_vec*(U)J [_D2_[ 
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Kll 

+ 

K12 

+ 

K21 = 

+ 

K22 = 

+ 

and 

where 

(1/e)(IN. -- (HT® I.) A~) r (O ® I.)(IN. -- ( H r ®  I.) A~) + (O ® Q) 

(l/e) r F~(O ®In) F~, 

--( l/~;)(INn - -  (HT ® I.) A~) r (0 ® I.)( [ H r ®  I.] A~) 

(1 /e )  T F~(O®I.) r~, 

- ( 1 / e ) ( [ H r ®  I . ]  A~) r (O ® I.)(IN. -- (HT® I.) A~) 

(1/8) I"~(O®In) ['~, 

(1/e)([Hr®I.] A~) r (O®I.) ([HT®I.]  A s) 

(0 ® R) + (l/e) F~'(O ® I.) rt~, 

D1 = (1/e)(Iu. -- (HV® I.) A~) r (O ®/~)(vec(Gs) + [-pv® I,~] vec(C)) 

+ (l/e) r r ( o  ® I . ) {Gf -  G. - F~ vec(C) } 

D2 = --(1/e)( [ g T  ® I.] Ae) T ( O ® I.)(vec( a.) + [ HT N I.] vec(C)), 

+ (l/e) V~(O ® I . ) { a f -  as - rc vec(C) }. 

For parallel computational implementation, the above K-matrix can be 
rewritten in a more convenient form by defining 

M = [  I N " - ( H r ® I " ) A :  0 --<HT+/")  a ' ]  0 ' (13) 

[O@oQ 0 ] G : [ O ® I "  00] (14, 
L= O ® R  0 ' 

which then gives 

K=  (i/e) MrGM + L + (l/e) FTGF. (16) 

In (13)-(15), the integration matrix H and orthogonal property matrix O 
are dependent on the basis functions used. For example, if Walsh functions 
are used, O = I and thus G becomes an identity. For Legendre polynomials, 
O is diagonal but it is not the identity matrix. 

The solution to the linear time-varying optimal control problem is 
now obtained by solving (12) for vec*(X) and vec*(U) employing the 
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construction (16) using simple matrix operations. Since these matrix opera- 
tions (mostly matrix inversion) have a variety of parallel implementations, 
the proposed algorithm has a number of possible parallel implementations 
(Refs. 15, 16). A parallel implementation for an eight processor Intel 
Sugarcube is given in Ref. 2 and is used in the numerical results presented 
in Section 5. 

2.2. Remark. Note that there are no basic restrictions on the size of 
> 0 that can be used in solving Eq. (9). That is, any selection that will not 

render the K matrix singular can be used as a choice for ~. This in fact 
eliminates the penalty nature from the optimization process in the epsilon 
method (Ref. 17). 

2.3. Nonlinear Case. Nonlinear optimal control problem can be 
solved by quasilinearizing the nonlinear problem and then applying the 
proposed algorithm to the resulting linear time-varying problem (see 
Ref. 2), and the quasilinearization is repeated if necessary. The procedure is 
summarized below for convenience. 

For the nonlinear case, we consider the system 

2(0 =f ix ,  u; t), (17a) 

x ( 0 ) = x , ,  (17b) 

where x( t )e  R n, u(t)e R m, and with the cost functional given by 

~ T  

V(x, u ) =  (1/2) j {Ix(t), Qx(t)] + [u(t), Ru(t)]} dr. 
0 

Using a standard quasilinearization procedure (Ref. 18), the system (17) is 
approximated by the sequences of functions {xk}, {uk}, k =  t, 2 . . . . .  and 
the linearized equations 

2 k+ l(t) = A k+ Xxk+ l(t) + B ~+ luk+ 1(0 + C~(t), 

where 
Ak(t) = V x f ( x  k, uk; t), 

B~(t) = Vuf (x  ~, u~; t), 

Ck(t) = f ( x  k, u~; t ) - V x f ( x  k, uk; t ) x k ( t ) - V u f ( x  k, uk; t)uk(t). 

The composite cost functional for this case can therefore be written as 

x k, u k) = fO ~ (1/2e) [[ek(t; e)ll 2 + (1/2) xk(t), Qx~(t)] J(e, 

+ (1/2) uk(t), Ruk(t)] dt, (18) 
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where the error function e~(t; e) is given by 

ek(t; e) = xk(t)  -- X~-- Akxk(r)  dr - Jo BkUg(Z) d r -  ck ( r )  dz. (19) 

Note that we can now view the minimization problem (18)-(19) in exactly 
the same way as in Section 2.1. 

Since a quasitinearization scheme is used to approximate the system 
equations (17), it is necessary to solve the matrix equation (16) iteratively 
for k = 0, 1, 2, . . . .  Again, there appears to be no restriction on the size of 
e > 0  that can be chosen. This conjecture is tested against the results 
obtained from a number of computational examples in Section 5. 

2.4. Remark. There is no compelling reason for using the quasi- 
linearization procedure here. In fact, in his original computations 
Batakrishnan (Ref. 7) used a truncated Taylor expansion in approximating 
the nonlinear dynamics. In cases where the nonlinearities are polynomial in 
nature, no linearization should be required. Some speed-up could be 
realized in such cases, but the use of Brewer's vec notation (Ref. 14) 
becomes very cumbersome. 6 

3. Parallel Implementation 

Solving the optimization problem of Section 2 [see Eq. (12)], and 
therefore the optimal control problem, simply boils down to solving the 
linear system of algebraic equations of the form 

A x =  b. 

Almost all noniterative methods for solving systems of equations of this 
type on parallel machines consist of the triangularization of the augmented 
matrix [Alb]  and then using backsubstitution to find the x-vector. The 
approach used here is that proposed by Bojanczyk (Ref. 19), modified for 
implementation on a linear array of processors. 

Solutions to the matrix equation (12) using (16) involves not only the 
matrix inversion (or triangularization and backsubstitution) outlined 
above, but also a number of matrix multiplications and the formation of 
Kronecker products. 

These operations, like many other numerical vector or matrix 
operations, hqve well-defined parallel implementations, both on parallel 

6The authors are indebted to one of the reviewers for pointing to this shortcoming in the 
narrative. 
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computers and array processors such as systolic or wavefront arrays 
(Refs. 15, 16). This is a desirable feature since for parallel implementations 
it is usually very difficult to separate a particular parallel algorithm from 
the parallel architecture required to run it. Additionally, for such numerical 
operations it has been shown (Ref. 15) that, even with a time penalty for 
communicating between processors, as the size of the problem increases, 
the possible speedup from these parallel implementations is not bounded if 
the number of processors available is not bounded. 

Algorithm Summary. The following summarizes the parallel 
implementation of the proposed algorithm on a linear array of processors 
where p < n. 

Step 1. The matrix M of Eq. ( t3) is formed serially and is passed to 
the processor array. 

Step 2. The array multiplies MrM. 

Step 3. L of Eq. (14) is sent to the appropriate processors and added 
to MrM. 

Step 4. D is added to the last processor. 

Step 5. QR factorization is performed. 

Step 6. Backsubstitution yields the Walsh coefficients for the optimal 
control u* and state x* functions (see Fig. 1). 

Some numerical results are provided in the following sections. 

M 

T 

Add L M M D 

QR Pactorization 
Back Substitution 

Walsh Coefficients 

Fig. 1. Parallel implementation on a linear array. 
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4. Nonlinear Operations on Walsh Functions and Inequality Constraints 

To handle other than polynomial nonlinearities in the dynamical 
equations, it is necessary to develop a method of performing nonlinear 
operations on the coefficients of the basis functions being used. For Walsh 
functions, this is fairly straightforward. 

4.1. Nonlinear Oprations on Walsh Functions. A Walsh series made 
up of N Walsh functions can be described by a vector whose N elements 
give the value of the Walsh series for each of the N intervals. 

For  example, ~bz(t ) can be described by 

p2= [1, - 1 ,  1, - -1] ,  

where each of the elements gives the value of q~z(t) on  each of its four dif- 
ferent intervals. So the first 4 Walsh functions can be described by a vector 
with 4 elements, the first 8 Walsh functions by vectors with-8 elements, and 
so on. In this manner, the vector tP(t), which is a vector of Walsh 
functions, can be described by a matrix. For  example, 

Just as it is possible to approximate a function by 

f ( t )  ~ F~(t) ,  

then 

f ( t ) ~  F~. 

Since the Walsh functions are orthogonal, the P-matr ix is invertible and 
can be used to generate the Walsh series from the Walsh coefficients, and 
the Walsh coefficients from the Walsh series. In order to perform a 
nonlinear operation on a set of Walsh coefficients, it is only necessary to 
generate the Walsh series from the Walsh coefficients, perform the 
nonlinear operation elementwise on the Walsh series, and then convert 
back into Walsh coefficients. To demonstrate the technique, consider the 
following example. 

4.2. Example. Let 

g(t) = s in( f  (t)), 
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and we are to find the Walsh coefficients of g(t)  given the Walsh 
coefficients o f f ( t ) .  This is straightforward using the ~-matrix. From the 
above, we can write 

sin(F~) = G ~  ~ g(t), 

and the coefficients of g(t)  can be found by 

G = sin(FN) ~-.u. 

Other nonlinear functions can be performed on Walsh coefficients in a 
similar manner. Using this technique, the proposed method allows the 
solution of nonlinear optimal control problems with a variety of non- 
linearities in the dynamical equations and provides a method for handling 
inequality constraints as illustrated in the next subsection. 

4.3. Optimal Control Problems with Inequality Constraints. In most 
practical optimal control problems, some physical limits or constraints 
apply to the controls, and we adapt the proposed epsiton method to handle 
such inequality constraints. Consider, for example, the following problem: 

with 

~(t) =f(x,  u; t), xtto) = Xo,  ( 2 0 )  

t f  

V(x, u) =fo G(x, u; t) dt, (21) 

lui(t)t<~c,, i = l , 2 , . . . , m ,  (22) 

where c is some constant m-vector. Using ~ ,  the inequality constraint can 
be formulated in terms of the Walsh coefficients of the control. First, we 
approximate c and the control u(t) by their Walsh series in vector form, 

o=c,=Ec°~,c . . . . .  ,o~ 1; 

u(t)= u, Eu °, u~ . . . .  

Now, the inequality constraint can be written as 

[ul[<~c~, i = 0 ,  1 , 2 , . . . ,  N -  1. 

Since 

ui(t) ~ U ~  = Upi, i = 0, 1, 2 , . . . ,  N -  t, 
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the inequality can be written as 

IUp,l ~< c~, i=  0, 1 . . . . .  N -  1. (23) 

The problem defined by Eqs. (20) through (21) can be solved by minimizing 
the composite cost function obtained from the epsilon problem and using 
the Rayleigh-Ritz method with a Walsh function basis [see Ref. 2], 

J = (1/2~) vec(E)r vec(E) + (1/2) vec(X)r (IN ® Q) vec(X) 

+ (1/2) vec(g) T (IN® R) vec(g), (24) 

where 

vec(E) = {vec(X)- vec(G~)- [ (pr® In)A~] vec(X), 

- [(P~@ In) A~] vec(C~)- ( U @  I.) vec(C)}. 

In the above, P is the integration matrix for Walsh functions and the A's 
are matrices of Walsh series coefficients. To solve the inequality problem, 
this cost function must be minimized while meeting the inequality con- 
straint on the Walsh coefficients of the control function in Eq. (23). This 
constrained optimization problem can be converted into an unconstrained 
optimization problem by adjoining the inequality constraint to the cost 
function as a penalty term, for example, 

(t/27) Ilmax(0, 1Upil - %)11 ~ 

In this case, only the constraints which are violated will appear in the 
penalty term. One approach is to determine, at each iteration, which 
constraints are active and form a matrix ~ '  and vector C't which consist of 
only the active constraints. This matrix and vector are then used to form 
the penalty term which must be in vec form, 

(1/2t,) It (~ , r®/ , , )  vec(U) - vec(C'~)lI z 

This term is added to the cost function of (24) by defining 

vec(8) = (~,T® i.)  vec(U)-  vec(C',) 

and forming the cost functional 

J =  (l/2e) vec(E) r vec(E) + (1/2) vec(X) T (IN ® Q) vec(X) 

+ (I/2) vec(U) T (IN® R) vec(U) + (1/27) vec(g)r vec(g). 

This composite cost functional can now be minimized using the matrix 
operations of Section 2, as before. 
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4.4, Example. The proposed 
following example: 

" ~ 1  : X 2 ~  

X + U, -~2 = - -X1  -~ X2 - -  X l X2  

method is demonstrated with 

xl (0 )  = 0, 

x2(0) = 1, 

45 
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Fig. 2. Unconstrained and constrained controls using eight Walsh functions. 
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with 
P 5 

V = j o  2 2 2 ( x l + x 2 + u  ) d t ,  

lu(t)I ~< 0.8. 

Eight Walsh functions are used to solve the problem. First, the problem is 
solved with no constraint on the control. As illustrated in Fig. 2, the 
unconstrained optimal control solution would violate the inequality 
constraint while the optimal solution with the constraint in place yields a 
satisfactory solution. To demonstrate that the method can be efficiently 
implemented in parallel, the inequality problem was solved on an eight- 
processor Intel Sugarcube. The solution time on one processor was 38.8 
seconds, while the solution time on all eight processors was 10.4 seconds, 
giving a speedup of 3.5. 

5. Computational Results 

5.1. Epsilon Method Using a Legendre Polynomial Basis. The 
proposed algorithm was implemented on an eight-processor Intel Sugar- 
cube parallel computer using the first eight Legendre polynomials as the 
basis functions. For  details, see Refs. 2, 20. The Van Der Pol oscillator 
problem with terminal state constraints was chosen as the example 
problem, 

22 = --  x l  + x2  --  x Z x 2  + u, 

with 

X l ( O  ) = 1, Xl(5 ) = - 0 . 9 7 ,  

x2(O) = O, x2(5) = -0.96, 

and 

v =  I~ (x~ + x~ + u ~) at. 

The problem took 14.1 seconds to solve on one node of the Sugarcube and 
4,2 seconds to solve on all 8 nodes for a speedup of 3.5. 

Solution results are summarized in Table 1. Notice that the method 
converges very quickly. 
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Table 1. Iterations 1-5 for the Van Der Pol problem. 

Iteration (l/e) lie(t, e)[[ 2 (l/e) lip(t, e)ll 2 J(e, x, u) 

1 0.0307 0.0034 12.5862 
2 0.0025 0.0001 3.4257 
3 0.0040 0.0002 4.2447 
4 0.0041 0.0002 4.2490 
5 0.0041 0.0002 4,2490 

Figure 3 shows the control generated by the method for both eight 
Walsh functions and eight Legendre polynomials. The controls generated 
by the epsilon method were tested by using them as inputs to a 4th-order 
Runge-Kutta solver of the nonlinear system state equations. The states are 
compared in Fig. 4, illustrating that both types of basis functions yield 
good results, Legendre polynomials providing perhaps a slightly better 
approximation for this type of terminal constraint problem. Neither basis 
gives good results for N =  4. 

5.2. Nonlinear Minimum Time Problem. Balakrishnan gave a method 
for solving minimum-time optimal control problems using the epsiton 
method (Ref. 7). Using Walsh functions and the Rayleigh-Ritz method, it 
is possible to generate a parallel solution method for minimum time 
problems. Consider the problem of moving a constantly thrusting space- 
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0 0 . 3  
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0 0 .0  
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- 0 . 6  ' ' 
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Fig. 3. Optimal control: Walsh functions versus Legendre polynomials. 
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Fig. 4. Simulation results: Walsh functions versus Legendre polynomials. 

craft from Earth to Mars orbit in minimum time. The dynamical equations 
for this problem are: 

• ~ 1  ~ X 2 ,  

22 = x~ /x l  - # / x  2 + Tsin O/(mo + rht), 

23 = - x 2 x J x l  + Tcos O/(mo + rht), 

(25a) 

(25b) 

(25c) 

where xl(t) is the radial position, x2(t) is the radial velocity, x3(t ) is the 
tangential velocity, and 0 represents the thrust angle which is the control. 
Thrust T is constant throughout the entire flight, # is the gravitational 
constant, mo is the initial mass, and rh is the mass flow rate. The initial and 
final values for the state variables represent the initial and final orbits, 

xl(0) = t.0, xl,s= 1.525, 

x2(0) = 0.0, x2,i = 0.0, 

x3(0) = 1.0, x3,s= 0.8098. 

Table 2. Min imum time versus number of  Walsh functions. 

Method ti  Jf inat  

Steepest descent 
Epsiton with 4 Walsh functions 
Epsilon with 8 Walsh functions 
Epsiton with 16 Walsh functions 

3.951 3.959 
4.018 4.042 
3.949 3.975 
3.921 3.946 
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Fig. 5. Thrust angle: epsilon method with eight Walsh functions versus steepest descent. 

The cost funct ion to be minimized is given by 

J =  ldt .  

To obta in  a reference, the problem was also solved by the method  of 
steepest descent and  the results are compared  with the proposed method  in 
the table and  figures below. In  Table  2, the m i n i m u m  time obta ined  for the 

proposed method using 4, 8, and 16 Walsh funct ions and  solut ion by 
steepest descent are compared.  As for the Van Der Pol problem, the con- 
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Fig. 6. Radial position: epsilon method with eight Watsh functions versus steepest descent. 
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trol generated is used to solve the dynamical equations using a 4th-order 
Runge-Kutta simulator to generate the state functions. Figures 5 through 
8 compare the results obtained using the control generated by the epsilon 
method against the steepest descent solution. The epsilon solution method 
gives good results even when as few as eight Walsh functions are used. 

6. Conclusions 

A highly parallel solution method for nonlinear optimal control 
problems, first proposed by the authors in Ref. 2, was extended to use as its 
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basis orthogonal polynomial functions such as Legendre and Chebyshev 
polynomials in place of the Walsh functions. Computational experiments 
indicate that the Walsh functions provided comparable approximation 
accuracy to the Legendre polynomials and require slightly less computation. 

The proposed solution method was also adapted to handle optimal 
control problems with other than polynomial nonlinearities and problems 
that are subject to inequality constraints if Walsh functions are used as the 
basis functions. A similar adaptation for orthogonal polynomials is still 
under investigation. 

Although the parallel computer used to demonstrate the proposed 
method consisted of only eight processors, the method lends itself to 
implementation on highly parallel computers or parallel processing arrays. 
For example, if the problem to be solved has two states and one control, 
and eight orthogonal functions are used to approximate the time-varying 
functions, then up to 300 processors in the form of a two-dimensional array 
may be used to solve the problem. We hope to explore the method's 
potential for extremely fast solution times using larger computer arrays. 

7. Appendix 

Relevant properties of the Walsh functions and orthogonal polyno- 
mials and some details on the developments and calculations of Section 2 
are given below. 

7.1. Properties of  the Waish Functions. Integral of Walsh Functions. 
It is well known (Ref. 21) that, for a given integer p > 0 and N =  2 p - 1, the 
integral of an N-vector of Walsh functions W ( t )  can be represented in a 
compact form, 

where 

fo qfl(.c) d.c = P t l J ( t )  = P N q f l ( t ) ,  

[ PN/2 -- (1/2N) IN/21 
PN = L(1/2N) Lv/2 0 ' 

with P1 = 1/2. 
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Kronecker Matrix Product. Extensively used 
Kronecker product of two matrices A @ B is defined as 

A Q B =  

in Section2, the 

apl B . . .  apqB.A 

Product  of Two Walsh Functions. One of the most useful properties 
of Walsh functions is their group property under multiplication (Ref. 13). 
For any i, j with 0 ~< i ~< N, 0 ~< j ~< N, and N = 2 p - 1 for some integer p > 0, 
we have 

(bi(t) (bj(t) = (b~(t), 

where k = i ® j  and ® denotes no-carry bitwise addition. 

7.2. Properties of Orthogonal Polynomials. A polynomial is ortho- 
gonal with respect to some weight function w(t). In general, orthogonal 
polynomials have the following property: 

f~ {0, i:~j, (26) b W(t) Oi(t) Oj(t) dt = II~bill, i=j.  

For example, the weight function w(t) for Legendre polynomials is unity 
and, if a = 0 and b = tf, then 

II~ill = t f / (2 i+ 1). 

For Walsh functions, (26) is also true. In this case, the weight function is 
unity and 

I1~,11 = 1. 

Orthogonal polynomials have interesting integration properties. In general, 
if S(t) is a vector of orthogonal polynomials, 

F 7 

Lsu_~(t)J 
then 

II S(z) dz = HS(t), 
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where H is called the integration matrix. For  example, the integration 
matrix for Legendre polynomials is given as 

HN =~  
2 

m 
1 1 0 0 

-1/3 0 1/3 0 

0 -1/5 0 1/5 

0 0 0 0 

0 0 0 0 

' ' "  0 

"" 0 

"" 0 

.. - l / ( 2 N -  3) 

'"  O 

! 
0 o 

0 0 

0 0 

0 1/(2N - 3) 

- I / ( 2 N -  1 ) 0 --  

This allows the integral of a vector of orthogonal polynomials to be found 
by a matrix-vector multiplication. 

Finally, it can be shown that 

S(t) sT(t)c T= AcS(t), (27) 

where c is a vector of coefficients and Ac is a matrix of the coefficients 
from c. The resulting S(t)S r is dependent on the specific polynomials 
being used. 

7 .3 .  Q u a d r a t i c  F o r m s .  A compact  form for the integral of the 
quadratic forms in the cost function (7) can be obtained as follows: 

N - - I  N - - I  

ST(t) MS(t)= ~ si(t) ~. m~sj(t); 
i = 0  j = 0  

therefore, 

N--1 N--I f~! 
forSr(t) MS(t)dt= ~ ~ m~ si(t)si(t)dt. 

i = 0  j = O  

Since the matrix O, 

0 = ;olSi(t) sj(t) dt, 

is symmetric, we have 

N - - I  N - - I  t f  N - !  

Z Y', mo;o si(t)s)(t)dt= 2 m.o.=trace(MO). 
i = O  j = O  i = O  

O is a matrix which results from the orthogonal property of the particular 
polynomial being used. 
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7.4. Vector Form of Coefficients for the Error Penalty Term. To 
approximate  e(t; e) in terms of  or thogonal  polynomials,  the t ime-varying 
integrals in the penalty term must  be approximated.  This can be done using 
the multiplication and integral properties of or thogonal  polynomials.  
Consider  first the scalar case where n = 1. Let 

A(t) ~ aS(t) -- S(t)  r a~, 

where a is a vector of  coefficients, a = [ao, a t , . . . ,  a N_ 13,  and 

Then, 

x(t) ~ xs(t) .  

n(O x(t) ~ xs ( t )  s~(t) a r, 

or using (27), 

A(t) x(t) ~ XA~S(t). 

For  the scalar case, 

f£ A(r) x(r) dr .~ XA~HS(t). 

N o w  consider the case where n > 1. Then, 

[al  a2 t  aln,  1 t A ( t ) =  a2~(t) . , x ( t ) =  . . 

_a~l(t) ... a,,(t)A [ xn'(t)[ 

Using (28), the t ime-varying integral for n > 1 can be written as 

Ii A(r) x("c) dT ~ 
-X~ A ~  HS(t) + ... + X.A~oHS(t)- 

~X~A~,~HS(t) + ... + X~A~,HS(t)_ 

where 

a 0 1 t ] .  
~11 = [ t l  . . . .  a l l ,  ' a N l  - 

Here the superscript denotes the coefficient number,  so 

au(t) xl( t)= au S(t) St(t)  XI. 

(28) 

(29) 
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NOW the polynomial coefficients for (29) can be rearranged into vec 
notation, 

vec(XA(~3dim}p) = [(Hr® I~) (2dim) A~ ] vec(X). 

If the same approach is taken for the other integrals in e(t; e), then 

vec(E) = {vec(X) - vec(Gs) - [ ( H r ®  In) A~] vec(X) 

- [ ( H r ®  In) A#] vec (U) -  ( H r ® I . )  vec(C)}. 

7.5. Vector Form of Coefficients for the Error Penalty Term. Let 
p(~) ~ IS(t). The coefficients vec(~) must be found. Since p(e) is a vector of 
constants, only the zeroth polynomial coefficients are nonzero. Consider 
first the scalar case. Then, 

f f  A(t) x(t) d t~  f£"o~S(t) sT(t) X T dl. 

Using the orthogonal property, this can be written as 

f£J~S(t) St(t)  X T dt c~OX r 

For the case where n > l, we have 

QI f all(/)  Xl(l )dt + + f]: aln(l ) Xn(l )dt 

i rA( t )  x(t) dt = 

J0' a.l(t) xl(l) dt + . . .  + Jo' an,,(t) x,(t) dt 

The above matrix can be written as 

E ,,o . olt q 
O~n lO " ' "  ~,,;OAL}:J 

Here, the X-vector is not in standard vec form, but it can be rearranged 
into standard vec form, 
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v't ,:o)J 

[ 

• L \ ~ . . O / j  , ,  

vec(X). (30) 

c ( t )  = c s ( t ) .  

o'JCS(t) dt = C f£s S(t) dt. 

The above integral is a vector with the first element being a one and the 
remaining N being zero and can be written in vec form, 

f~CS(t) = F~ vec(C). dt 

Now vec(~) can be written as 

vec(~) = vec(G,) + F~ vec(X) + F~ vec(U) + F~ vec(C) - vec(Gy). 

Then 

The same approach can be used to approximate the integral with B(t) u(t). 
For the last integral a slightly different approach is used. Let 

f~IA(t) x(t) dt = f]IeS(t) ST(t) X dt = F~ vec(X). 

This matrix vector mutiplication gives the coefficients of the zeroth polyno- 
mial, with the rest being zero. To get a matrix of coefficients for the entire 
coefficient vector, a matrix F~ is formed. The first n rows are obtained from 
(30) and the rest of the matrix is zero. Using F~, it is possible to write 
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