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Abstract. The paper contains definitions of different types of nondomi- 
nated approximate solutions to vector optimization problems and gives 
some of their elementary properties. Then, saddle-point theorems corre- 
sponding to these solutions are presented with an application relative 
to approximate primal-dual pairs of solutions. 
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1. Introduction 

The interest in approximate solutions of optimization problems has 
revived following recent developments in nondifferentiable optimization. 
Another area wh~re these results are of  considerable importance is approxi- 
mation theory. 

The aim of  the present paper is to define different types of  approximate 
efficient solutions to vector optimization problems, and then to develop the 
corresponding saddle-point theorems along the logic of Refs. 1 and 2. As 
a consequence of the fact that the notion of approximate solution coincides 
with that of exact solution in the case when the approximation error is zero, 
our results reduce to those obtained in the above-mentioned papers. Our 

• definition is in coherence with that of e-efficiency in Ref. 3. Another base 
of  our theory is that of  approximate solutions in the scalar-valued case (as 
expounded, e.g., in Ref. 4) or in the vectorial case for absolute optimality 
(Ref. 5). 

1This research was carried out while the author was working at the Bureau for Systems 
Analysis, State Office for Technical Development, Budapest, Hungary. The author is indebted 
to the referees for their useful comments. 
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Section 2 is devoted to definitions and some basic properties of approxi- 
mate extremal elements in ordered vector spaces; in Section 3, the main 
results are proved, i.e., Hurwitz-type saddle-point theorems. Applying our 
results, in Section 4 we show the equivalence between approximate saddle 
points and the corresponding primal-dual pairs of solutions. 

Throughout the paper, we rely on a knowledge of convex analysis and 
the theory of ordered vector spaces, and therefore basic notions and facts 
are used without special explanation. I f  needed, see, e.g., Refs 6 and 7. 

2. Approximate Nondominated Elements 

All the vector spaces appearing in the paper  are real and ordering 
cones are supposed to be convex, pointed, and algebraically closed. In the 
presence of a topological structure, we suppose local convexity and that 
the ordering cone is closed. We denote by X and V vector spaces and by 
(Z, K )  an ordered vector space with core(K)  ¢ ~b, where core refers to the 
algebraic interior. Similarly, rcore denotes the relative algebraic interior. 
( Y, C) is an order complete space, i.e., a vector lattice where every nonvoid 
set with a lower bound possesses an infimum. In order to ensure the existence 
of infima (resp., suprema) for every (i.e., nonbounded) set, we supplement 
the space (Y, C) with the elements e cand  -oe using the notation Y =  Yw 
{-oe, co}, and suppose that the usual algebraic and ordering properties hold. 
Hence, for the set H C  Y, which is not bounded from below, we have 
inf (H)  = - o c  and inf(4~)= oe. The dual space of Y is Y', and the cone of 
positive functionals with respect to the cone C C Y or the dual of C is C ÷. 
The functional y * e  Y denotes an element of C + and L+(Z, Y)C L(Z, Y) 
stands for the cone of  positive linear maps from Z to Y. 

We recall now that, for the various ordering relationships between two 
elements of  an ordered vector space, we shall use the following notations, 
for example, in (Y, C):  

y2>-yl, i f fy2-yl  e C, 

y2>-yl, iffy2-y~ ~ C\{0}, 

y2> yl, iff yz-ylecore(C).  

To denote opposite relations, we use symbols like Z and ~ .  Accordingly, 

Yz ->y~ or Y2~Yx 

refer to the fact that y~ e Y dominates or does not dominate Y2 e Y from 
below, respectively. 
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The vectors e, e, c Y and the scalars e, e, c R represent the approxima-  
tion error; we suppose that e_- 0, e, => 0 hold and similarly that e, e,, are 
nonnegative.  The above notat ions and condit ions are supposed to be valid 
th roughout  the paper  and will not  be ment ioned  again. 

Definition 2.1. The vector y c H is a P (e ) -min ima l  element o f  H C I? 
or approximate ly  Pareto minimal,  in notat ion 

y ~ P(e)  - mi n(H) ,  

if 

( y - e -  C ) ~ H C { y - e } ;  

it is WP(e)-minimal ,  in notat ion 

y ~ WP(e)  - m i n ( H ) ,  

if 

(y - e - c o r e ( C ) )  ca H = &. 

Here, o f  course, we need the condi t ion that c o r e ( C ) ¢  & and, speaking 
about  WP-minimality,  we always suppose it. 

y ~ H is called P(y*,  e)-minimal ,  in notat ion 

y e P(y*,  e) - ra in(H) ,  

if 

(y*, y) - e - (y*, h), Vh c /4 .  

By convention,  we say that all kinds o f  minima of  the void set consist of  
the single element oe ~ Y. The approximate ly  maximal  elements are to be 
defined in a corresponding manner.  

Remark 2.1. Our  definitions, in the case e = 0 or e = 0, reproduce the 
usual exact notions o f  minimality. Weak approximate  minimali ty means 
the corresponding approximate  minimality with respect to the algebraically 
nonclosed cone C '  = {0} u core(C) .  The not ion o f  y ~ Y being P(y*,  e)- 
minimal means that (y*, y )~  ~ is a P ( e ) - m i n i m a l  element o f  the set 

y*( /4 )  = {(y*, h) c ~: h c /4} .  

Now, the definition o f  the convex vector-valued minimizat ion problem 
and the corresponding vector-valued Lagrangian follows (see, e.g., Ref. 8.). 
These notions constitute our  main object o f  study. 
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Definition 2.2. Let 

f : X -  YW {co}, h:X~Zw{oo}  

be proper convex functions with k = d o m f n d o m  h ¢ ~b and le L(X, g). 
We define the minimization problem (MP) by way of the set of solutions 

(MP) min(MP) = {xo E F: f(xo) e min{f(F)}}, 

where 

F = {x ~ X: x ~ A, h(x) <=O, l(x) =0} 

is called the feasibility set of problem (MP). Instead of the symbol min, 
one has to substitute one of the approximate or exact notions of minimality 
from Definition 2.1. Depending on this choice, we call the elements of 
min(MP) the respective type of approximate or exact solutions of the 
problem (MP). 

The Lagrangian of the minimization problem (MP), 

• L:xx L(z, Y)x L(v, Y)-, R 

is defined by the equality 

'oe, if x ~ A, 

dpL(x,R,S)= f ( x ) + R . h ( x ) + S . l ( x )  i f x e A a n d R ~ L + ( Z , Y ) ,  
[ .-ee,  if x c A and R ~ L÷(Z, Y), 

with the set 

dom qbL = {(x, R, S) ~ X x L(Z, Y) x L( V, Y): x ~ A, R ~ L+(Z, Y)} 

called the domain of dPL. 
The element (Xo, R0, So) ~ X x L(Z, Y) x L( V, Y) is a respective type 

of saddle point for the Lagrangian ~L if the following conditions are met: 
(i) q%.(Xo, Ro, So) ~ min{dPL(x, Ro, So) ~ I7": x e X}; 
(ii) q~L(Xo, Ro, So) c max{a~t(Xo, R, S) ~ f ' :  

(n, S) ~ L(Z, Y) x L(V, V)}. 

Remark 2.2. In the scalar case, these notions coincide and we simply 
speak of e-solutions or e-saddle points. 

Definition 2.3. We say that problem (MP) meets the Slater-Uzawa 
constraint qualification if either 

(i) there exists an xl c rcore(A) with h(xl) E - r c o r e ( K )  and/(Xl) = 0, 
o r  

(ii) no linear constraint is present and there exists an xl c A with 

h(xl) ~ - rcore{h(x)  + k ~ Z: x ~ A, k ~ K}. 
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For the reader 's  convenience, now we quote the scalar-valued version 
of Theorem 5 of Ref. 9. 

Theorem 2.1. Suppose that, in the definition of (MP), the space ( Y~ C) 
coincides with (~, ~+) and that (MP) meets the Slater-Uzawa constraint 
qualification. I f  xo c X is an e-solution of (MP) ,  then there exist functionals 
r~ ~ Z + and s~ ~ V, such that (Xo, r*, s*) 6 dora ~L is an e-saddle point for 
the Lagrangian ~L. 

Let us formulate some simple facts that are easy consequences of  the 
definitions, but are still interesting because they clarify the relationships 
between the different notions of  minimal solution. Omitted proofs are trivial. 

Proposition 2.1. Suppose that e~ ~ e2 and e I ~ 8 2. Then, we have 

P(e~) - min(MP)  C P(e2) - min(MP) ,  

WP(e~) - min (MP)  C WP(e2) - min(MP) ,  

P(y*,  el) - min (MP)  C P(y*,  e2) - min(MP) .  

Proposition 2.2. (a) Suppose that we have (y*, ~) > 0 for each ~_> 0. 
Then, 

P(y*,  e) - min (MP)  C P(e') - min(MP) ,  

with 

e ' =  [e / (y* ,  e ) ] '  e; 

(b) WP(e)- min(MP) = U {P(Y*, (y*, e))- min(MP): y*e C+\{O}}. 

Proposition 2.3. Suppose that (Y, C) is equipped with such a weakly 
sequentially complete topology that the ordering cone C C Y is normal and 
int(C) # 4~. Consider a sequence {e, ~ C: n ~ N} decreasing to eE C, Then, 

P ( e ) -  m i n ( M P ) c O  {P(e , ) -min(  MP): n ~ N } C  WP(e) -min(MP) ,  

and 

[)  { WP(e~)- min(MP) :  n ~ N} = W P ( e ) -  min(MP)  

Proof. The first inclusion is obvious. For the second, let us reason by 
contradiction, and suppose that the element xo~ F is not WP(e)-minimal. 
This means that we can find another xl ~ F with 

f(Xl) <f(Xo) -- e. (1) 

As int(C) ¢ ~b, the formula under (1) is equivalent to 

f (  xo) - e - f (  x,) ~ int(C).  
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As a consequence of Corollary 3.5, Chapter 2, Ref. 6, for the sequence we 
have 

lim{f(xo) - e, - f ( x l ) :  n c N} =f(xo)  - e - f ( x l )  ~ int(C); 

and so, there exists an rn ~ N with 

f(xo) - e,~ - f ( x l )  ~ int(C).  

This means that f ( xO  dominates the element f(xo) - e,, ~ Y from below. 
The proof  of  the second statement is analogous. 77 

Proposition 2.4. Suppose that the sequence {en ~ N+: n e N} decreases 
to e E ~+. Then, 

N {P(Y*, e,) - min(mP) :  n ~ N} = P(y*, e) - min(MP).  

3. Saddle-Point Theorems 

Proposition 3.1. The element (xo, Ro, So) e X x L(Z, Y)  x L(V, Y )  is 
a P(e)-saddle  point of the Lagrangian q~L, iff 

(a) ~L(Xo, Ro, So) e P(e)  - min{~L(x, Ro, So) ~ Y: x c X}; 
(b) Xo C F; 
(c) - e  ~: Ro " h(xo) <= O. 

Proof. Condition (a) is identical with the first part of the definition. 
Suppose now that (xo, Ro, So) ~ X x L(Z,  Y)  x L(V, Y )  is a P(e)-saddle  
point By the conditions set on problem ( M P  ), -c~ # c~ L ( xo, Ro, So) ~ 0% 
implying Xoe A and Roe L+(Z, Y),  so we have 

qbL(Xo, Ro, So) =f(xo)  + Ro " h(xo) + So" l(xo). 

From the definition of P(e)-saddle  point, we also know that 

~L(x0, R, S) ~ qbL(Xo, R0, So) + e, (2) 

for each (R, S) e L(Z, Y)  x L( V, Y).  Selecting S = So and R = Ro, we obtain 

(R  - Ro) ' h(xo) ~ e, V R  ~ L+(Z,  Y) ,  (3) 

and 

( S - S o ) "  l (xo)~e,  V S 6 L ( V ,  Y) ,  (4) 

respectively. 
Suppose now that h(xo) <--0 does not hold. Then, by the strict algebraic 

separation theorem [see Ref. 10, Section 17.5(2)] applied for the sets 
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{h(xo)} C Z and - K  C Z, the existence of  a functional z*c  K + is guaranteed 
with the property 

(z*, h(xo)) > O. 

Let c->O, c c Y be an arbitrary, fixed element, and define the map R 
L(Z, Y) as 

R : z ~ [(z*, z)/(z*, h(xo)}](e + c) + Roz. 

For the operator R, we obviously have R c L+(Z, Y) and 

( R - R o )  " h ( x o )  = e + c, 

in contradiction with (3). 
A similar argument leads to contradiction with (4), if we suppose 

l(xo) # O. Here, we define an operator S c L( V, Y) as 

S: v-+ [(v*, v)/(v*,/(x0)}] " ( e +  c )+  Sot,. 

The last inequality in (c) is a consequence of XoC F and Ro6L+(Z, Y)  
while the first follows from (2), if we choose (R, S) = (0, 0). 

To prove the reverse implication, suppose that (a), (b), (c) are valid. 
From the last two, we have the following relations: 

f(xo) + Ro " h(xo) + So" l(xo) + e ~; f(xo) >= f(xo) + R . h(xo) + S" l(xo), 

for each (R, S) ~ L + ( Z, Y)  x L( V, Y), implying the missing relationship for 
(Xo, Ro, So) ~ dom ePL to be a P(e)-saddle  point. [2] 

Remark 3.1. The property stated in Proposition 3.1 is as much negative 
as positive; therefore it is a first sign of the problems to be seen in the 
sequel. Point (c), namely, turns into the well-known complementarity con- 
dition 

go"  h(xo) = 0 

in the case of  exact saddle points. In general, however, it only means that 

Ro" h(xo) ~ ( - C \ { - e  - C}) u {-e},  

and the right-hand side here is an unbounded set. 
The proof  of  the following statement is analogous. 

Proposition 3.2. The element (Xo, Ro, So) c X x L(Z, Y)  x L( V, Y)  is 
a WP(e)-saddle point of  the Lagrangian ~L iff 

(a) qbt(Xo, Ro, So) c WP(e)-min{c~1:(x, Ro, So)~ I2: x 6 X } ;  
(b) x o~ F; 
(c) - e ~  Ro" h(xo)~O. 
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Theorem 3.1. Suppose that the point (xo, Ro, So) ~ dom q~L is a P(e)- 
saddle point [resp., WP(e)-saddle point or P(y*, e)-saddle point] of  the 
Lagrangian q~L- Then, )Co c X is an approximate solution of  the minimization 
problem (MP)  in the respective sense where the approximation error is 

e' = e - Ro " h ( xo) 

in the first and second cases and 

e ' =  2 .  e (5) 

in the last case. 

Proof. By Propostion 3.1, xo ~ X is a feasible point. I f  x c F is another 
feasible point, then 

f ( x ) > - f ( x ) +  Ro • h (x )+ So" l ( x ) ~  f (xo)+ Ro" h(xo)+ So" I(xo)-e ,  

and this means that 

f ( x )  ~ f(xo) - (e - Ro" h(xo) - So" l(xo)). 

By feasibility, l(xo)= 0, and so the first case is proved. The proof  of  the 
rest is analogous, with the additional use in the last case of the transitivity 
of  the relation <- on ~. [] 

Remark 3.2. Instead of the relation (5) for the approximation error 
e ' c  Y, we have 

0<=e'~:2 - e  and 0 N e ' N 2 - e ,  

as a consequence of the points (c) in Propositions 3.1 and 3.2 respectively. 
However, unlike the scalarized case, transitivity for the relation of nondomi- 
nation or weak nondominat ion does not hold, and so we cannot claim in 
Theorem 3.1 that x o c X  is a P ( 2 .  e)-solution or WP(2.  e)-solution. 

Proposition 3.3. Suppose that problem (MP) meets the Slater-Uzawa 
constraint qualification. I f  xo ~ X is a P(y*, e)-approximate  solution of the 
problem, then there exist operators Ro~L+(Z, Y)  and Soc L(V, Y)  such 
that (xo, Ro, So) ~ dora ~L is a P(y*, e)-saddle point of  the Lagrangian ~L.  

Proof. It is supposed that x0 c X is an e-solution of the scalar-valued 
optimization problem 

min{(y*, f (x))  e R: x c A, h(x) <= O, l(x) = 0}. 
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By Theorem 2.1, there exist functionals r*c  K + and s*e  V ensuring that 
(xo, r*, s*) is an e-saddle point for the Lagrangian corresponding to the 
above scalar problem; i.e., 

(y*, f(xo)) + (r*, h(xo)) + (s*, l(xo)) - e 

<= (y*, f(xo)) + (r*o, h (x0)) + (s*, l(xo) 

<--(y*,f(x))+(r*o, h(x))+(s*, l(x))+ e. 

If c c C is an element with (y*, c)= 1, then, defining Roc L+(Z, Y) and 
Soc L(V, Y) with the following correspondences: 

Ro:z-~c ' (r* ,z) ,  S o : v ~ c . ( s * , v ) ,  

the statement is proved. D 

Theorem 3.2. Suppose that problem (MP) meets the Slater-Uzawa 
constraint qualification and core(C)~  qk If XoC X is a WP(e)-solution of 
problem (MP), then there exist operators Roe L+(Z, Y) and So~ L(V, Y) 
such that (xo, Ro, So) c dom @L is a WP(e)-saddle point of the Lagrangian 

Proof. By point (b) in Proposition 2.2, there exists a y*~ C + such 
that XoC X is a P(y*, (y*, e))-solution of (MP), and so Proposition 3.3 
implies that there exist a P(y*, (y*, e))-saddle point for ~L. Now, obviously 
for y*c  C ~, we have that (y*, Co)>0 for each coE core(C). From an easy 
argument, now we can conclude that this P(y*, (y*, e))-saddle point is a 
WP(e)-saddle point as well. [] 

Remark 3.3. A respective theorem concerning P(e)-solutions cannot 
be stated, since a y*c  C +, which is strictly positive for the whole cone 
C C Y, does not always exist. 

4. Primal and Dual Functions 

In this final section, we only deal with the scalarized case [i.e., P(y*, e)- 
type minimality], as otherwise the solution of the respective approximate 
primal problem carries little information, as is indicated in Remark 4.1. 

Definition 4.1. We call the following set-valued maps the approximate 
primal and dual functions of the minimization problem (MP): 

P(y*, e ) : X + 2  '7, 

P(y*, e) : x -~ P(y*, e) - max{~L(x, R, S): 

(R, S) ~ L(Z, Y) x L( V, Y)}, 
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and 

D(y*, e): L(Z, Y ) x L ( V ,  Y)->2 f ,  

D(y*, e) : ( R, S) --> P(y*, e) - min{OL(x, R, S): x ~ X}. 

The approximate primal and dual problems (P(y*, e)) and (D(y*,  e)) are 
defined in terms of the functions P(y*, e) and D(y*,  e). Accordingly, XoC X 
or (Ro, So) ~ L+(Z, Y) x L( V, Y) is a solution of the approximate primal or 
dual problems, if 

P(y*, e)(xo) c~ P(y*, 3 e ) -  min{U P(y*, e)(x):  x e x }  ~ 05 

o r  

D(y*, 2e)(Ro, So)c~ e(y*, e ) - m a x { U  D(y*, e )( R, S): 

R c L(Z, Y), S c L( V, Y)} # 05, 

respectively. 

Proposition 4.1. We have 

e ( y * , e ) ( x ) C e ( y * , e ) - m a x { f ( x ) - C } ,  VxaF ,  

P(y*, e)(x) = {oo}, Vx c X \ F .  

Proof. For x e F, we have 

{~L(x, R, S) c Y w {-oo, oo}: R e L+(Z, Y), S e L( V, V)} 

= {f(x)  + R" h(x): R c L+(Z, Y)} C f ( x )  - C, 

as well as 

sup{@*, dPL(x, R, S)) c N: R E L+(Z, Y), S ~ L( V, Y)} 

= sup{(y*,f(x) - c): c 6 C} = (y*,f(x)), 

implying the statement if x ~ F. The rest is obvious. 

Remark 4.1. If we define, e.g., the approximate primal problem (P(e)) 
in a corresponding manner to Definition 4.1, then the analogue of Proposi- 
tion 4.1, is valid, and in such a way that the set P(e)(x) is not bounde,) 
from below if x c F and h(x )¢0 .  As a consequence, it would have only 
-oo as a solution. As we know from, e.g., Ref. 11, this irregularity disappears 
if e = 0 .  

Proposition 4.2. (a) If xo c X is a P(y*,  e)-solution of problem (MP),  
then it is a solution of problem (P(y*, e)). 

(b) If Xo e X is a solution of  problem (P(y*, e)), then it is a P(y*, 4e) 
solution of  problem (MP).  
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Proof. (a) By Propostion 4.1, we have, for all x c F, that 

f ( x )  ~ P(y*,  e)(x). 

Therefore, it is sufficient to prove that 

f(xo) ~ P(y*, 3e) - min{U {P(y*, e)(x):  x ~ x}}. (6) 

Again, by the last proposition, 

U {P(y*, e)(x):  x c  F } c U  {P(y*, e ) -  max{f(x)  - C}} 

= {y c fr: 3x ¢ F, y <=f(x), (y*, y) ~ (y*, f (x))  - e}. 

As we supposed that x o e X  is a P(y*, e)-solution, we also have the 
inequality 

(y* , f (xo) ) -3e<=(y* , f (x ) ) -e ,  V x c F .  

Hence, by the definition of  P(y*, 3e) - ra in ,  the validity of (6) now follows. 
(b) Let us suppose now that x0 e X solves (P(y*,  e)), i.e., there exists 

a n  

Yo~ P(Y*, e)(Xo) n P(y*, 3 e ) -  min{U {P(y*, e)(x):  x c  x}}. 

Belonging to the first set means that 

)1o =f (xo)  - co, (7) 

where 

c o e C  and 0_-< (y*, co) _-< s. 

As we have, for all x c X \F ,  that 

P(y*, e )(x) = {0o}, 

it is enough to consider x c F, implying that 

f ( x )  e P(y*, e)(x). 

Hence, belonging to the second set implies that 

(Y*, go) - 3 e <= (y*, f (x)) ,  Vx e X, 

and by (7) 

(y*, f ( x o ) ) -  4e <= (y*, f(x)) ,  Vx ~ X. [] 

Definition 4.2. The element (xo, R0, So) c X x L(Z, Y)  x L( V, Y)  is 
called a P(y*, e)-dual  pair of solutions if these conditions hold: 

(i) x o e X  is a solution of  the problem (P(y*, e)); 
(ii) f(xo) ~ D(y*, 2e)(Ro, So) n P(y*, e) - m a x { U  {D(y*, e)(R, S): 

R e L(Z, Y), S e L( V, Y)}. 
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Remark 4.2. The definition could equivalently be formulated as: xo ~ X 
and (Ro, So)e L(Z, Y )x  L( V, Y) is a solution of the primal and the dual 
problem, respectively, where the latter is valid by way of f(xo)~ II. 

Theorem 4.1. (a) If (Xo, Ro, So) c dom ~L is a P(y*, e)-saddle point 
of the Lagrangian ~L, then it is a P(y*, e)-dual pair of solutions. 

(b) If  (x0, Ro, So) E X x L(Z, Y) x L(V, Y) is a P(y*, e)-duat pair of 
solutions, then it is a P(y*, 2e)-saddle point of the Lagrangian ~L" 

ProoL (a) On one hand, by Proposition 4.1, we have 

f(xo) ~ P(y*, e)(Xo). 

On the other hand, by Theorem 3.1, we know that Xo~ X is a P(y*, 2e)- 
solution of problem (MP). Together with Proposition 4.1, this yields the 
relation 

(y*,f(xo))-3e<=(y*,y), Vy~P(y*, e)(x), 

i.e., 

f(xo) ~ P(y*, 3e) - min{P(y*, e): x c X}. 

This proves the first requirement of (xo, Ro, So) ~ dora q)L being a P(y*, e)- 
dual pair of solutions. If (Xo, Ro, So)~ dora (PL is a P(y*, e)-saddle point, 
then, by (c) Proposition 3.2, we have 

(y*,f(xo)) - e <-_ (y*, CbL(xo, Ro, So)); 

and also, by the definition of saddle point, 

(PL(Xo, Ro, So) c P(y*, e) - min{CPL(X, Ro, So): x ~ X}. 

If we combine these two relations, we obtain 

(y*,f(xo))--2e<=(y*,OPL(X, Ro, So)), V x ~ X ;  

and as a consequence, 

f(xo) e D(y*, 2e)(Ro, So). 

We also have to prove that 

f(xo)~ P(y*, e)-max{V(y*, e)(R, S): Re  L(Z, Y), S~ L( V, Y)}. 

If this is not so, then there exist R eL(Z, Y), S EL(V, Y), y t~ 
D(y*, e)(R, S) such that 

(Y*, Yl) > (y*,f(xo)) + e. (S) 
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Here, it is necessary that R c L+(Z, Y) be valid, because otherwise 
D(y*, e)(R, S) = {-oo}, and consequently (y*, Yl) = -oo. Therefore, it is the 
finite values of ~L that define D(y*, e(R, S), i.e., 

D(y*, e)(R, S) = P(y*, e) - min{f(x) + R.  h(x) + S. l(x): x c A}, (9) 

implying that 

Yl =f(x l )  + R" h(xl) + S" l(xl), 

for some x~ c A. Using (c) in Proposition 3.2 and the formula under (8), we 
obtain 

(y*, y~) > (y*,f(xo) + R.  h(xo) + S. t(xo))+e. 

This and y ~  D(y*, e)(R, S), however, contradict (9). So, the second 
requirement is proved. 

(b) By the first part of the definition of the P(y*, e)-dual pair of 
solutions, the conditions imply that eo~p(y*,e)(xo); therefore, by 
Proposition 4.1, xo~F holds. By the second part, we know that 
-eo~ D(y*, 2e)(Ro, So); therefore, Roe L+(Z, Y), implying that 
(xo, Ro, So) c dora ~L- As a consequence of x0e F, we have 

(y*, cbL(Xo, Ro, So)) <= (y*,f(xo)), 

and so 

f(xo) ~ D(y*, 2e)(Ro, So) (10) 

implies that 

~bL(xo, Ro, S)~ P(y*, 2 e ) -  min{@L(x, R0, So): x ~ X}. (11) 

From (10), it also follows that 

(y*,f(xo)) - 2e <= (y*, f(xo) + Ro" h (Xo) + So" I(xo)), 

i.e., 

By 
therefore, XoC F is a P(y*, 2e)-saddle point of qbL. 

-2e  _<-(y*, Ro " h(xo) + So " l(xo)). (12) 

(11), (12) and the relation xocF, Proposition 3.2 can be applied; 
[] 
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