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An Algorithm for Generalized Fractional Programs ~ 
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Abstract. An algorithm is suggested that finds the constrained 
minimum of the maximum of finitely many ratios. The method involves 
a sequence of linear (convex) subproblems if the ratios are linear 
(convex-concave). Convergence results as well as rate of convergence 
results are derived. Special consideration is given to the case of (a) 
compact feasible regions and (b) linear ratios. 
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1. Introduction 

The purpose  of this paper  is to describe an algori thm which solves the 
general ized fract ional  p rogram 

We assume that  S is a n o n e m p t y  subset  of  R", the funct ions  f and  gi are 
con t inuous  on  S, and  the funct ions  gi are posit ive on S. 

The case p = 1 corresponds  to t rand i t iona l  f ract ional  p rog ramming  and  
has been  actively invest igated in the last two decades;  see Ref. 1. Genera l ized  
fract ional  p rog ramming  ( p >  1) has been  studied more  recently;  see, for 
example,  Refs. 2-4. Frac t ional  p rog ramming  and  its genera l iza t ion were 
reviewed in two recent  articles: in Ref. 5, basic  theoretical  results were 
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surveyed; in Ref. 6, applications and algorithms were discussed. For a 
bibliography of fractional programming, see Ref. 7. 

The algorithm proposed in this paper is a generalization of a procedure 
by Dinkelbach (Ref. 8), which was suggested for the case p = 1 ; see also 
Refs. 9-11. An algorithm extending it to the case p > 1 can already be found 
in Ref. 2 for the special case of linear functions and constraints, though 
the method there is not explicitly related to Dinkelbach's algorithm in Ref. 
8. A convergence proof  was not given in Ref. 2. The method gives rise to 
finding the root of the equation F(O)= 0, where F(O) is the optimal value 
of the parametric program 

(P0) F(O) = inf (  max [ f ( x ) -  Ogi(x)]~. (2) 
x~S\l~i~--p / 

When the algorithm is applied, the optimal solutions and the optimal values 
of the parametric program (P0) are to be determined. The method is 
especially useful when the structure of (Po) is simpler than the one of the 
initial problem (P). For instance, when f are nonnegative and convex on 
S, gi are concave on S, and S is a convex set, then (Po) is a convex program 
for every positive value of 0, whereas (P) is only quasi-convex. 

In Section 2, we shall analyze the general properties of the function 
F. The algorithm is then described in Section 3. Special attention is given 
to the case of a compact feasible region (Section 4) and to the case of linear 
functions and constraints when S is not necessarily bounded (Section 5). 
In both sections, we will establish convergence and we will determine the 
rate of convergence of the algorithm. 

2. General Properties of  F 

For the special case of linear problems (P), the properties of F were 
already studied in Ref. 3, where they were used to establish duality relations 
for (P). In the following, we study F in the more general case where f and 
gi are arbitrary continuous functions and S is an arbitrary set in R n. 

First, notice that F(O)< +0o, since S in nonempty. We now show the 
following proposition. 

Proposition 2.1. (a) F is nonincreasing and upper semicontinuous; 
(b) F ( 0 ) < 0  if and only if 0 >  O; hence, F(O)>-0; 
(c) If  (P) has an optimal solution, then F ( t ) )=  0; 
(d) If  F ( O ) = 0 ,  then programs (P) and (P~) have the same set of 

optimal solutions (which may be empty). 
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Proof. (a) The monotonicity of F follows from the positivity of gi. 
The function m a x i [ f ( x ) -  Ogi(x)] is continuous jointly in (x, 0). Hence, F 
is upper semicontinuous in 0. 

(b) Suppose that F(O)<0. Then, there exists ~ E S such that 

f ( . ~ )  - Og~(.~) ( O, i = 1 , . . . ,  p. 

Hence, 

0 > maxf (~ ) /g i (~ )  ->- 
i 

Conversely, if 0 > O, there exists 27 E S such that 

m a x f  ()?)/g~(27) < O. 

Hence, 

f~(;)-Og~(;:)<o, i=l, . . . ,p,  

implying F(O) <0.  
(c) Let ~ be an optimal solution of (P). Then, 37 ~ S and 

j=  max f(~2)/g~(37). 
i 

Thus, 

max[f (~)  - 0g~(~)] = 0. 
i 

Since F(O)-> 0 [see (b)], we have F ( 0 ) =  0. 
(d) It was just shown that an optimal solution 37 of (P) is an optimal 

solution of (P~). Now, assume that F(0)  = 0 and that 37 is an optimal solution 
of (P~). Then, 

max[ f  ()7) - Ggi(37)] = 0. 
i 

Hence, 

max f(37)/g~(~)= 0, 
i 

implying that 37 is an optimal solution of (P). [] 

Example 2.1 below shows that F is not necessarily finite on R. Further- 
more, it demonstrates that the existence of an optimal solution of (P~) does 
not imply F ( 0 ) =  0. 

Example 2.1. Let n = 1, p = 1, 

f l (X)=l+x,  gl(x)=x, S={xlx>~I}. 
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Then,  0 =  1. We have  

F ( O ) = i n f { l + ( l _ O ) x l x > l } = I  2 - 0 ,  i f 0 - < l ,  
i - c o ,  if  0 > 1. 

(P~) has an op t imal  solut ion,  but  F(ff)  = 1 > 0. (P) does not  have an op t imal  
solution. 

The next  example  shows that  F is not  necessari ly  decreasing on the 
interval  where  F is finite. I t  also demons t ra tes  that  F(O) = 0 does not  imply  
the existence of  an op t ima l  solut ion of  (P), even if S is closed. 

Example  2.2. Let n = 1, p = 1, 

f t ( x )  = exp(x ) ,  gl(x)  = exp(2x) ,  S = R. 

Then,  i f=  0. We have  

F ( 0 )  = inf{exp(x)  - 0 exp(2x) Ix  ~ R} = ~0, 
if  0 <- 0, 

[ - co ,  if  0 > 0. 

Thus,  F ( O ) =  0, and  (P) and  (P#) have no op t ima l  solution.  
In case p = 1, F is concave ,  since it is the in f imum of  concave  funct ions  

f l ( x ) -  Og~(x) in 0. This was also shown in Ref. 8 in a different way. It  
fol lows tha t  F is cont inuous  on the interior  o f  its d o m a i n  of  finiteness. 
However ,  the concavi ty  o f  F is lost when  p > 1, as we see f rom the next  
example .  

Example  2.3. Let n = 1, p = 2 ,  

fa(X) "= 2X, g l ( x )  = 2, A(X)  ----- --X, g2(X) = 1, S = [0, 1]. 

Then,  

F ( O ) = inf{max[2x - 2 0 ,  - x - O ]]x ~ [0, 1]} 

- 2 0 ,  if  0 <- 0, 

=j-(4/3)0, i f 0  < - 0<-3,  

[ - 1 -  0, if  0 - - 3 ,  

which  is not  concave.  
In  E x a m p l e  2.3, F(O) is cont inuous  at  ft. In  Examples  2.1 and  2.2, 

F(O) is d i scont inuous  at  0 with an infinite gap.  The  next  example  shows 
tha t  there  m a y  also occur  a finite gap at 

Example  2.4. Let n = 2, p = 2, 

fa (x)  = xt - 2 ,  g l (x)  = 1, f2(x) = 2xb 

S = {x e R2[xl >- O, x2 >- 0}. 

g2(x) = x l+x2+ 1, 
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Then, 0 = 0 and 2 = (0, x2), x2 >- 0 is an optimal solution of (P). We find that 

-0 ,  if 0 < 0, 

F(O) i f 0  = 0, =0 ,  

- 2  - 0, if 0 > 0, 

where the optimal solutions of  (Po) are 

(0, 0), if 0 < 0, 

2(O)=j(O, x2),x2>--O, i f 0 = 0 ,  
! 

~(O, X2),X2~2/O , i f 0 > 0 ,  

As we see, F(O) is discontinuous at 0 with a finite gap. Notice that the 
generalized fractional program is even linear and that S is closed, Also, we 
observe that (P) does have an optimal solution and still F(O) is not 
continuous at 

The next example is similar to Example 2.4, except that (P) does not 
have an optimal solution. It is obtained by adding +1 to the numerators 
L,A. 

Example 2.5. Let n, p, gb g2, S be as in Example 2.4, but 

f l(x)= x l -1 ,  f=(x)= 2xl + l. 

Again, 0 =  0 but an optimal solution does not exist. We find that 

{ l - 0 ,  i f0-<0,  
F(O)= _ - 0 ,  i f 0 > 0 .  

The optimal solutions :~(0) are the same as in Example 2.4, since F(O) is 
only translated by + 1. 

We will make use of  these examples in various parts of  this paper. 
We now prove some inequalities that will assist the analysis of  the 

algorithm in Section 3. 
For 0 e R, let M(O) be the (possibly empty) set of  the optimal solutions 

of (Po). Furthermore, let 

g(x) = min gi(x), ~(x) = max gi(x), x~ S. 
- l ~ i ~ p  l"~:--i<~p 

Then, we can show the following proposition. 

Proposition 2.2. Let 0 be such that F(O) is finite and M(O) is non- 
empty. Let x~ M(O). Then, 

F(tz)<-F(O)+(O-tx)g(x), i f / , >  0, (3) 

F(l~)~F(O)+(O-ix)g(x),  i f / , < &  (4) 
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Proof.  Since x c M ( O ) ,  we have, for  all i, 

F(O) > - f ( x )  - Og,(x); 

hence, 

F(  O ) >- - I~gi (x)  + f ( x )  - (0 - Ix )g ,(x) ,  

implying that  

F(O) + (0 - ~)g , (x )  -> f , (x)  - ~g~(x),  

Assume tz > 0. Then,  

F ( O ) + ( O - I z ) g _ ( x )  

>-- F(O) + (0 - Ix)gi(x)  >--f(x) - /a ,g , (x) ,  

Thus,  

F ( 0 )  + (0 - ~)_g(x) ~ m a x [ f , ( x ) -  ~g,(x)]-> F ( ~ ) .  

In  the same way,  Ineq.  (4) can be derived. 

In case p = 1, we have 

g ( x )  = ~,(x) = g l (x ) .  

i = l , . . . , p .  

i = l , . . . , p .  

[ ]  

Then,  (3) and (4) imply that  - g l ( x )  is a subgradient  o f  F at 0 for all 
x ~ M(O) ,  as not iced already by Ibaraki  in Ref. 10. 

At the end of  this section, we present a sufficient condi t ion for F(O) 
to be strictly mono ton i c  when finite. As Example  2.2 shows, this is not  
necessarily so in general. In  such a situation, we may  have F ( 0 )  = 0 for 0 ¢ 

Proposit ion 2.3. Suppose  that  there exists m > 0 such that  gi(x)  >- m, 
for all x c S and  i = 1 , . . . ,  p. Then,  for  ~ > 0, we have 

F ( ~ )  + ( ~  - O)m ~ F(O).  (5) 

Hence,  F(O)  is decreasing on  the interval where it is finite. 

Proof.  For  all x ~ S and  i = 1 . . . .  , p, 

f , (x)  - 0g,(x) = f , ( x )  - ~g,(x)  + (~  - o)g , ( x )  

>_ f (x )  - ~g,(x)  + (~ - o)m,  

which implies that  

m a x [ f  (x) - Og,(x)] >- m a x [ f ( x )  - /zg~(x)]  + (/~ - O)m, for all x ~ S. 
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Hence, 

!n f s (max[ f (x ) -  Og~(x)]) >- ! n f ( m a x [ f ( x ) -  p~gi(x)]) + (p~ - O)m. 

Proposition 2.3 together with Proposition 2.1(b) shows that F(O)= 0 
implies 0 = O, provided the assumption in Proposition 2.3 holds. 

3. Description and Analysis of the Algorithm 

We now introduce the following iterative procedure to solve (P) via (P0). 

Step 1. Start with some x°~ S. Let 

O, = max f ( x ° ) /  g~(x°). 

Let k = 1. 

Step 2. Solve (Po~). Let xk e M(  Ok). 

Step 3. I f  F(0k) = 0, then stop. Then, x k and x k-1 are optimal solutions 
of  (P), and Ok = 

Step 4. I f  F( Ok) ¢ O, take 

Ok+l = max f ( x k ) /  g~(xk). 

Let k = k + 1, and go back to Step 2. 

From the construction of Ok, it is obvious that Ok ~ 0 and 

maxEf  (x k-l) - Okgi(xk-1)] = O, k >-- 1. 
i 

Hence, F(OD<_O. Then, in Step 3, F ( 0 k ) = 0  implies that 0 k = ~  since 
otherwise Ok>O would yield F(Ok)<O, in view of  Proposition 2.1(b). 
Furthermore,  we see f rom Proposition 2.1(d) that x k is an optimal solution 
of (P). Also, x k-1 solves (P), since 

Ok = miax f i ( xk - ' ) /  gi(xk-l),  

and Ok = 0 in this case. 
In order to apply the algorithm, one needs to determine in addition to 

an initial feasible solution x °, optimal solutions x k of  (P0k), k = 1, 2 . . . . .  
We point out that the subprobtems (Pok) are convex programs if f are 
nonnegative and convex, gi are concave, and S is a convex set. Instead of 
(P0,), one may solve the equivalent convex program 

i n f { A l f ( x ) -  0~gi(x)-  A <--0, i =  1 , . . .  ,p, x ~  S}. (6) 



42 JOTA: VOL. 47, NO. 1, SEPTEMBER 1985 

These subproblems are linear programs if f ,  g~ are affine and S is a convex 
polyhedron (see Ref. 2). 

In the following sections, we will consider different situations where 
the algorithm above converges to an optimal solution of (P). 

In preparation for that, we prove Proposition 3.1 below, for which we 
need the following notation: For 0 ~ R, x c M (  O), let 

I (x ,  O) = { i l l ( x )  - Og,(x) = F(O)}. 

Denote 

J ( x )  : ( j l £ ( x ) / g j ( x )  = m a x  f ~ ( x ) / g , ( x ) } ,  x ~ S. 
1--i--p 

Proposition 3.1. We have: 

(a) - F (  Ok)/ ¢ (x  k) <-- - -F(  Ok)/ gj(x k) <- Ok -- Ok+, <-- - -F(  Ok)/ g~(x k) 

<-- --F(Ok)/g_(xk), for a l l j  ~ J ( x  k) and i ~ I ( x  k, Ok); 

(b) Ok --> t~ for all k; and, if 0k > ~ then 0k > 0~+1 -> 

(7) 

Proof. Let j ~  J(xk).  Since x k ~ M(0k), we have 

F(Ok) = m a x [ f  (x k) - Okgi(xk)] 
i 

>- £ (  x ~) - o~gj( x ~) = gj(  x ~ ) (  ok+ l - ok) .  

Let i ~ I ( x  k, Ok). Then, 

F(  Ok) = f ( x  k) -- Okgi( x k) = g~( x k ) ( f ( x k ) /  g,( xk) -- Ok) 

<- g~(xk)(Ok+~- Ok). 

As seen before, Ok-- > O, for all k = 1, 2 , . . . .  If  Ok> O, then F(Ok) <0 ,  in view 
of  Proposition 2.1 (b). Hence, the first and last inequalities in (7) hold using 
also the definition of  _g(x) and ¢(x).  Furthermore, if F(O~)<0 in (7), then 
Ok+l < Ok. 

From Proposition 3.1, we see that, in case p = 1, 

Ok+l = Ok -- F(  Ok)/ (--gl(xk)) .  

Above, we concluded from Proposition 2.2 that, in the single-ratio case, 
- g l ( x  k) is a subgradient of  F at Ok. Thus, the proposed method coincides 
with Newton's method for p = l ;  see also Ref. 10. However, for p > l ,  
Newton's method does not coincide with our algorithm. To see this, consider 
two of the examples above. In Example 2.3, let x ° ~ (01] be a starting point. 
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Then, the algorithm generates the sequence 

Ok = (1/3k-1)x °, k = 1, 2 , . . . ,  

converging to O= 0, whereas Newton's method converges in one step, On 
the other hand, Example 2.5 shows that Newton's method may not even 
converge when the algorithm above does. To see this, let x °=  (1, 1) in 
Example 2.5. Then, 01 = 1. The sequence Ok generated by Newton's method 
is 

Ok = ( -1 )  k+l, k = 1, 2 . . . .  , 

which does not converge. On the other hand, the algorithm above yields 
the sequence 

x k = (0, 2 / o k ) ,  

and hence 

0k+t = 1/(1 +2/0k) ,  k = l , 2 , . . . .  

Then, 

Ok = 2 t k = 1, 2, 
\ l = 0  

which does converge, and the limit is 0 = 0. 
In the following, we want to discuss under what conditions the 

algorithm above converges. In order to apply the method, we need the 
assumption M(0 )  # Q, for 0 ~ (~  01]; i.e., we need to assume that F (0)  > - ce  
for such 0 and that an optimal solution )7(0) exists. In case of  a linear 
generalized fractional program, this is true provided F(01) > -co for at least 
one 01 > O, since the equivalent linear program (6) always attains the optimal 
value F(O). Note, however, that, even in the linear case, F(O)=-oe, for 
all 0 > ~ is possible as Example 2.1 shows. 

In addition to M(O)# 0 ,  for 0 ~ (~  01], we will assume that (P) has 
an optimal solution ~ (i.e., O > - c o )  and the optimal value is attained. 
However, as Example 2.5 shows, the algorithm may still converge if  (P) 
does not have an optimal solution, as tong as O> -co. 

We now prove the following proposition. 

Proposition 3.2. I f  (P) has an optimal solution )7 and M(Ok)¢ 0 ,  
k = l , 2 , . . . ,  then 

(Ok+l--&<--(1--g_(X)/~,(Xk))(Ok--&, k = 1 , 2 , . . . .  (8) 

Proof. By Proposition 3.1, we have 

--F( Ok)/ g(X k) -<- Ok -- Ok+l; 
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thus, 

o~+1 <- oh + F(OD/~,(xk), 

yielding 

Ok+l- 0<-- Ok- O+ F( Ok)/ g(xk). (9) 

The existence of an optimal solution )7 of (P) implies that F (O)=0  and 
c M(O), hence M(O) ~ O [see Proposition 2.1(b), (c)]. Then, Proposition 

2.2 can be applied, where (3) implies that 

F( Ok) <-- F( O) + ( 0 -  Ok)g( ~) = (0-- Ok)g( X). 

This, together with (9), yields 

o~+1- if<- (oh - g)(1 -g (~ ) /g ( xk ) ) .  [] 

Corollary 3.1, If (P) has an optimal solution K if M ( G ) ¢  ~,  k= 
1 ,2 , . . . ,  and if supkg(Xk)<CO, then {Oh} converges to 0 and it does so 
linearly. 

The algorithm may still converge if some of the assumptions in Corol- 
lary 3.1 do not hold. This can be seen from Example 2.5. There, O= 0, which 
is not attained. Starting with x ° = (1, 1), we obtain the sequence {Ok} which 
satisfies 

( G + I -  O) =[1 / (2+  0k)](G-- 0); 

see above. Since 

½- 1/(2+ G)-<½, k = l , 2 , . . . ,  

{Ok} converges to 0, and it does so linearly. Note that, in this example, (P) 
does not have an optimal solution and 

sup ~,(x k) = sup(1 + 2/Ok) = cO. 
k k 

In the following, we study two special cases: the case where S is 
compact and the linear case. 

4. Compact Case 

We show the following theorem. 

Theorem 4.1. Assume that S is compact, The following results hold. 
(a) Programs (P) and (Po) always have an optimal solution, 0 is finite, 

and F(O)=0.  Hence, F (0 ) - -0  implies 0-- 
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(b) F is finite, continuous, and decreasing on R. 
(c) The sequence {Ok}, if not finite, converges linearly to 0, and each 

convergent subsequence of {x k} converges to an optimal soluton of (P). 

Proof. Part (a) follows from the compactness of  S and the continuity 
off,,  g~; in view of  Proposition 2.1, we have F(ff) = 0. In Part (b), continuity 
of F follows in the same way as upper semicontinuity in Proposition 2.1(a), 
now using the compactness of  S. The strict monotonicity of  F is a con- 
sequence of  Proposition 2.3. Part (c) follows from Corollary 3.1, since S is 
compact. Let {x k,} be a convergent subsequence of {x k} converging to ; c S. 
Since x k' ~ S and S is compact, we have ; ~ S. Also, 

F(Ok,) = max[f~(x k') - Ok,g~(xk')]. 

By continuity, 

F ( f f )  = maxEf,(;)  - 0-g,(;)]. 

Since F ( f f )=  0, it follows that ; is an optimal solution of (P). [] 

For p = 1, it was shown in Ref. 9 that the factor 1 -gl(2)/gl(x k) in (8) 
converges to 0. Hence, the method is superlinear. Unfortunately, this is no 
longer true if p > 1 as Example 2.3 demonstrates. Starting with x ° c (0, 1], 
the sequence 

Ok = (1/3k- l )x  ° 

is generated as seen before. This sequence converges to 0, but only linearly. 
Hence, the step from one to two ratios in (P) already destroys superlinear 
convergence. 

Also, (8) indicates that, with increasing p, the algorithm becomes slower 
and slower, since ~ increases with p. The more ratios are involved, the 
slower the method wilt be. 

We saw before that, for p = 1, our method coincides with Newton's 
algorithm. For p >  1, Newton's method may be quite different from our 
method, as Examples 2.3 and 2.5 above illustrate. Our algorithm may be 
slower than Newton's method in general. However, it has two advantages: 
(a) a subgradient of  F, not readily available, need not be calculated; and 
(b) even for nonconcave functions F, our method converges. 

We finally show under which condition we have, at least locally, 
concavity of  F. 

Proposition 4.1. Let 

I ( 0 ) =  U I(x,  0). 
x~M(O)  
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Assume that, for some 0, the set I(0) is reduced to a singleton. Then, F is 
concave in a neighborhood of ~and ,  for i c I(0)  and all x ~ M(O), -g i (x)  
is a subgradient of F at 0, where F is the restriction of F to the neighborhood. 

Proof. Denote by i the unique element of I(0).  Since M(0)  is compact 
and f~, gi are continuous, there exist e > 0 and a neighborhood V of 0 such 
that 

f,.'(x) - Og~(x) > fi(x) - Og,(x), 

for all i #  "i, Oe V, xE M ( 0 ) + B ( 0 ,  e), 

where B(0, e) denotes the ball of origin 0 and radius e. Now, the compactness 
of S and the continuity of all the functions involved imply that the 
correspondence M is upper semicontinuous; i.e., there exists a neighbor- 
hood U of 0 such that 

M ( O ) c M ( O ) + B ( O , e ) ,  for all 0~ U 

(maximum theorem). It follows that, for all 0 E U n V, 

F(0)  = inf{ft(x) - Og;(x)[x ~ M(O) + B(O, ~) n S}. 

Then, F is concave, since it is the infimum of concave functions in 0. 

Note, that, in Example 2.3 above, F is not locally concave at ff = 0. In 
this case, I(O) is not a singleton. The algorithm converges only linearly. 

5. Linear Case 

In this section, the feasible region S is allowed to be unbounded. 
Consider the linear generalized fractional program 

(P) ff=inf{maxp a ix+a i l  0}, (10) 
bi.x_k"[3i l Cx'~- 'y, x >- 

w h e r e  a~. [b~.] is row i of  a p x n matrix A [B]. Let 

A = (a., . . . .  , a.~), B = ( b . , , . . . ,  b.,), 

= ( ~ ,  . . . .  , ~p)~, ~ = ( ~ , , . . . ,  ~ Y .  

Furthermore, C is a m × n matrix and 7 c R m. 
We make the following assumptions (see Refs. 3, 4): 

(HI) feasibility assumption: there exists ~----0 such that 6~-< 7; 
(H2) positivity assumption: B > 0 and/3 > 0. 
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As before, we are only interested in the case where ff is finite. 
In Refs. 3-4, the following dual program of (P) was introduced: 

(D) X : s u p ] m m ~  fl-fu o m,n b.~u ] J '  (1t) 

w_>0 

and it was shown that A = 0 if (H1), (H2) hold. 
The dual can be written as follows: 

• a -i u + c . j  w ~  
0 =  sup,~o (tsup/min/w~ok \ -2~-~ u ' l~m, ,  ~ ] " (12) 

e T u = I  

The feasible region of  (P) may be unbounded. However, the feasible region 
of  (D) is at least bounded in u. We now want to study whether our algorithm 
converges when applied to (D), rather than (P). For this, we write (12) as 
a minimization problem: 

i f = - i n f  Iinf g {-°~'u+~'~'w, -a'rju---Z'c'~w'~]~ L~_o Lmaxi 5 ~  u - m a x  (13) 
eru=1 

Let bZ = - t ~  We want to determine the F-function of the minimization 
problem in (13), 

FD(lX) = ,_>oinf {inf[max(--a T U _ >  + yrW --/Z/3 rU, 
e T u = t  

max -a .~u r - c.; w - / z b . T u ) ] } .  ( 1 4 )  
l < j ~ n  

Hence, 

FD(IX ) = inf h(u;  t~), (15) 
tt_>0 

eTu=l 

where 

h( u ; tL ) = inf  max[--a  Tu + y Tw-- /x~ ru, max  (--a.yu - ci~'w-- lxb.:u)j.T 1 
w~O l<_j<_n 

(16) 
Then, 

h(u; # ) =  info{tlt>----a ru+ yrw- - l x f l ru  , t 
t~R 

T, _ c ~ w - . b . ~ u , j =  1 , . .  n} - - a . u  . , 

= inf {o rw+ t [ -3/rw+ t>_ (-ot  - i x f i ) ru ,  cTw+ t 
w ~ 0 ,  f 

- -  T T • >- ( - a  9 - :xbg)u, J = 1, . . . ,  n}. (17) 
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From (16), we see that h(/z;/~) <oo, for all u,/~. Also, h ( u ; / z ) > - ~ ,  for 
all u,/z since assumption (H1) implies that there does not exist ~ >-0 such 
that C %3 >- 0 and 3/TV~ < 0. Hence, h ( u;/~) is finite for all u, ~z. On the other 
hand, we see from (17) that h (u;/.~) is the optimal value of a linear program 
in the parameters u, ix. Hence, h(u; ~) is continuous in u, ~. Then, (15) 
implies the continuity of Fo(lx). Such reasoning, together with Proposition 
2.3, shows the following proposition. 

P r o p o s i t i o n  5.1. Suppose that (H1), (H2) hold and ff is finite. Then, 
the function FD(t~) is finite, continuous, and decreasing for all/z c R. 

From Proposition 2.1(b), we conclude that the following corollary 
holds. 

Corollary 5.1. If (HI), (H2) hold and O is finite, then/Z = -t~ is the 
unique zero of FD; i.e., Fo(~)=0. 

In view of Proposition 2.1(d), an optimal solution a, ~ of FD(fi)= 0 
is also an optimal solution of (D). Furthermore, as already said, FD(~) is 
attained for all/z at some O(tz), #(/z), where #(~)  solves the linear program 
(17). Hence, the assumptions of Proposition 3.2 are satisfied if our algorithm 
is applied to FD(/x). Thus, (8) holds. Moreover, the additional condition 
in Corollary 3.1, requiring that 

b.ju) < c~, sup max(/3Tu, max n T 
u~:0 

e T u  ~ l 
w ~ O  

is satisfied. Therefore, we have shown the following theorem. 

Theorem 5.1. The sequence {/zk}, if not finite, converges linearly to 
/ 2 = - ~  

Note that this is true even if the primal feasible region S is unbounded. 
If the primal optimal value 0 is attained in S, such a primal optimal solution 
can be calculated from a dual optimal solution (fi, ~,) with the help of the 
complementary slackness condkions established in Ref. 3. 

We demonstrate the algorithm by the following example where (D), 
but not (P), can be solved by the algorithm. 

Example 5.1. Consider the following problem: 

(P) inf{1/(x+l)[-x<_-l,x>-O}=O. 

Then, 

F(O)={1- O, if0-<0, 
- , i f  0 > 0 .  
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Thus, our algorithm cannot be applied to (P), since F(O) = - ~ ,  for all 0 > 
On the other hand, (P) does satisfy all the assumptions of  Corollary 

5.1 ; therefore, the method converges if applied to the dual (D). To see this, 
we determine the dual program 

(D) sup{min[(u + w~ u), - w~ u]} = sup{rain(1 + w, - w ) i w  >- 0} 
u=l 
w~O 

Then, 

Fo(/x) = in f{w- /z lw  >- 0} = - /z ,  

-- s up{ -  wtw-> 0}. 

for all/x ~ R. 

Hence, FD(tz) is continuous and finite. Obviously, our method converges 
in one step starting with any w°> 0. 
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