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Global Optimization and Stochastic 
Differential Equations 'a 

F. A L U F F I - P E N T I N I ,  3 V. P A R I S I ,  4 A N D  F,  Z I R I L L !  5 

Communicated by R. A. Tapia 

Abstract. Let N" be the n-dimensional real Euclidean space, x = 
(x b x~, . . . ,  x,)Vc N", and let f:N"--> Lq be a real-valued function. We 
consider the problem of finding the global minimizers of f A new 
method to compute numerically the global minimizers by following the 
paths of a system of stochastic differential equations is proposed. This 
method is motivated by quantum mechanics. Some numerical experience 
on a set of  test problems is presented. The method compares favorably 
with other existing methods for global optimization. 
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l .  Introduction 

Let N" be the n-dimensional  real Eucl idean space, x = (xl, x2, o . . ,  x,)V~ 
N", and let f : R " ~  N be a real-valued function.  In this paper,  we consider  
the problem o f  finding the global minimizers o f f  that  is, the points  x* c ~" 
such that 

f(x*)<~f(x), VxE[R". (1) 

A new me thod  to compute  numerical ly  the global minimizers o f  f by 
fol lowing the paths o f  a system o f  stochastic differential equat ions is pro- 
posed. This me thod  is motivated by quan tum mechanics.  

The impor tance  o f  the global opt imizat ion problem is clear. For  
example,  the root  finding problem for the system g(x) = 0, where g: N" --> N", 
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can be formulated as a global optimization problem by considering the 
function 

F ( x )  = [Ig(x)[l= z, 

where 11" 112 is the Euclidean norm in R". Despite its importance and the 
contributions of many researchers, the situation with respect to algorithms 
for the global optimization problem is still unsatisfactory, and there is a 
need for methods with a solid mathematical foundation and good numerical 
performance. The situation for the problem of finding the local minimizers 
of f is much more satisfactory, and a large body of theoretical and numerical 
results has been established; see, for example, Ref. 1 and the references 
given therein. 

Ordinary differential equations have been used in the study of the local 
optimization problem or the root finding problem by several authors; for 
a review, see Ref. 2. These methods usually approximate the local optimizers 
or roots by following the trajectories of suitable systems of ordinary differen- 
tial equations. However, since property (1) is a global property (that is, it 
depends on the behavior o f f  on each point of N") and since the methods 
that follow a trajectory of a system of ordinary differential equations are 
local (that is, they depend only on the behavior o f f  along the trajectory), 
there is no hope of building a completely satisfactory method for global 
optimization based on a system of ordinary differential equations. However, 
the situation is different if we consider a suitable stochastic perturbation 
of a system of ordinary differential equations as we now describe. 

Let us consider the Ito stochastic differential equation 

ds e = -Vf ( ( )  dt+ ~ dw; (2) 

where Vf is the gradient o f f  and w(t) is a standard n-dimensional Wiener 
process. When E = eo is a constant, Eq. (2) is known as the Smoluchowski- 
Kramers equation (Ref. 3). This equation is a singular limit of the Langevin 
equation when the inertial terms are neglected. The Smoluchowski-Kramers 
equation has been used widely by solid state physicists and chemists to 
study physical phenomena such as atomic migration in crystals or chemical 
reactions. In these applications, eo=~/(2kT/m), where T is the absolute 
temperature, k the Boltzmann constant, m the reduced mass, and f the 
potential energy, so that (2) represents diffusion across potential barriers 
under the stochastic forces e0 dw. 

It is well known that, if ~:%(t) is the solution process of (2) starting 
from an initial point Xo, then the probability density function of (%(t) 
approaches, as t ~ oo, the limit density A, o exp[-2f(x)/Eo2], where A~ 0 is a 
normalization constant. The limit density is independent of x0 and is peaked 
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(indicating concentration of  particles) around the global minimizers of  f 
with narrower peaks if the constant 4o is smaller. 

The method that we propose attempts to obtain a global minimizer of 
f by looking at the asymptotic value, as t -~ oo, of a numerically computed 
sample trajectory of  an equation like (2), where e = e(t) is a function of 
time which tends to zero in a suitable way as t ~ oo. Similar ideas in the 
context of  discrete optimization have been introduced by Kirkpatrick, 
Gelatt, and Vecchi (Ref. 4). 

In Section 2, we describe our method; in Section 3, we consider the 
numerical integration problem; and, in Section 4, we present the results of 
numerical experiments on several test problems. 

2. Method 

Let us consider the Cauchy problem 

d~ = -Vf (~  z) dt+ e(t) dw, (3) 

~(0) = Xo, (4) 

for the Ito stochastic differential equation (3), where f :  R" -~ ~ is the function 
to be globally minimized, Vf  is the gradient o f f  w(t) is an n-dimensional 
standardized Wiener process, and e(t) is a given function. We assume that 
f and e are sufficiently well behaved, so that our statements are meaningful; 
in particular, we assume that 

lira f(x) = +co, 

!~° exp[-aZf(x)] dx < m, Va e R\{0}, 

and that f has only a finite number of isolated global minimizers. 
We propose to integrate numerically problem (3), (4) looking at the 

asymptotic value of  a sample numerical trajectory solution to obtain a global 
minimizer o f f  Let us start by considering problem (3), (4) when e =4o is 
a constant; that is, 

d¢ = - V f ( ¢ )  dt+ 4o dw(t), (5) 

~(0) = x0. (6) 

Let ~o(t)  be the stochastic process solution of (5), (6); for any Borel 
set A c ~", we define 

P%(0, Xo, t, A) = P{~:%(t) e a}, (7) 
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where P{. } is the probability of {. } and P~o(0, Xo, t, A) is the transition 
probability of ¢%(t). Under regularity assumptions for f, we have 

f °° P%(O, Xo, t, A) = p (0, Xo, t, x) dx, (8) 
A 

where the transition probability density p = p%(0, Xo, t, x) satisfies the fol- 
lowing Fokker-Planck equation 

Op/Ot = (eo2/2)Ap + div(Vfp), (9) 

with 

lira p%(0, Xo, t, x) = 6(X-Xo), (10) 
t~O 

where A and div are the Laplacian and the divergence with respect to x 
and 6(-) is the Dirac delta function. 

Let A~ o be defined by 

1/A~ o =- f~, exp[-2f(x)/e~] dx < oe. (11) 

Then, as t--> co, the transition probability density p~o(0, Xo, t, x) approaches 
the function 

% po~(O, Xo, x) = A~o exp[-2 f (x ) /  E2o]. (12) 

Clearly, p~ is the probability density of a random variable ~:~, so that 
¢%(t)--> ¢~g in law when t -  oo. Let us remark that p~g does not depend on 
the initial condition Xo. 

We want to study the behavior ofp~g as eo-~ 0 and the rate of approach 
of p% to p~ as t -  ~ .  We will consider for the sake of simplicity only the 
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Fig. 1. The function f ( x ) .  
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one-dimensional case, when f is as in Fig. I, i.e., with three extrema at the 
points x_ < x o < x + ,  decreasing in (-oo, x_) and (Xo, x+), and increasing in 
(x_, Xo) and (x+, +oo), with f(x) -> +co as tx] ~ co, in such a way as to satisfy 
(11) for all eo¢O. 

We have 

~(x+)  df df 
- - G  (x_) = Tx (Xo) = o. 

Using the following notation: 

d2f<  , 
f+ = f (x+) ,  e+ = ~ x  2 tx+), 

d 2 f ,  , 
f_ = f ( x _ ) ,  c_ = T x  ~ tx-~, 

d2f ,  , 
fo = f(Xo), Co = -~-Tx~ (Xo), 

Af_ =fo - f -  > 0, by+ =fo - f +  > 0, 

it is easy to prove the following result. 

Proposition 2.1. Let f be as above, and let co, c+, c_ be greater than 
zero. The following results hold: 

(i) if 2xf_>Af+ and 3 a > 0  such that f (x)>~(x-x_) '~+ f_, Vx~g~, 
then 

hm p~(O, xo, x) = 3(x -x_); (13) 
eo~O 

(ii) if 5 f _ =  ~f+ and 3 a > 0  such t h a t f ( x ) ~ ( x - x _ ) 2 + f _ ,  Vx<~xo, 
and f(x)  >~ a (x - x+) + f+, Vx >i Xo, then 

lim p~(0, xo, x) = y6(x -  x_)+ (1 - 3")6(x-x+), 3' = [t  +x/(c_/c+)J -1, 

(14) 

where the limits (13), (14) are taken in the distribution sense. Proposition 
2.1 is easy to prove using the Taylor formula f o r f  around x_, x+. 

Remark 2.1. Proposition 2.l shows that, as Eo~0, the asymptotic 
probability density approaches a Dirac delta function concentrated on the 
global minimizer when there is a unique global minimizer (A f_ > A f+) or 
approaches a linear combination of Dirac delta functions concentrated on 
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the global minimizers (A f_ = A f+). The coefficients of the linear combination 
depend on the curvature of  f at the global minimizers. These statements 
have a clear meaning in terms of ~:~g. Finally, Proposition 2.1 can be 
generalized easily to a wider class of functions f 

Proposition 2.2. Under the previous hypotheses f o r f  Matkowsky and 
Schuss studied (Ref. 5) the rate of convergence of p Eo to p~ as t ~ oo by 
looking at the eigenvalues of the Fokker-Planck operator 

L~o(" ) = (E2/2)[02( • )/Ox2]+ (O/Ox)[(df/dx).]. 

We note that p~  is an eigenfunction with eigenvalue zero of L, o, so 
that the rate of  approach to p~ is determined by the next eigenvalue )tl(eo) 
of L~ o. Matkowsky and Shuss obtained for ~tl(eo) the following asymptotic 
expression as Co--> 0: 

Al(e0) ~ -[~/(C+Co)/27r] exp[-(2/eZo)hf+], (15) 

so that roughly speaking we can imagine that 

where/~ is an eigenfunction corresponding to A1. 
When f(x) is a fourth-order polynomial with two minimizers, a com- 

plete analysis of the spectrum of LEo in the limit eo ~ 0 has been given by 
Angeletti, Castagnari, and Zirilli in Ref. 6. 

Remark 2.2. Since Al(eo)~ 0 as eo ~ 0, from (16) we see that the rate 
of approach to p~ becomes slower when eo becomes smaller. On the other 
hand, from (12) we see that p~g becomes more and more concentrated 
around the global optimizers as eo goes to zero. 

Let us go back now to (3), (4) when E = e(t)  is a given function of t, 
and let ~:(t) be the solution of (3), (4). Let P(0, Xo, t, A) be the transition 
probability of  ~:(t) and p(0, Xo, t, x) the corresponding probability density. 
Under regularity assumptions for f the probability density p satisfies the 
following Fokker-Planck equation: 

Op/ at = ( e2( t)/2]Ap + div(Vfp), (17) 

l imp(0,  x0, t, x) = 8(X-Xo). (18) 
t ->0  

In order to compute the global optimizers of f by following the paths of 
(3), (4), we would like to show that 

l imp(0,  x0, t,x)= ~ yiS(x-x*), (19) 
t ~ o o  i = 1  
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where 71 are positive constants such that 

y i = l  
i = 1  

and where x*, i = 1, 2, 3 , . . . ,  m, are the global minimizers o f f  
The previous analysis of the corresponding problem with e ( t )=  eo 

suggests that, in order to have (19), we need 

!ira e(t) = 0; (20) 

and, as suggested by (16), we must require that 

o exp{-[2/e2( t)]Af+} dt = o~, (21 ) 

where A f+ is the highest barrier to the global minimizers. We note that, in 
order to satisfy (21), e(t) must go to zero very slowly. 

The problem of giving a mathematically rigorous foundation to our 
method by proving (19) will be considered elsewhere. Based on the heuristic 
conditions (20), (21), we will consider now the problem of how to integrate 
numerically (3), (4) in order to obtain a global minimizer o f f  

3. Numerical Integration 

In the previous sections, we have proposed to obtain the global 
minimizers o f f  by following the paths defined by (3), (4) under suitable 
assumptions for E(t) when t--> ~ .  We want to consider here the problem of 
how to compute numerically these paths, keeping in mind that we are not 
really interested in the paths, but only in their asymptotic values. 

The algorithm that we propose here is only preliminary, and further 
study is needed; however, as we will see in Section 4, even the present 
algorithm gives good numerical results on several test problems. 

Let 

k - 1  

A t k > O ,  tk= ~ Ati(to=0), k = 0 , 1 , . . . ;  
i = 0  

we discretize (3), (4) using the Euler-Cauchy method; that is, £(tk) is 
approximated by the ~:k solution of the following finite difference equations: 

~:k+l - ~:k = - -AtkVf(sCk)+e(tk)(Wk+~ - Wk), k = O ,  1 , . . . ,  (22) 

(o = xo. (23) 
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Since for stability reasons Atk will be chosen rather small, and since 
condition (21) implies that e ( t )  should go to zero very slowly in order to 
reach the asymptotic values of the paths of (3), (4), we expect that a large 
number of time integration steps (22) will be needed. 

Let r be an n-dimensional random vector of length 1 uniformly dis- 
tributed on the (n - 1)-dimensional sphere; then, for any given nonrandom 
vector v ~ ~ ,  its projection (v, r) r along r is such that 

n. E((v, r)r) = v, 

where E ( . )  is the expected value and ( . ,  • ) is the Euclidean inner product 
in R". This suggests that, in order to save numerical work (i.e., function 
evaluations), we may replace Vf(sck) in Eq. (22) by the expression 

n(Vf(£k), r)r, (24) 

where (24), the directional derivative in the direction r, may be further 
approximated by finite differences with some mesh size Axk. 

When forward differences are used, n + 1 function evaluations are 
needed to approximate 7f, while only two function evaluations are needed 
to approximate the directional derivative. Finally, some heuristic algorithms 
are used to choose Atk and Axk to avoid instabilities. Condition (21) suggests 
that e(t)  should go to zero very slowly as t goes to infinity, so that computing 
a single path of (3), (4), choosing e(t) as required by (21), and following 
this path for a long enough period of time to obtain a global minimizer 
does not seem very efficient. 

We consider the following alternative strategy. 

(i) N paths of  (3), (4) are computed with N > I  ( N = 7  in the 
numerical experience shown in Section 4) using the algorithm described 
before, and e(t)  is kept constant; 

(ii) f is computed along the paths and used as a merit function. After 
a number of steps of numerical integration, the N computed paths are 
compared. The worst path is discarded, and the numerical integration is 
continued after splitting one of the remaining N - 1 paths into two paths. 

The new path has a different value of e ( t ) = c o n s t ;  e(t) is usually 
decreased; occasionally, it can be increased if the paths are stuck in a local 
minimizer as detected by looking at the previously computed values of f 

(iii) Repeat from step (ii). 

4. Test Problems and Numerical Experience 

The algorithm described in Sections 2 and 3 has been tested on a set 
of test problems. The first 18 test problems have been taken from the 
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literature; they were proposed as a set of problems to test global optimization 
methods by Levy and Montalvo (Ref. 7). 

We shall make use of  the penalization function 

( k ( x - a )  m, x>a,  
u(x,a, k, m) =I ~0, - a ~  x ~  a, 

k ( - x - a )  m, x < - a .  

The test problems are given below. 

Problem 1. Gotdstein's Function. Let 

f ( x )  = x 6 - 1 5 x 4 + 2 7 x 2 +  250; 

the function f has three minima: 

x = -3,  f (x )  = 7, 

x = O, f (x )  = 250, 

x = 3, f (x )  = 7. 

The minimizers x = +3 are the global minimizers o f f  

Problem 2. Penalized Shubert Function. Let 

5 

gl(x) = ~ i c o s ( ( i + l ) x + l ) ;  
i=1 

the function gl is the Shubert function. We define the penalized Shubert 
function f ( x )  as follows: 

f (x )  =gl(x)+u(x,  10, 100, 2). 

This function has 19 minima in the region {xl[xt<10};  three of  these 
minima are global ones and are located at 

X = -7.70831, x = -1.42513, x -=- 4.85805. 

Problem 3. Two-Dimensional Penalized Shubert Function. Let 

f ( x , Y ) = { i ~  i cos [ ( i+ l ) x+l ] } {  ~= icos[( i+l)y+l]  } 

+u(x, 10, 100, 2)+ u(y, 10, 100,2). 

The function f has 760 minima (18 of them are global minima) in the region 
y)l Ixl < 10, lyl < 10 . 
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Problem 4. Two-Dimensional Penalized Shubert Function,/3 = 0.5. 

f(x,Y)={i~=l i cos[(i+ l)x + l]} { ~=l i cos[(i+ l)y+ l]} 

+/3[(x + 1.42513)2 + (y + 0.80032) 2] 

+u(x, 10, 100, 2) + u(y, 10, 100, 2), 

where /3 = 0.5 and (-1.42513, -0.80032) is a point where the function f 
with /3 = 0 has a global minimizer. This function has roughly the same 
behavior as the function considered in Problem 3, but has a unique global 
minimizer at (-1.42513,-0.80032),  where the function f is equal to 
-186.7309. 

Problem 5. Two-Dimensional Penalized Shubert Function,/3 = 1. The 
function f is the one given in Problem 4 with/3 = 1. 

Problem 6. Camel Function. Let f be given by 

f(x, y) = ( 4 -  2. I x 2 + x4/3)x 2 + xy + ( - 4  + 4y2)y 2. 

This function has six minima; two of  them are global minima and are 
located at (-0.0898, 0.7126), (0.0898, -0.7126). 

Problems 7-9 are obtained from the following formula: 

g2( x ) = ( Tr / n ) { k2 sin2(Tryl) 

n--1 I + 2 (Yi - A2)2[ 1 + k2 sinZ(¢rY~+l)] + (Yn - A 2 )  2 , (25) 
i = 1  

where 

x = ( x .  xz,. • •, x . )  r, 

y~=l+(x~-l) /4,  i =  1 , 2 , . . . ,  n, 

k2 = 10, A2 = 1. 

In the region 

f ~ = { x ~  Rt-lO<-x~<~ 10, i =  1 , 2 , . . . ,  n}, 

the function (25) has roughly 5 n local minimizers and a unique global 
minimizer located at 

x i=  1, i =  1 , 2 , . . . ,  n. 
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We penalize the funct ion (25) as follows: 

f (x)  = g2(x) + ~ u(x~, 10, 100, 4). 
i=1 

(26) 

Problem 7. The funct ion f(x) is given by (26) with n = 2. 

Problem 8. The funct ion f(x) is given by (26) with n = 3. 

Problem 9. The funct ion f(x) is given by (26) with n = 4. 
Problems 10-12 are obta ined  from the fol lowing formula:  

g3(x) = ( 7r /n ) { k 3 sin2(~'xl) 

rl--1 } 
+ ~ (Xi -- A3)2[1 + k3 sin2(~-Xi+l)] + (xn - A3) a , (27) 

i=l 

where 

k3 = 10, A3 = 1, 

x = ( x l ,  x2, • . . ,  x j .  

In the region 

f ~ = { x ~ t  - 1 0 ~ < x ~  < 1 0 , i = 1 , 2 , . . . ,  n}, 

the funct ion  (27) has roughly  I0" local minimizers  and a unique global 
minimizer  at xi = 1, i = 1, 2 , . . . ,  n. We penalize the funct ion (27) as follows: 

f(x) = g3(x)+  ~ u(xi, 10, 100, 4). (28) 
i=l 

Problem 10. The funct ion f (x)  is given by (28) with n = 5. 

Problem 11. The funct ion f(x) is given by (28) with n = 8. 

Problem 12. The funct ion f(x) is given by (28) with n = 10. 
Problems 13-18 are obta ined  f rom the fol lowing formula:  

g4(X) = k4 sin2(~'loxl) + ~ (xi - A4)211 "k- k 5 sin2(-a'/oxi+l)] 
i=1 

+ (x.  -A4)2[1 + ks sin2(~rllx.)] t , 

where 

k4 = 0.1, k5 = 1, A4 = 1, lo = 3, I1 = 2. 

(29) 
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In the region 

~ = { x ~ " [ - l O < ~ x ~  < 10, i=  1 , 2 , . . . ,  n}, 

the function (29) has roughly 30" local minimizers and a unique global 
minizer at xi = 1, i = 1, 2 , . . . ,  n. In the region 

f~l ={x ~ " t - 5 < ~ x i  <~ 5, i= 1 , 2 , . . . ,  n}, 

the function (29) has roughly 15" local minimizers and a unique global 
minimizer at x~ = 1, i = 1, 2 , . . . ,  n. We penalize the function (29) as follows: 

f (x )  = g4(x)+ ~ U(Xi, 10, 100, 4), (30) 
i=1 

o r  

f ( x )  = g4(x) + i u(x,, 5,100, 4). (31) 
i=1 

Problem 13. 

Problem 14. 

Problem 15. 

Problem 16. 

Problem 17. 

The function f (x )  Is 

The function f (x )  is 

The function f (x )  is 

The function f (x )  is 

The function f (x )  is 

Problem 18. The function f ( x )  ~s 

Problems 19-22 have been created 

Problem 19. Let 

f ( x )  = x 4 / 4 -  x2/2 + 0.1x; 

given by (30) with n = 2. 

given by (30) with n = 3. 

given by (30) with n = 4. 

given by (31) with n = 5. 

given by (3t) with n =6.  

given by (31) with n =7.  

by the third author. 

th,e function f has two minima, one for positive x and one for negative x. 
The one for negative x is the global one. 

Problem 20. Let 

f (x ,  y) = x4/ 4 - x 2 / 2  +O.lx + y2/2; 

the function f has two minima, (xl, 0) and (xz, 0), where xl, x2 are the 
minimizers of  the function of Problem 19. The minimizer with the negative 
x corresponds to the global minimizer. 
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Problem 21. Let 

f (x ,  y) = 0.5x 2 +0.511 - cos(2x)]+ y2; 

the function f has several local minima, and the global minimizer is the 
origin. 

Problem 22. Let n > 0 ,  m < 0  and 

f (x ,  y) = 10nx2+y 2 -  (x2+y2)2+ 10'~(x2+y2)4; 

the function f has a local minimum at the origin and two global minimizers 
on the y-axis. 

Problem 23. Let 

f ( x )  = [~=, ixZ~j-I~/4, 

where 

x = ( x l  . . . . .  x~)V; 

the function f ( x )  has a unique minimizer at x = 0, where the function is 
not differentiable; moreover,  the Hessian o f f ( x )  is not defined at x = 0 and 
is not positive definite in a neighborhood of x = 0. 

Problem 24 has been suggested by Wolff (Ref. 8). 

Problem 24. Let 

f (x ,  y) = -F (x ,  y) + u(x, 10', I00, 2 )+  u(y, 104, 100, 2), 

where 

14 

F ( x ,  y )  = I-I [ O ( x ,  - x ) / y ] ' - ~ , [ 1  - a;,(x~ - x ) / y ] ~ .  
i = 1  

The function ~ ( x )  is given by 

• (x) = f ~  [1/x/(2cr)] exp ( - t 2 /2 )  dr. 

Table 1. Data points for Problem 24. 

x~ 1219 1371 1377 1144 1201 1225 1244 
8i 0 0 0 1 1 1 l 

x~ 1254 1304 1328 1351 1356 1370 1390 
81 1 1 1 1 I 1 1 
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The data points xi, 3i are given in Table 1. The function f(x, y) has an 
absolute minimizer at (1523.2, 277.5) and a spurious relative minimizer, 
due to the penalization, at ( -6607.3,  -104).  

The numerical results obtained are shown in Table 2. 
The program is run twice on each problem, the first time with a given 

stopping criterion. NF1 is the number of function evaluations (including 
the ones needed to evaluate the gradient) used in this first run; the result 
obtained is shown in Column 3. In the second run, a more stringent stopping 
criterion is used; Columns 4, 5 have the same meaning as Columns 2, 3, 

Table 2. Numerical results. 

Whether Whether 
a global a global 

minimizer has minimizer has 
Problem NF1 been found NF2 been found Remarks 

1 3,184 Yes 7,168 Yes 
2 26,893 Yes 77,699 Yes 
3 3,218 No 241,215 Yes 
4 8,755 Yes 76,894 Yes 
5 97,761 Yes 183,819 Yes 
6 5,393 Yes 10,822 Yes 
7 84,782 Yes 159,549 Yes 
8 19,041 Yes 72,851 Yes 
9 18,942 Yes 49,690 Yes 

10 18,433 Yes 72,226 Yes 
11 4,322 No 136,061 Yes 
12 49,701 Yes 98,985 Yes 
13 9,492 Yes 23,770 Yes 
14 19,114 Yes 66,010 Yes 
15 35,139 Yes 122,166 Yes 
16 53,398 Yes 66,365 Yes 
17 15,534 Yes 98,974 Yes 
18 16,542 Yes 109,886 Yes 
19 6,751 Yes 16,487 Yes 
20 3,402 Yes 12,249 Yes 
21 10,286 Yes 19,940 Yes 
22 4,791 Yes 7,390 Yes 
22 3,037 Yes 4,853 Yes 
22 5,028 Yes 8,235 Yes 
22 14,710 Yes 27,859 Yes 
22 51,285 Yes 74,194 Yes 
22 17,610 Yes 4,042,861 Yes 
23 15,102 Yes 34,110 Yes 
24 48,802 Yes 69,512 Yes 

n = - m = l  
n = - r n = 2  
n = - m = 3  
n = - m = 4  
n = - m = 5  
n = - m = 6  
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respectively. All the remaining parameters [initial value for s( t) ,  etc] are 
fixed once and for all during the runs. 

The initial point Xo has been chosen as follows: 
x0=0,  for Problems 1-18; 
xo = 1/50, for Problem 19; 
Xo = (1, 0), for Problem 20; 
xo = ( - 3 ,  0), for Problem 21 ; 
xo = (0, 1), for Problem 22; 
x o = (103, 103, . . .  , 103), for Problem 23; 
Xo = (-1250,  -1000),  for Problem 24. 
For Problems 19-22 and 24, initial point xo has been chosen close to 

a local minimizer. 
The condition number  of  the Hessian at the solution of Problem 22 

increases with n , - m ;  the Hessian at the solution of  Problem 23 is not 
defined; the Hessian at the solution of Problem 24 is ill conditioned; the 
remaining problems have well-conditioned Hessians at the solutions. 

The numerical experience contained in Table 2 shows that the present 
implementat ion of  our method is much more sensitive to ill conditioning 
than to the total number  of  local minimizers. This seems to be due to the 
method used to integrate numerically the stochastic differential equations. 
However,  we should remark that, on Problems 10, 11, 12, t6, 17, 18 (which 
have very large number  of  local minimizers), the global one is obtained by 
using a number  of function evaluations which is much smaller than the 
number  of  local minimizers. Our method gives satisfactory results on all 
the test problems,  including Problem 23, that is not differentiable at the 
solution. Finally, we note that, given the stochastic nature of  the method,  
the amount  of  work needed to solve a problem depends on the problem 
and on the sequence of  random numbers generated during the numerical 
integration. 

We feel that further work of both mathematical  and numerical character 
must be spent on the ideas presented in this paper. 
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