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Posynomial Geometric Programming 
as a Special Case 

of Semi-Infinite Linear Programming 

J .  R A J G O P A L  1 A N D  D. L. B R I C K E R  2 

Communicated by M. Avriel 

Abstract. This paper develops a wholly linear formulation of the 
posynomial geometric programming problem. It is shown that the primal 
geometric programming problem is equivalent to a semi-infinite linear 
program, and the dual problem is equivalent to a generalized linear 
program. Furthermore, the duality results that are available for the 
traditionally defined primal-dual pair are readily obtained from the 
duality theory for semi-infinite linear programs. It is also shown that 
two efficient algorithms (one primal based and the other dual based) 
for geometric programming actually operate on the semi-infinite linear 
program and its dual. 

Key Words. Geometric programming, semi-infinite linear program- 
ming, duality, generalized linear programming. 

1. Introduction 

Since its inception by Duffin and Zener in 1961-62, geometric program- 
ming (GP) has undergone a number  of  developments to emerge as an 
important  method for the analysis of  algebraic nonlinear programming 
problems. While the primal GP  problem is wholly nonlinear, the associated 
dual G P  problem has linear constraints and a concave objective function. 

This paper  develops an alternative structure for the GP pr imal-dual  
pair. It  is shown that the nonlinear primal GP  problem is equivalent to a 
semi-infinite linear program (SILP), i.e., a linear program with a finite 
number  of  decision variables, but infinitely many  constraints. The dual GP 
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problem thus becomes a generalized linear program (GLP), i.e., a linear 
program with a finite number of constraints, but with columns that are 
restricted to convex sets. In the case of geometric programming, these 
columns are restricted to be chosen from the set of extreme points of the 
convex sets mentioned above, so that the dual problem then becomes a 
linear program with infinitely many decision variables and a finite number 
of constraints. 

The primary advantage of this structure lies in the complete linearity 
of the constraints and the objective function. For the dual problem, only a 
small fraction of the infinitely many decision variables are going to be 
positive at the optimum. Similarly, for the primal problem only a small 
fraction of the infinitely many constraints are going to be active at the 
optimum. This immediately suggests a column-generation procedure for the 
dual, or equivalently a cutting plane procedure for the primal. Extensions 
of Kelley's cutting plane method (Ref. 1) for convex programs to the case 
of semi-infinite programming have been well documented (e.g., Ref. 2). 
One of the best primal based algorithms (Ref. 3) can also be viewed as a 
cutting plane method for the semi-infinite program mentioned above. 
Similarly, a column generation algorithm that works on the generalized 
linear programming dual (Ref. 4) is also very efficient at overcoming prob- 
lems traditionally associated with most dual-based procedures, such as 
computational difficulties, recovery of the primal optima from the dual 
solutions, and the need to solve subsidiary problems. Furthermore, it would 
appear that, with the current trends in new linear programming methods, 
there would be opportunities to develop efficient algorithms for posynomial 
GP that work on this linear formulation. 

2. Primal-Dual Pair in Geometric Programming 

We first introduce the GP primal-dual pair. The primal geometric 
programming problem is defined as follows: 

minimize go(X), (1) 

s.t. gk(X) ~ 1, k = 1, 2 , . . . ,  p, (2a) 

xj>0,  j =  1 , 2 , . . . ,  m, (2b) 

where gk(x)= Y~ ci fi % x) , k=0 ,  1 , . . . , p .  (2c) 
i~[k] j=l  

(GPP) 

The index set I numbers the n terms in the p+  1 posynomials, and the 
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index subset [k] numbers the terms in posynomial k, 

P 

I = { l , 2 , . . . , n } = U  [k], (3a) 
k = O  

[k] c~[/] = O, k#l ,  (3b) 

and we assume that ci > 0 for all i. Each function gk is a generalized 
polynomial, in that the exponents ao need not be positive integers but may 
be any real numbers, and a posynomial because each coefficient c~ is positive. 

The corresponding geometric programming dual problem is defined as 
follows: 

P 

(GPD) maximize v(a, a ) =  l-[ (c,/&) a' ]-I ~,~, 
i~ l  k = l  

s.t. Y~ 8i=ak,  k = 0 , 1 , . . . , p ,  
ic[k] 

Y. a~Si = 0, j = l , 2  . . . .  ,m,  
i c I  

(4) 

(5a) 

(5b) 

8f -> 0, i = 1, 2 . . . .  , n, (5c) 

Ao = 1, )~k -> 0, k = 1, 2 , . . . ,  p. (5d) 

Unlike the primal program, this program is linearly constrained. As an 
alternative to maximizing v(A, 8), one could maximize log v(a, 8), since the 
log function is monotone increasing. This log-dual objective is given by 

P 

log v(h, 6) = ~ (8~ log c~-8~ log 8~)+ Y~ hk log hk. 
i ~ l  k = l  

(6) 

This function has the attractive feature of being separable. Moreover, it is 
a concave function of 8 over the dual feasible region if each )tk is replaced 
by ~ 81 (Ref. 5). Several algorithms have been developed that make use of 
this property in order to solve the dual and then compute the primal solution. 
The duality theory for the above GP primal-dual pair has been well docu- 
mented, and complete results have been provided (Ref. 5). 

Duffin (Ref. 6) was the first to present a linearization of the GP primal 
problem. In order to do this, he introduced the concept of condensation, 
where a posynomial function is underestimated by a monomial (a posy- 
nomial with a single term). Given the original GP posynomial program and 
a set of nonnegative weights pl,  p 2 , . . . ,  Pn such that 

p i = l ,  k = 0 ,  1 , . . . , p ,  (7) 
ie[k]  
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the condensed program is obtained by replacing each function gk(X) with 
a new function gk(X), where 

& ( x ) =  1-I c, j / ~ , j  . (8) 
ia[k] 

Let 

II  (c, l p , }  ~' = e~, 
i~[k] 

piaij = dkj. 
i~[k] 

Then, we have 

&(x) = ek H (xj)~', 
j = l  

(9) 

(10) 

a monomial for k = 0, 1 , . . . ,  p. By the arithmetic-geometric mean inequality, 

~k(X) <-- gk(X), (1 1) 

SO that the feasible region for the original primal problem is now contained 
entirely within that of the condensed program. If we now make the transfor- 
mations 

log xj = zj, (12) 

lOg ~k= Ck, (13) 

we obtain the following linear program: 

(LP) minimize Co+ ~, t~ojZj, (14a) 
j= l  

s.t. ~ itkjZj<----Ck, k =  1 ,2 , . . . , p .  (14b) 
j= l  

Obviously, if we had a vector x which was feasible in the original primal 
GP problem, and chose a set of nonnegative weights pl, p2 , . . . ,  p, according 
to (7), and made the transformations (12) and (13), we could obtain a point 
z satisfying (14a). The converse is, however, not necessarily true; i.e., any 
solution to (14a) would not necessarily generate a solution vector x which 
is feasible in the original problem. Rather, this depends on the choice of 
the weights pl, p2,. • . , fin which are used to arrive at the linearized program. 
In fact, Duffin shows that, if x* is the optimal solution to the original 
problem, the linearized program with weights given by 

p~=c, f i ( x * ) % / [  ~ c~ fi (x~)a"J], i~[k] ,  (15) 
j = l  w k] j = l  
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will give rise to a solution z* to the linearized program and also generate 
a feasible solution to the original problem; he also shows that 

exp(Co+ ~ fiojZ*)=~o(X*)=go(x). (16) 
j = l  

Thus, each linearized program (14) is an approximation of the original 
program. The GGP algorithm of Avriel, Dembo, and Passy (Ref. 3) makes 
use of the above principle to solve posynomial GP problems; starting with 
an initial set of weights, it successively refines the feasible region of (14) 
until it obtains an optimal solution with the weights given by (15). This 
would then generate an optimal solution to the original problem. Dinkel, 
Elliott, and Kochenberger (Ref. 7) also make use of this concept of lineariz- 
ation, but include bounds on the variables in their development; their 
algorithmic procedure is quite similar to that of Avriel et al (Ref. 3). 

The above linearization provides only an approximation of the original 
feasible region; in fact each set of weights pi, i = 1, 2, . . . ,  n, provides one 
such approximation, and the algorithms seek the approximation that is 
sufficient to determine an optimal solution to the original problem. If all 
such approximations were to be considered, then the intersection of the 
various feasible regions would lead to the feasible region of the original 
problem. The combination of all possible approximations is equivalent to 
a linear program with infinitely many constraints. This suggests a semi- 
infinite linear program that is equivalent to the original posynomial GP 
primal problem. 

In the next section, we define a semi-infinite linear program and present 
some of the important results for the same. These results have been well 
documented and are therefore presented with references but without explicit 
proofs. In the succeeding section, we present the development of the GP 
problem as a semi-infinite LP and use the theoretical results for the latter 
to prove duality relationships for the GP problem. 

3. Semi-Infinite Linear Programming 

Semi-infinite linear programming (SILP) problems have a fixed number 
of decision variables, but infinitely many constraints. An excellent reference 
on SILP is Glashoff and Gustafson (Ref. 8). In its most general form, the 
primal SILP problem may be stated as follows: 

(P) minimize ~ cryr, (17a) 
r=l 

s.t. ~ ar(s)y(r) >- b(s), s c 5, (17b) 
r=l  
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where c-- (c~, c 2 , . . . ,  cn) is a fixed vector in R" and 5 is a parameter set 
with infinitely many members. Each s in 5 determines a constraint for (17b) 
above. The set of  feasible vectors y = (y~, Y2,. • . ,  Yn) is thus the intersection 
of  infinitely many half-spaces, and each s in 5 determines a vector a(s)  = 
[al(s) ,  a 2 ( s ) , . . . ,  a~(s)] in R ~ and a real number b(s).  

Associated with this program is a dual program which may be stated 
as follows: 

(D) Determine a finite subset (s~, s z , . . . ,  Sq)C ~ and nonnegative 
numbers (xl ,  x 2 , . . . ,  xq) so as to 

q 

minimize Y. xib(si), (18a) 
i=1 

q 

s.t. Y~ xiar(s~) = cr, r = 1, 2 , . . . ,  n, (18b) 
i = l  

xi>--O, i= 1 , 2 , . . . ,  q. (18c) 

The vector (s~, s 2 , . . . ,  Sq, x l ,  x 2 , . . . ,  Xq) is said to be feasible in program 
D when s ~ $ , i = l , 2 , . . . , q ,  and the constraints (18b) and (18c) are 
satisfied. It should be noted at this point that program D is a nonlinear 
problem in the variables (Sl, s 2 , . . . ,  Sq) which can be transformed into a 
linear problem only if the index set ~ is finite (Ref. 9). Let v(P) and v(D) 
denote the values of  programs P and D respectively, if they exist. It is then 
easy to prove the following weak duality theorem. 

Theorem 3.1. v(D) <- v(P). 

We next provide some preliminary definitions required for the state- 
ments of  the succeeding theorems in this section. 

Definition 3.1. If  A is any arbitrary set in R", then the convex conic 
hull of  A, denoted by CC(A),  is the smallest convex cone containing the 
convex hull of  the set A. It is readily seen that CC(A) is the set of  all 
nonnegative linear combinations of elements of the set A, i.e., 

CC(A) = / ~, x~ai, x~>-O, a ~ A ,  i=  1 , 2 , . . . ,  q, q>- 1}. (19) 
L i=1 

Definition 3.2. The convex conic hull CC(As) if the set 

A~ = {a(s)]s  ~ ~} C E n (20) 

is called the moment cone of  program P and is denoted by Mn. It may now 
be readily seen that (s~, s 2 , . . . ,  sq) is feasible in D if and only if the vector 
c lines in M, .  
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Next,  we denote the set of  vectors [b(s) ,  al(s), a2(s) . . . .  , a , ( s ) ]  f rom 
~,+1 by A s ;  i.e., to each vector in As ,  we append the appropriate  value of 
b(s). 

Definition 3.3. The moment  cone M,+I of  program P is defined as the 
convex conic hull of  ,4~, i.e., 

M o + ,  = cc(~,.). 

Definition 3.4. Program P is said to be superconsistent if there exists 
a vector y = (y~, y2 . . . .  , y , )  in R" such that 

a r ( S ) y  r > b(s) ,  for all s ~ S. 
r = l  

Theorem 3.2. I f  program P is superconsistent and if the set $ is a 
compact  subset of  ~" with real-valued functions a~, a2 . . . .  , a , ,  b which are 
all continuous on 5,  then the moment  cone M,+I is closed. 

We now state an important  theorem regarding the solvability of  
program D. 

Theorem 3.3. I f  M,+I is closed and program D is feasible with the 
solution being bounded  from above, then D has a solution. 

Theorem 3.2 provides us with conditions to verify that M,+I is indeed 
closed, while Theorem 3.3 states that, if  D is feasible and bounded  from 
above and if the conditions of  Theorem 3.2 are met, then D has an explicit 
solution. In  fact, if  the conditions of  Theorem 3.2 are met, D is automatically 
bounded  f rom above if it is feasible (by virtue of  Theorem 3.1). The feasibility 
of  program D can be established by means of  Haar ' s  extension of  the Farkas 
lemma for the case of  semi-infinite systems (Ref. 10). Several versions of  
this have been stated and proved (e.g., Refs. 9 and I1). This leads to the 
two strong duality theorems for semi-infinite linear programs. 

Theorem 3.4. Suppose that the following conditions are met for the 
pr imal-dual  pair P-D:  

(i) $ is a compact  set in En and the functions a~, a2 , . . . ,  a,, b are 
all continuous on $;  

(ii) P is superconsistent; 
(iii) v(P) is finite. 

Then, program D has a solution, and v(P) = v(D). 

Theorem 3.4 thus establishes a sufficient condition for D to have a 
solution; moreover,  when these conditions are met, the optimal value of  
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the dual problem at this solution equals that of the primal problem. The 
following theorem establishes similar conditions for the solvability of 
program P. 

Theorem 3.5. Suppose that the following conditions hold for the pair 
P-D: 

(i) v(D) is finite; 
(ii) the vector c = (c~, c2 , . . . ,  c,) lies in the interior of the set M,+t.  

Then, program P is solvable, and moreover v(P) = v(D). 

4. GP as a Special Case of SILP 

We now proceed to rewriting the GP primal problem (GPP) as a 
semi-infinite linear program. We also make use of the duality results of 
Section 3 to establish primal-dual relationships. The relationship between 
geometric programming and semi-infinite linear programming was first 
introduced by Gochet, Smeers, and Kortanek in 1973 (Ref. 12), but there 
does not seem to be any evidence of further work since then. Gochet et aL 
obtained a semi-infinite programming version of the GP primal by first 
restating the primal as a convex program and then replacing each nonlinear 
constraint by the set of all its supporting hyperplanes and adding some 
limiting constraints. The formulation that follows in this section is along 
similar lines, but displays the linearity more readily and provides a simple 
derivation of duality results for canonical programs. 

Before stating the GP problem as a semi-infinite linear program, we 
make the following definitions: 

Q k = { p ~ R "  pi=O, i~[k] ,  Y. p/ = l, p, >- 0}, (21) 
i t [ k ]  

Akj(p) = ~, aijPi, p c Qk ,  (22a) 
i = 1  

Akj(p) = ~, a~jp,, P ~ Qk, (22b) 
i~[k] 

Gk(p) = ~ Pi log(c,/p,), P ~ Qk, (23a) 
i = 1  

Gk(p) = • Pi log(c,/p,), P ~ Qk. (23b) 
i~[k] 
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The primal problem may then be stated as follows: 

(A) minimize zro, 

S.t. ~, "n'jAkj(P) >-- Gk(P), P ~ Qk, 
j = l  

k =  1,2 . . . .  ,p, 

m 

7rjAoj(P)+Tro>-Go(p), p6Qo.  
j = l  

(24a) 

(24b) 

(24c) 

It is readily seen that this is a semi-infinite linear program. The p + 1 sets 
Qo, Q 1 , . . - ,  Qp assume the role of  the set 5 defined in Section 3, and each 
vector p corresponds to a value of  parameter s. The constraint functions in 
(24b) and (24c) for a given k may be interpreted as the set of infinitely 
many supporting hyperplanes for a convex reformulation of the function 
gk. It should also be noted that Qk is not a part of the feasible region of 
program A; it is a parameter set used to generate the supporting hyperplanes 
for the constraint k. Each vector from Qk generates one such hyperplane, 
and each Qk thus generates infinitely many constraints in program A. 

We now state and prove a theorem that shows that this program does 
indeed determine a solution to the original GP primal (program GPP). 

Theorem 4.1. Suppose that the GP primal program (program GPP) 
is consistent and attains its constrained minimum at a point satisfying the 
primal constraints. Then, the vector zr given by 

-oo < 7ro = log go(X) < c~, 

-oo  < -,rrj = log xj < oo, j = l , 2  . . . .  ,m,  

is optimal for program A if and only if x is optimal for program GPP. 

Proof. First, suppose that the vector x satisfying the above relation- 
ships is optimal for program GPP. Then, since x is feasible in GPP, we 
have, for k =  1 , 2 , . . , , p ,  

Y, ci ~I x;'J<-l, 
i ~ [ k ]  j = l  

implying that 

Y~ c~ exp -~'ja o <- 1, 
~e[k]  j 1 
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which implies, by virtue of  the arithmetic-geometric mean inequality, that 

H ci exp -~jao Pi <-- 1, p E Qk. 
iE[k] j 1 

Therefore, 

[ Y. p~ log c~ exp -Trjaq p~ --0, (25a) 
ie[k] j 1 

pglog(c~/p~) <- Y, p~ ~ ¢rjaij, (25b) 
i~[k] iE[k] j = l  

zrjAkj(P) ~ Gk(p), P ~ Qk. (25c) 
j = l  

Similar to (25), for k = 0 we have 

m 

~" ¢i Z N;  0 = go(X)  = exp(zro), 
i~[o] j=l 

which implies that 

I] ci exp -zrja~ p~ <-exp(zro), P ~ Qo. 
i~[o] l j 1 

Therefore, 

[ Y. Pi log ci exp -Trjao Oi -< 7to, (26a) 
i~[0] j 1 

pilog(ci/Pi)<-7"ro + ~ Pi Z 7"gjaij, (26b) 
it[O] ia[O] j =  1 

~. "rrjAoj(p)+"n'o>~Go(p), p c  Qo. (26c) 
j=l 

From (25c) and (26c), 7r is feasible in program A. To show that it is also 
optimal, suppose that the optimal solution is attained at some other 7r~ < 7to. 
Then, 

a " ,>  [ Gk(p), k>- l, 
J=' ~rj gj tp)--~Gk(p)_~,o,  k = 0 ,  

for all p c Qk, k = O, 1 , . . . ,  p. Then, (25a) and (26a) hold for ~r -- rr', and 
we have 

P'< (1,  , (27) lq c/exp E -'rrjao P, 
iE[k] j 1 
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for all p ~ Qk, In particular, consider the vector O' for which 

p~ t _,B.jawj , = Ci ex  --'77"jaij Cw ex  t 
j 1 w k] j 1 

From (27) and (28), we have 

i,~[kl{wc[kll-I ~ Cw exp(j~=l--'n'jawj)}°~{exp(.trJo),"~ 1, 

Then since 

2 p ~ = l ,  
i~[k] 

we have 

Letting 

we have 

(=~ , ~ f l ,  k--l, 
Cw exp -~r.a~.I  --< J 'J f 

wc[k] j I ] [exp(zro), k =0.  

e x p ( - ~ )  = x~., 

ci ~ x.j'ao <-- ~. . k >- l, 
k---O. i~tk~ j=l ( exp t  7rb), 

Therefore, x '  is feasible in program GPP and 

But 

k>-t ,  

k=O. 

go(x')= ~ c, ~ xj%<_exp(~r~)<exp(~-o), since ~<Tro. 
ie[01 j = l  

i e [ k ] .  

(28) 

exp(~vo) = go(X). 

Therefore, 

go(x') < go(x),  

which contradicts the initial assumption that x is optimal for program GPP. 
Therefore, w is optimal for program A. 

In order to prove the second clause, suppose that 7r is optimal for 
program A. Then, (25) and (26) hold. Further, let us define the vector 

Pi = ci exp - ~rjaij Cw exp - ~sawj , i 6 [ k]. 
j 1 w k]  \ j = l  
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Applying the arithmetic-geometric mean inequality to (25a) and (26a), we 
see that 

x~ = e x p ( -  7rj) 

is feasible in program GPP. 
Suppose that this x is not optimal and that the optimal vector is some 

other x' .  Then, 

go(x') < go(x). 

Letting 

~-~ = log x~, j = l , 2 , . . . ,  m, 

~-~ = log g0(x'), 

relationships similar to (25c) and(26c) yield 

~ A k j ( P )  >-- Gk(p) ,  P ~ Qk, 
j = l  

7r~Aoj(p) >- Go(p) - 7/0, p c Qo. 
j=l 

Therefore, I t '  is feasible in program A and 

t m ~o - log go(x') < log go(x) = ~'0, since go(X') < go(x). 

This contradicts the initial assumption that fro is optimal for program A. 
Hence, the above vector x must be optimal for program GPP. This completes 
the p roof  for Theorem 4.1. [] 

In summary,  the above theorem states that, given a finite optimal 
solution 7r to program A, one could use the relationship 

xj = e x p ( - ~ / )  (29) 

to recover an optimal solution to program GPP, the original GP primal 
problem. We now look at the dual program corresponding to program A. 

Recall that the SILP dual (program D) was to find a finite subset 
(s~, s 2 , . . . ,  sq) of the set ~ and the nonnegative numbers (xl,  x2 . . . .  , xq) 

so as to 

q 

maximize ~ xib(si), 
i = l  

q 

s.t. ~, xiar(si) = cr, r = 1, 2 , . . . ,  n. 
i = 1  
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Although the number q could be arbitrarily large, we could reduce q to 
n + 1 by means of the reduction theorem (Ref. 8) and rewrite the dual as 

n + l  

maximize ~ xib(si), 
i = 1  

n + l  

s.t. Z xia,.(si) = cr, r = 1, 2 , . . . ,  n, 
i = 1  

s ~  N and xi->0, i = l , 2 , . . . , n + l .  

For our problem, let us use q points from each set Ok so that the total 
number of  dual variables is at least (m + 1) + 1 = m + 2, i.e., (p + 1)q should 
be greater than m + 2, implying that 

q>-(m+2) / (p+t) .  

If  ( m + 2 ) / ( p + l ) < l ,  we choose q = l ;  otherwise, let q be the smallest 
integer greater than (m + 2 ) / ( p  + 1). The dual may now be stated as follows: 

maximize 

s.t. 

where 

and 

P q 
E E k )tkCk(p w), 

k = O  w = l  

P q 

E E hkAk~(P~.) =0 ,  
k = O  w = l  

q 

how=l ,  hkw-0 ,  
w = l  

j =  1 , 2 , . . . , m ,  

k = 0 ,  1 , . . . , p  and w =  1,2 . . . .  , q, 

k k k k 
pw = ( p w , ,  p~_, . .  . ,  p w.) 

k k k p~,p2,.,.,pqEQk, k=O,  1 . . . .  ,p. 

However, it is easy to show that the function Gk(p) is concave; and 
since this is a maximization problem, the optimal solution would never 
have any more than one point from each set Ok. We may therefore always 
state the dual program (B) as follows: 

(B) Find a set of vectors pO, p ~ , . . . , p ~  from the sets 
Qo, Q1 , . . . ,  Qp, respectively 
()to, h i , . . . ,  )tp) such that 

P 

Z Akj(Pk)hk=O, 
k = 0  

) tO ~ 1 

Ak >-- O, 

and the nonnegative vector 

j =  1 , 2 , . . . ,  m, (30a) 

(30b) 

k =  1 , 2 , . . . , p ,  (30c) 
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and the function 

P 
~. Gk(pk)Ak ( 3 0 d )  

k=O 

is maximized. 
It should be noted that this program is nonlinear in pO, p l , . . . ,  pp  It 

can also be readily seen that this is a generalized linear program, as defined 
by Dantzig (Ref. 13), in the A variables, with the columns being restricted 
to the sets 

Fk ={(% a)] y6R, a ~ ' ,  y<-- Gk(p), a = Akj(p), pC Qk}, 

k = 0 ,  1 , . . . , p .  

In fact, as a consequence of  the maximization of the objective function, it 
is sufficient to restrict the columns to come from the set of boundary points 
of the sets Fk. If  each set Fk were polyhedral (unfortunately, this is not the 
case), we could actually rewrite the problem as a simple linear program. 
In this case, however, what we have is a linear program with infinitely many 
columns. 

Consider for this pair of programs (A-B), the moment cones corre- 
sponding to the sets M, and Mn+l of Section 3. Corresponding to the set 
A5 we define a set A o as 

AQ =(Ak(p)lpc Qk, k = 0 ,  1 , . . .  ,p)CR re+l, (31a) 

where 

ak(p) = (ak,(p), akz(p), • • •, Akin(p), fl), (31b) 

0, if k~>l, (31c) 
f l =  1, if k = 0 .  

A o is thus a set of  vectors (infinitely many in number), each of  which has 
as its elements the coefficients of (~rl, ~r2 , . . . ,  ~rm, ~ro) in the constraint set 
of program A. Similarly, we can define, corresponding to ,4s of Section 3, 
the set 

"~o = ("~k(P)lP ~ Qk, k = O, 1 , . . . ,  p)  C~ '~+2, (32a) 

where 

Ak(p)=[Gk(p),Ak(p)], k = 0 ,  1 , . . . , p .  (32b) 

Thus, a vector from '40 is a vector from AQ with the corresponding Gk(p) 
value appended to it. Also, as in Section 3 let 

M,, = CC(AQ), (33) 

M,,+~ = CC(/~Q). (34) 
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Theorem 4.2. Suppose that program A is superconsistent. Then, the 
moment cone M,+~ is closed. 

Proof. The result is obtained by applying Theorem 3.2 and noting that: 

(i) each set Q, is a compact subset of  ~ ' ,  since each element of each 
vector from Qk is in the compact set [0, 1]; 

(ii) the functions Gk(p) and Akj(p) are continuous on Qk. [] 

We are now in a position to state and prove the duality theorems for 
programs A and B. The first is the weak duality theorem, and the second 
is the strong duality theorem. 

Theorem 4.3. If  (pO, pl, . . . , pp, Ao ' Al . . . . .  Ap) is feasible in program 
B and (~ro, 7r~, . . . ,  ~r,,) is feasible in program A, then 

p 

~'o >- E AkOk(P~). 
k=O 

Proof. It follows directly from the weak duality theorem of Section 
3 (Theorem 3.1). 

Theorem 4.4. Suppose that program A is superconsistent and attains 
its minimum value v(A) at a point ~- satisfying the constraints of program 
A. Then: 

(i) 

(ii) 

program B is consistent and attains its maximum v(B) at a point 
(pO, p l , . . . ,  pp, Zo, A1 . . . .  , Ap) satisfying the constraints of  B; 
furthermore, v(B) = v(A); 

p~ = ci exp -~rja~ cw exp -Trjawj , 
j 1 w k] j 1 

i ~ [ k ] , k = 0 , 1  . . . .  ,p. 

Proof. Clause (i) is easily proved. In proving Theorem 4.2, we saw 
that each set Qk is a compact subset of  R" and that the functions Gk(p) 
and Akj(p) are continuous on this set. Then, since v(A) is finite and A is 
superconsistent, Theorem 3.4 implies that program B is feasible and has a 
solution and that, moreover, v(A) = v(B). 

In order to prove Clause (ii), we need the following lemma. 
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Lemma 4.1. 
tions 

Ck(p) = Ok(p)-- ~ Akj(P)~, 
j = l  

Co(p) = Go(p) - ~ Aoj(p)~'j - 7to, 
j = l  

is given by 

Given 7r e W "+~, the vector p* that maximizes the func- 

k>-l ,p~Qk,  

pc  Qo, 

p* = ci exp -7"rja o cw exp -Trjawj , 
w k] j 1 

i c [k]. (35) 

Proof of Lemma 4.1. Consider the function Ck(p) ,  k >-- 1, p ~ Qk, 

Ck(P) = Gk(p)-  ~ akj(p)~rj 
j = l  

it[k] j = l  i ] 

We thus solve the problem 

maximize t~k(p), 

s.t. ~ p~=l ,  pi~O, i t [k] .  
i~[k] 

The Lagrangian for this problem is 

L \ i c [ k ]  / 

Differentiating this with respect to pi and v, and setting the resulting 
expression equal to zero, we have 

log c , - 1 - l o g  p~*-(j~, 7rjaij)+v=O, 

E p * -  1 =0,  
ic[k] 

which imply that 

) p* = c~ exp -¢rja~j exp(v - 1), Y, p* = 1. 
j= iE[k] 
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Therefore,  

P*=c'exp(~=l--~r, aij)/[w~k]CweXp(~=l--~r;awj)] • 

For k = 0, Co(p) includes the additional constant -~ro, but the derivation 
of the optimizing P is identical to that for k > 0. This concludes the proof  
of  Lemma 4.1. [] 

Now, we return to the p roof  of  Theorem 4.4 and recall that ~" is optimal 
and feasible for program A. We therefore have 

.j=l i i~[k] 

~rj( ~ piaij)-I-~o > -- ~ pi log(ci/pi), p~ Qo. 
j = l  \ i ~ [ 0 ]  i t [ 0 ]  

Using Ak --> 0 and O k ~ Qk that were obtained in proving Clause (i), we have 

Z: Y 2 
k=O L i e [ k ]  j 1 

>- ~, Ak 2 pk log(ci/p~) . (36) 
k~O t.i~[k] 

Furthermore,  since the vector (pO, p l , . . . ,  pp, Ao ' )t I . . . .  , Ap) is feasible in 
program B, Ao = 1 and 

P 

2 hkAkj(P k) "= O, j = 1, 2 . . . .  , m, 
k~O 

we have, for j =  1 , 2 , . . . ,  m, 

P 

2 hk 2 aOp~=O, (37a) 
k~O i~[k] 

so that 

~ Z A k  Z aijPi = O, (37b) 
j ~ l  k=O i~[k] 

Ak ~ p~ ~ qrjaij=O. (37c) 
k=O i~[k]  j = l  

Furthermore,  v(P) = v(D) implies that 

P P 

1to= E AkOk(P k) = E Ak E P~ log(cJp~), 
k=O k=O i~[k] 
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and the fact that ho = 1 then implies that 
p 

Aorro = E Ak E p~log(cffp~). (38) 
k=O i~[k] 

From (36), (37c), and (38), we conclude that (36) is satisfied as a strict 
equality. This implies that 

k = l  i j = l  

I. ie[O] l j = l  

that is, 

k = l  j = t  

+ho{ Go(p°)-jZ_I Aoj(p°) - fro} =0. (39) 

Furthermore, since the vector (pO, p l . . . ,  pp, A o  ' } t l ,  . . . , A p )  is feasible in 
program B, 

.roakj(pk)>_{Gk(pk), k=  1 ,2 , . . . , p ,  
j = l  Go( p O) - ,tgo, k = O, 

implying that 

Gk(p k) -- ~ ,roAkj(p k) >-- O, k = 1, 2, . . . ,  p, (40) 
j=l 

Go(p°) - ~ ¢rjAoj(p°)-rro>-O, k=0.  (41) 
j = l  

Then, from (39), (40), (41) and the fact that Ak----0 for all k, 

hk{Gk(pk)_  ~ 7rjAkj(pg)}={O , k =  1 ,2 , . . . , p ,  ( 4 2 )  
j=l ~ro, k = O. 

Note that this is merely the complementary slackness theorem of linear 
programming, as applied to the semi-infinite program. 

Consider Eq. (42) above. We examine two cases. 

Case 1. Suppose that hk>O for some k->l. Note that h0 (=1) is 
always strictly positive. Then, 

Gk(pk)-- ~ 75Akj(pk)=o, (43a) 
j = l  

Go(p °) - ~ 7rjAoj(p °) - -  77" 0 = O, ( 4 3 b )  
j=l 
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Furthermore, since ~r is feasible in program A, (24b) indicates that the 
quantity 

{ Gk(p)--j~, 7rjAkj(P) } = fk(p) 

is nonpositive for all p c  Qk. Then, (43a) indicates that the vector pk 
maximizes the function (~k(p)- Similarly, (24c) and (43b) together indicate 
that the vector pO maximizes the function Co(p) over all p ~ Qo. Thus, for 
k = 0 and for k such that Ak > 0, Lemma 4.1 allows us to conclude that 

p~ = c, exp - ~-ja~j cw exp - 7rja~j , i ~ [ k]. 
\ j = l  w k] j I 

Case 2. Suppose that hk = 0 for some k--> I. Then, the dual objective 
(30d) and the constraint functions (30a) are unchanged for any choice of  
p from the set Qk. The same is also true of  Eq. (42). We may therefore 
actually choose the vector pk so that it satisfies 

pk=ciexp ~--'ajaij cwexp --Trjawj , i~[k]. 
\j~l w k] j 1 

This proves clause (ii); thereby, the proof  for Theorem 4.4 (strong duality 
theorem) is concluded. [] 

5. Algorithmic Aspects 

In this section, we briefly discuss two successful GP algorithms and 
demonstrate how they are actually based upon the SILP formulation of 
geometric programming (namely, programs A and B). The first (GRIDGP)  
is a column-generation procedure based on the dual program (Ref. 4). 
G R I D G P  proceeds by generating an initial set of vectors pk for each value 
of  k. Specifically, there are qk such vectors generated from each set Qk, 
where qk is the cardinality of  the set [k], and where each of these vectors 
~s a column from an identity matrix of order qk. It may be noted that this 
form is not a rigid requirement and that any initial set could be chosen as 
long as it has nonnegative elements that summed to 1; the above procedure 
merely obviates the need for a user-specified starting point and seems to 
work quite well in practice. The next step is to generate the column corre- 
sponding to these vectors, form the initial LP with these columns, solve it, 
and obtain the simplex multiplier vector. The reduced cost function corre- 
sponding to each set [k] is then maximized (these subproblems have a 
closed form solution given by (35) and proved in Lemma 4.1). If the 
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maximum value is positive, then the corresponding vector pk is generated 
and the column from this is added to the LP for the set [k]. The procedure 
is repeated until the maximum reduced cost function for each k is nonposi- 
rive at some iteration. This corresponds to the optimal iteration, and the 
simplex multipliers are exponentiated to obtain the optimal values of the 
primal variables in the original GP problem. 

The other algorithm (GGP, Ref. 3) is a general method which is also 
applicable to signomial GP problems. It proceeds by solving a sequence of 
posynomial GP approximations, and the procedure used for this is a 
cutting-plane algorithm based upon the SILP primal problem. Essentially, 
an initial set of constraints is generated from a user-specified starting point 
and the corresponding LP approximation is solved. A test is performed to 
check whether the current solution would be feasible in the original semi- 
infinite problem (with its infinitely many constraints). If this test is passed, 
then the current solution is optimal and the algorithm stops. Otherwise, a 
condensation is formed around the current solution via (8), (9), and (10), 
and this generates a new constraint via (14). The extra constraint is added 
to the current LP, thus cutting off a portion of the current feasible region. 
The procedure is repeated until the feasible region at some iteration is 
sufficiently small to determine the feasible region of the original problem, 
at which point the current solution also becomes the solution to the original 
GP primal problem. 

As the structure of these two algorithms indicates, they are extensions 
of the primal-simplex and dual-simplex methods to the case of semi-infinite 
linear programs. One works toward optimality while maintaining feasibility, 
while the other works toward feasibility while maintaining optimality. In 
fact, GRIDGP has been coded so as to keep track simultaneously of both 
the primal and the dual, and at successive iterations it is possible to view 
the progress being made by each in the direction of the optimum. The 
obvious advantage here is the absence of any explicit nonlinearity, and the 
results of computational experiments seem to indicate that these LP-based 
methods outperform consistently other GP procedures that operate directly 
on the original nonlinear versions. 

6. Summary 

The geometric progamming primal problem has been restated as a 
semi-infinite linear program; based on the well-documented results for 
semi-infinite linear programming, duality results similar to those developed 
by Duffin, Peterson, and Zener (Ref. 5) have been presented. Furthermore, 
an explicit relationship between the optimal primal and dual variables 
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(including those that correspond to terms in the primal constraints that are 
slack at the opt imum) has been presented. Finally, with the interior point 
methods that have been developed over the recent past, there should be 
further opportunit ies for exploiting this structure of  the GP  problem. 
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