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TECHNICAL NOTE 

Recession Cones and Asymptotically Compact Sets l 

C. Z A L I N E S C U  2 

Communicated by F. Giannessi 

Abstract. The present note is concerned with the study of the relations 
between the notions of asymptotic cones introduced by Dedieu and 
that of recession cones introduced by Luc. Conditions under which 
these notions coincide are given, as well as the fact that the compactness 
condition used by Luc is related (more restrictively) to asymptotic 
compactness. As an application of these notions, a result on proper 
efficiency in the sense of Lampe, established by Luc in finite dimensions, 
is extended to the infinite-dimensional case. 
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1. Introduction 

The notion of  recession cones has been known for a long time in the 
study of  convex sets. The corresponding notion for nonconvex sets was 
introduced by Debreu (Ref. 1) in finite-dimensional spaces and by Dedieu 
(Ref. 2) in infinite-dimensional spaces. Luc (Refs. 3 and 4) introduced 
another notion of recession cones, similar to that of  Debreu. One knows 
that the pairing between recession cones and compactness gives good results 
for closedness of  some sets (see Refs. 5, 6, 7) as well as stability results in 
mathematical  programming (see Refs. 8 and 9) and formulas for recession 
cones (see Refs. 7, 8, 9, 3, 4). The above applications are interesting and 
useful, not only in normed spaces, but also in topological linear spaces. 
For example,  sometimes one requires that the sum of  two weakly closed 
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sets be also weakly closed. So, the main purpose of  this note is to present 
some situations when these two notions coincide, other than the case of  
normed linear spaces mentioned by Luc. We also relate the compactness 
conditions of  Luc (Refs. 3 and 4) to asymptotic compactness. As an applica- 
tion of these notions, we extend a result of Luc (Refs. 3 and 4) concerning 
proper efficiency in the sense of Lampe, stated in finite-dimensional spaces, 
to the infinite-dimensional case. 

2. Preliminary Notions and Notations 

Throughout the paper, E is a separated topological linear space and 
E* its topological dual. ~V denotes the family of balanced closed neighbor- 
hoods of the origin in E, while ~ denotes the class of  bounded subsets of 
E;  when E is a locally convex space (in short, l.c.s.), the elements of  ~V 
are also supposed to be convex. For A c  E, cone(A), cl(A), and int(A) 
denote the generated cone, the closure, and the interior of  A, respectively 
(cone(Q) := {0}). By cone, we mean a nonempty subset C of E such that 
tx c C for t --- 0 and x c C. If U c ~V, Pu denotes the Minkowski functional 
associated to U. If C is a cone, we say that B e E  is a base for C if 
C = cone(B) and 0~ cl(B). The set A c E is relatively compact (r.c.) if cl(A) 
is compact; A is locally relatively compact (1.r.c.) if, for every a ~ A, there 
is V ~ ~V such that A n (a + V) is r.c. A is asymptotically compact (see Ref. 
5), in short a.c., if  there are E > 0 and V~ ~V such that ([0, e l .  A) n V is r.c., 
where A. A = {,Xal ;~ ~ A, a c A}. Note that, in this definition, one may take 

= 1 or other fixed e > 0. Similarly, we say that A is locally bounded if, 
for every a ~ A ,  there is Vc  °V such that A n ( a +  V) is bounded. A is 
asymptotically bounded (a.b.) if there are e > 0  and V~ °V such that 
([0, E]. A) n V is bounded. Note that, in this definition, one may also take 

---1 or other fixed e > 0. Of course, if the origin of  E has a bounded 
neighborhood (e.g., if  E is normable), then every subset of  E is locally 
bounded and asymptotically bounded. The asymptotic cone of A (see 
Ref. 2) is the set 

Ao~ := ('-') cl([0, t] .  A). 
t > 0  

It has been observed in Ref. 9 and elsewhere (and it is easy to show) that 
x e A~ itt there exist the nets (ti) c ]0, ~ [ ,  (x~) c A such that ti ~ O, t~x~ ~ x. 
If the topology of  E is metrizable, then we can work with sequences instead 
of  nets. 

In the next proposition, we collect some properties of asymptotically 
bounded sets. As its proof  is similar to that of Proposition 2.2 of  Ref. 9, 
we omit it. 
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Proposition 2.1. Let A, B c E and D c F, where F is another separated 
topological linear space. 

(i) A is a.b.<:>ct(A) is a.b.; if A is a.b. and B c  A, then B and A~ 
are a.b. 

(ii) If A is a.b., then A is locally bounded. If A is radiant in a ~ A, 
i.e., there exists A ~ ]0, 1] such that [0, A]. (A - a) c A - a, and if 
there exists Vc  ~ such that ( a +  V ) c ~ A  is bounded, then A is 
a.b. In particular, if A is convex or A is cone, then A is locally 
bounded iff A is a.b. 

(iii) If A and B are a.b., then A u B is a.b. Let B be bounded; then 
A is a.b. iff A + B is a.b. 

(iv) I f  A and D are a.b., then A x D is a.b. 
(v) I f  A is bounded or asymptotically compact, then A is a.b. 

Luc (Refs. 3 and 4) defined the recession cone of  A as 

Rec(A):= (-1 c l (cone(A\B)) .  
B e N  

As observed in Refs. 3 and 4, A~ c Rec(A) and they coincide when E is a 
normed space. 

3. Results 

First, we give a characterization of  asymptotically compact cones. 

Proposition 3.1. Let C c E be a cone. The following assertions are 
equivalent: 

(i) C is asymptotically compact; 
(ii) C is locally relatively compact; 
(iii) C has a relatively compact base; 
(iv) cl(C) has a compact base; 
(v) cl(C) is locally compact. 

Proof. 

(i)<=>(ii) is known (see Refs. 5 and 9) and is very simple to show. 
( i i )~( i i i ) .  Let C be 1.r.c.; then, there exists U e  ~v such that U n C 

is r.c. Take B:= C n (U \ in t (U) ) .  Of course, B is r.c., being contained in 
U n C, and 0 ~ U \ in t (U)  = cl(B). We also have cone(B) c C. Now, let x ~ C, 
x ~ 0. The set A = {t: t >- O, tx ~ U} is bounded; otherwise, {tx: t > 0} c C n 
U, contradicting the fact that C n U is r.c. Take to = sup(A); then, 0 < to ~ A. 
If  toX e int(U),  then tx E int(U),  for some t > to, which is a contradiction. 
Therefore, tox ~ B and so x c cone(B). Thus, C =cone(B) .  
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( i i i )~( iv ) .  Let C = cone(B),  with 0 ~ cl(B) and B r.c. Of course, el(B) 
is compact and el(C) = cl(cone(B)) = cone(cl(B));  as cone(el(B)) is closed, 
the other inclusion !lolds, too. Hence, el(C) = cone(cl(B)). 

( i v ) ~ ( v ) .  Let c l ( C ) = c o n e ( B )  with B compact, 0~B.  Then, there 
exists U ~ °U such that U n B = Q. It follows that U n cl(C) c [0, 1]. B. 
Thus, U n c l ( C )  is compact. Now, for every 0 ~ x ~  C, there exists t > 0  
such that x ~ int(tU).  Therefore, tU is a neighborhood of x and t U n  cl(C) 
is compact. 

( v ) ~ ( i ) .  As el(C) is locally compact, there exists U~  7/" such that 
U n el(C) is compact. Therefore, U n ([0, 1]. C ) =  U n C c U c~ el(C),  so 
that C is asymptotically compact. [] 

Remark 3.1. 

(a) The equivalence of  (iv) and (v) is shown in Ref. 10. 
(b) Luc (see Refs. 3 and 4) introduced and used the condition 

(CB) 3 B ~  ~ such that c l ( cone(X\B) )  has a compact base 
for a subset X of  E. 

The equivalence of  (iii) and (iv) shows that condition 
(CB) is equivalent to 

(CB') 3B c ~ such that c o n e ( X \ B )  has an r.c. base. 

(c) 

(d) 

If  cone(A) is a.c., then A is asymptotically compact. The converse 
may not be true (see Example 3.1). 
I f X  c E satisfies (CB) and every bounded subset of X is relatively 
compact, then X is asymptotically compact. Such a condition 
was used in Refs. 3 and 4 for obtaining the fact that a set has the 
domination property or that the sum of  two closed sets is closed. 

Example 3.1. Let E be an infinite-dimensional reflexive Banach space 
endowed with its weak topology, and let A = {x ~ E : IIx[t - 1}. This set A is 
w-compact and therefore a.c., but cone (A)=  E is not a.c. because all 
w-neighborhoods of  the origin are unbounded.  

Similar characterizations hold for asymptotically bounded cones. 

Proposition 3.2. Let C c E be a cone. The following assertions are 
equivalent: 

(i) C is asymptotically bounded; 
(ii) C is locally bounded;  
(iii) C has a bounded base. 
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Proof. The equivalence of  (i) and (ii) is mentioned in Proposition 
2.1. The proof  of the implication ( i i )~ ( i i i )  is, practically, the same as 
that of the corresponding implication from Proposition 3.1. For ( i i i ) ~  
(i), let C = c o n e ( B ) ,  with B bounded and 0~cl (B) ;  there exists V~ 
such that B n V = ~ .  Then, V n  C c [0, 1]. B, and so C is asymptotically 
bounded. [] 

Similar to asymptotic compactness, if cone(A) is a.b., then A is a.b., 
but the converse may not be true; the set A of Example 3.1 is w-bounded, 
but cone(A) = E is not w-asymptotically bounded. 

The next result gives a condition for having Rec(A) = A~. 

Proposition 3.3. Let A ~ E be nonempty, and assume that there exists 
a bounded subset Ao of E such that cone(A\Ao) is locally bounded. Then, 
Rec(A) = A~. In particular, the conclusion holds if A satisfies (CB). 

Proof. By the definition of Rec(A), Rec(A)=Rec(A\Ao) .  So, by 
Proposition 3.2, we may suppose that A c cone(B) for some bounded set 
B with 0 ~ cl(B). Let 0 # x E Rec(A); then, for all V E W and n ~ N, (x + V) n 
c o n e ( A \ [ O , n ] . B ) # ~ .  Therefore, for i = ( V , n ) ,  there exist t i>0 ,  ai~ 
A\[0,  n]- B such that x -  tiai ~ V. Hence, lim(t~ai) = x. As ai ~ A\[0,  n].  B, 
a~ = s~bi with si - n. Thus, lira s; = co. There exist M > 0 and io such that, for 
i >- io, t~s~ <- M .  Otherwise, for a subnet, tjsj --> oo. Then, 0 = l im( t j s j ) -~( t ja j )  = 
lim hi; i.e., 0 ~ cl(B), which is a contradiction. From the estimate tis~ < - M  

and s~ ~ oo, we get ti ~ 0. Hence, x E Aoo. [] 

The same conclusion can be obtained under different conditions. 

Proposition 3.4. Suppose that E is a locally convex space and A c E 
is asymptotically bounded. Then, Rec (A)=  A~. 

Proof. As A ~ c  Rec(A), let us show the converse inclusion. There is 
U 6  °U such that U n ([0, 1] .A)=:  B is hounded. Le tp  =Pv ,  0 #  x 6  Rec(A), 
and t > 0 ;  consider s>max{1 ,  ( l + p ( x ) ) / t } .  For every V~ q/, V c  U, ( x +  
V) n c o n e ( A \ s B )  ~ ~ ,  and so there exist a ~ A \ s B ,  t'>_O such that t 'a  

x + V. As a ~ sB  and s > 1, s - l a  ~ U and so p ( a )  > s. Since t 'a  - x ~ V c  U, 
1 >-p ( t ' a  - x )  >- t ' p ( a )  - p ( x )  >- t ' s  - p ( x ) ;  i.e., t'_< (1 + p ( x ) ) / s  < t. It follows 
that (x + V) n ([0, t].  A) # Q. Therefore, x 6 n t > o  cl([0, t] .  A) = A~. [] 

Note that the hypotheses of Propositions 3.3 and 3.4 cannot be ordered 
unless we are in particular spaces. 
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The next result was proved by Goossens (Ref. 7) and Zalinescu (Ref. 
9) independently for X asymptotically compact and by Luc (Refs. 3 and 
4) for E normableJ and X satisfying condition (CB). A direct proof  is 
possible, but  the result is substantially included in Refs. 7 and 9. 

Proposition 3.5. Let X and Y be nonempty subsets of  E. Suppose 
that X satisfies the condition 

(CA) 3Xoe  ~ such that X\Xo is asymptotically compact, 

and X~ n ( -  Yo~) = {0}. Then, (X  + Y)oo c Xoo+ Yoo. 

Proof. We may take XocX. Because X+Y=(Xou(X\Xo) )+ Y= 
(Xo+ Y)u((X\Xo)+ Y) and (Xo+ Y)oo = Y~, it is sufficient to suppose 
that X is a.c. As cl(X) is a.c. and (cl(A))o~ = Aoo (see Ref. 9), by Corollary 
3.12 of Ref. 9, c l ( X ) + c l ( Y )  is closed [hence c l ( X +  Y)=cl(X)+cI(Y)] 
and ( X +  Y)oocXo~+ Y~. Condition (C) (see below) was used only to 
obtain the converse inclusion; see Proposition 2.1 of  Ref. 9. [] 

The first part of the next result is contained in Ref. 7. 

Proposition 3.6. Let X, Y be nonempty subsets of  E. Suppose that X 
is asymptotically compact and X~ n ( -  Yoo) = {0}. 

(i) I f  Y is asymptotically compact, then so is X + Y. 
(ii) If  Y is asymptotically bounded,  then so is X + Y. 

Proof. Because X is a.c., there exists U e ~ such that U n [0, 1]. X =: 
B is r.c. Let us show that 

VE>0 ,  W e  °V, 3 8 > 0 ,  Ve °V: 

Vn[O, 8].(X+ Y)c(Un[O, 1].X)+(Wn[O,e]. Y). (1) 

In the contrary case, there are • > 0 and W e T ~ such that 

V6>O,  V~Tz: 

V n  [0, 8 ] . ( X +  Y ) ¢  ( U n  [0, 1 ] . X ) +  ( W n  [0, e l .  Y)=: A. 

Without loss of  generality we may take W = U. Therefore, for every n e N* 
and every V=  °V, there exist ti e ]0, 1/n] and xi e X, y~ e Y such that t~(xi + 
y~)e V\A, where i=(n, V). It follows that t~-->O and ti(x~+yi)~O. Take 
P =Pu.  If (p(tjx~)) has a bounded subnet, then the corresponding subnet 
(tjxj) is contained in tB for some t>O;  therefore, we may assume that 
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t~xj ~ x ~ X ~ .  It follows that tjy~ -~ - x .  Hence, x = 0. This implies that ~(xj + 
3~/) e A fo r j  ---jo, which is a contradiction. Therefore ,  p(t~x~) -~ oo. By Proposi- 
tion 2.2(v) of  Ref. ~J, there exist a subnet (xj) of  (x~) and (sj) c_ ]0, 0o[ such 
that sj-p(x~)-<l, s j x j ~ x # O .  Hence, s j ( x j + y j ) = ( s j / t j ) ( t j x j + ~ y j ) ~ O ,  
whence sjy~ ~ - x .  Thus, x e X ~  ( -Y~)={0} ,  which is a contradiction. 
Therefore (1) holds. 

(i) Suppose that Y is a.c.; then, there exists W e  7/" such that Y ~  
[0, 1]" W is a.c. Taking 6 and V given by (1), we get that X +  Y 
is a.c., since the sum of two r.c. sets is r.c. 

(ii) Proceed as for (i) and take into account the fact that the sum of  
an r.c. set and of  a bounded set is a bounded one. ~3 

Conditions like X~ n ( -  Y~) = {0} are essential in stating the closedness 
of X +  Y for X, Y closed sets. Even in the convex case, one can give 
examples when X + Y is not closed if X~o n ( -  Y~) ~ {0} (more exactly if 
X~o n ( - Y ~ )  is not a linear subspace). From the above results, we see also 
that this condition is crucial in stating other properties. 

Of course, it is interesting to have sufficient conditions for (X + Y)~ 
X ~ +  Y~. Goossens (see Ref. 7) obtained this relation under the hypothesis 
that X is radiant, while we obtained it under the condition 

(C) V x ~ X ~ ,  V( t i ) c ]0 ,  ce[, t~-~0, 3 ( x t ) c X : t t x ~ - - , x .  

Luc (Refs. 3 and 4) got the corresponding relation for recession cones under 
the hypothesis 

(CD) V a e R e c ( X ) ,  3 A e N ,  V t ~ O : ( t a + A ) ~ X C f g .  

We observed in Ref. 9 that every radiant set satisfies (C). The next proposi- 
tion gives the relation between (CD) and (C), and provides another situation 
when Rec(X) = X~. 

Proposition 3.7. Let X be a nonempty subset of  E. If X satisfies (CD) 
then Rec(X) = X~ and X also satisfies (C). The converse is not true. 

Proofl Let X satisfy (CD), and take a eRec (X) .  There exists a 
bounded set A such that (ta + A)  n X ¢: Q for every t > 0. Let (tt) c ]0, oe[, 
tt ~ 0. Then, there exist (at) c A and (xt) c X such that (1/ t t)a + at = xi, i.e., 
tix~ = a + tia~, for every i. As (a~) is bounded and ti ~ 0, we have a = lim(t~xt). 
It follows that a e X~ (taking tn = 1 /n )  and (C) holds. The other asssertion 
is proved by the following example. D 
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Example 3.2. Let E = ~2 and X = {(x, X 2) E ~2. X ~" 0}o X satisfies (C) 
but does not satisfy (CD). 

Indeed,  X~={J0 ,  u): u->0} and, for u->0 and 0 <  t~ -0 ,  there exists 
((x~, y~)) = ( ( (u /  t,) I/2, u /  t~)) ~ X,  t~(x~, y , ) ~  (0, u), i.e., (C) is satisfied. Let 
A ~  2 be bounded and M > 0  such that II(x,y)ii-<M for ( x , y ) e A .  
Then, (0, M 2 + M + 1 ) ~ X - A. I f  not, (0, M 2 + M + 1 ) = (x, x 2) - (a, b), with 
( a , b ) e A ,  x>-O, so that x = a < - M .  Therefore, M 2 + M + l = x 2 - b  < - 
M 2 +  M, which is a contradiction. Hence, (CD) is not satisfied. 

4. Application 

Let C ~ E be a convex cone, and let X be a nonempty subset of  E. 
The element x c X is a proper  efficient point (in the sense of  Lampe) of  X 
with respect to C if there exists a convex cone K c E such that X n (x - K )  = 
{x} and C\{0} = int (K);  we denote by PropE(X, C)  the set of  those elements 
x e E satisfying the above condition. Note that, for X o c  X, one has that 
X0 n PropE(X, C) c PropE(Xo,  C), but the converse is not generally true, 
even if X0 is a lower section of  X. 

Luc (Refs. 3 and 4) established the following result. Let E be a 
finite-dimensional space, let C = E be a convex cone with nonempty  interior 
such that e l (C)  n ( - c l ( C ) )  = {0}, and let X = E be nonempty.  Suppose that 
X~o~ ( - e l ( C ) ) =  {0}. Then, x e PropE(X, C)  iff there exists e e x + i n t ( C )  
such that x e P ropE(X n ( e - C ) ,  C). We want to extend this result to 
general locally convex spaces and so, throughout this section, E is such a 
space. In order to do this, we need the following result that does not seem 
to be new, but we cannot find a reference for it. 

Proposition 4.1. Let {0} ~ C c E be a convex cone. 

(i) I f  C has a convex base B, then there exist x * e  E*\{0}, ~ c  
ker (x*)=: /~  a convex set, and £ e  E, (Y, x * ) =  1, such that C = 
cone(Y+/~).  The set /~  is bounded if B is. Moreover,  x c  C\{0} 
iff (x, x*) > 0 and (x, x*) - Ix  e ; + lB. 

(ii) Let C = c o n e ( Y + B )  with ~ a n d / J  as in (i); then, Y + / ~ e i n t ( C )  
iff/~ ~ int ~/3. 

Proof. 

(i) Let C = cone(B),  with B convex and 0~ cl(B). By a separation 
theorem (of. Ref. 1), there exists x * e  E* such that (x, x*) > - 1 for all x e  B. 
Take Bo = {x e C: (x, x * ) =  1}, ~ ~ Bo, and /J = B o - Y  c E. It is easy to see 
that C = c o n e ( Y + / J )  and x e C \ { 0 }  if[ ( x , x * ) > 0  and ( x , x * ) - l x e , Y + B .  
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Assume now that B is bounded. If  x e Bo, then x = tb with t > 0 and b ~ B. 
Thus, 1 = (x, x*} = t(b, x*) >- t. Therefore, B0 c [0, 1 ]. B, and so/~ is bounded. 

(ii) Let C = cjme(Y+/~), with /~ c / ~  convex and (Y, x*} = 1, and let 
Y+/~e int(C).  There exist U c °g such that Y+/~+ U c cone(Y+/~). Then, 
/~+ U n / ~  c/~.  Indeed, if u ~ U~/~ ,  then Y+/~+ u e cone(Y+/}),  so that 
there exist t - 0 ,  b e / ~  with Y + b + u  = t(Y+b).  Hence, 1 = t (Y+b,x*} = t. 
It follows that b + u e/~. Hence , /~e  intt? B ~ 2~. Conversely, let b e intg/~. 
Then, there exists U e 7/" such that /~+ U n E c B. As the mapping 
q~:{u: ( u , x * ) > - l } ~  E, q ~ ( u ) = ( l + ( u , x * ) ) - ~ ( Y + b + u ) - Y - b  is contin- 
uous, and ~ ( 0 ) = 0 e  U, there exists VE °k" such that ~ ( u ) e  U for u e  V. As 
~(u)  e/~ for every u, we see that q~(u) e U n / ~  for u ~ V,, so that/~+ ~p(u) e /3  
for u e V. It follows that Y+/~+ u e cone(Y+ k}) = C for u ~ V, and so Y+ b e  
int(C). [] 

First we give the following partial extension of  Luc's result. 

Proposition 4.2. Let C c E be a cone with convex base and non- 
empty interior, and let X c E  be a bounded set. Suppose that x e 
PropE(C n (e - C), C) for some e e x + i n t ( C ) .  Then, x~  PropE(X, C). 

Proof. By hypothesis, there exists a convex cone K such that C\{0} c 
in t (K)  and X n (e - C)  n (x - K)  = {x}, and we must show that there exists 
a convex cone /~  such that C\{0} c int(/C) and X n (x - / ( )  = {x}. Without 
loss of  generality, we may assume that x = 0 and replace X by - X .  Thus, 
our hypothesis becomes 

C\{0} c in t (K) ,  X n ( C - e ) n K = { O } ,  (2) 

and the conclusion 

C\{0} c int(/~), X n / ~  ={0}, (3) 

for the same K and /~. By using Proposition 4.1, there exist x* e E*\{0}, 
/ ~c /~ :=ke r (x* )  a convex set, and Y e E ,  (Y ,x* )= l ,  such that C =  
cone(Y+/~). As i n t ( C ) C Q ,  inta B ¢ Q. Moreover, we may assume that 
0 e i n t a / ~  and e =  7Y with ? > 0 ;  otherwise, e =  i'(Y+/~), ?>0 ,  / ~ i n t ~ / ~ ,  
and replace/~ by/~ - /~ and Y by Y+ b. As X is bounded, there exists M > 0 
such that [(x, x*) I<- M f o r  every x~  X. Let us consider the Minkowski 
functional p =p~  of /~  in E. Then, 

int~ B= {x e E: p(x) < l } c  B c {x e E: p(x)-<- l}=cl( B). 

For s e ]0, 7 /M[,  let Bs = {x e/~: p(x) -< 1 + s} and C, = cone(Y + B,). Of  
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course C~ is a convex cone with C\{0}c  int(C,). Moreover, 

C A ( C - e )  

={x: =It-> O, 

C 

C 

C 

b e B s ,  x = t ( Y + b ) , x ¢ C - e }  

{x: 3t>-O, b e Bs, x = t(Y + b), (t + F)Y + tb¢~ C} 

{x: :I t>O, b e B s ,  x =  t ( Y + b ) , Y + ( t / ( t +  F))b ~ Y+/~} 

{x: 3 t > O ,  b e  Bs, x =  t ( Y + b ) , p ( b )  >- 1+ F/t} 

{x: 3 t>O,  b e  Bs, x =  t ( Y + b ) ,  s > - F/t} 

{xe E: (x,x*)>- Us}. 

So, X ~ ( C s \ ( C  - e)) = •. Therefore, by (2), 

Xn(CsnK)  

= X ~ ( ( C s \ ( C  - e))  u (C~ n ( C  - e))) n K 

= ( X  n K n ( C s \ ( C - e ) ) ) u ( X  c~ C ~ n (  C - e ) n  K )  

= C n ( o }  = { o ) .  

Tak ing / (  = Cs n K, (3) holds. The proof is complete. [] 

Remark 4.1. The result of Proposition 4.2 is true if x * ( X )  is 
bounded in ~. 

The result stated in Proposition 4.2 can be extended to unbounded sets. 

Proposition 4.3. Let C c E be a cone with convex base and nonempty 
interior, and let X c E be a nonempty set satisfying condition (CA). Assume 
that X ~ n ( - c l ( C ) ) = { 0 } .  If  x e P r o p E ( X n ( e - C ) , C )  for some ee  
x +in t (C) ,  then x e  PropE(X, C). 

For the proof of this result, we need the following lemma. 

Lemma 4.1. Let C=cone(Y+/} ) ,  where x*eE*\{0},  0 e / ~ c  
ker(x*)=:/~ is convex, Y eE ,  with ( ~ , x * ) = l ,  and take C , =  
cone(Y+ (1 + 1/n) cl(/})) for n e N*. Then, cl(C) = (-'1,-~1 cl(C,). 

Proof. As /~c ( l + l / n ) . c l ( / } ) ,  C c  C,, and so c l ( C ) c O , > l  cl(C,). 
Conversely, let xe("),>_~ cl(C,) and U e  °V be such that I(u,x*)l<- 1 for 
u e  U. Then, for every Ve ~V with V c  U and neN*,  (x+  V)n  C, # Q ;  i.e., 
there are vie V, tg -> 0, b~ e (1 + 1/n) .  cl(/~) such that x + v~ = tg (Y + b~), where 
i = (n, V). Hence, (x+ vi, x*) = t~, whence It, I -  I(x, x*)l + 1. As n(n  + 1)-lbi e 
cl(/~), there exists w~ e V such that n(n + 1)-~b~ + w~ =:/~ e/~. Thus, 

x + vi = ti(Y + (n + 1) n-~/~i - ( n  + 1)n-~w~) 

= t~(n + 1)n-l(Y +/~) - tin-aY - t~(n + 1)n-lw~. 
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Hence, x + v~ + t~(n + 1)n-lw~ + t~n-l£ ~ cone(Y +/})  = C. Taking the limit, 
we find that x ~ ct(C).  [] 

J 
Proof of Proposition 4.3. Let Xo c X be bounded such that X \ X o  is 

a.c. Of course, we may suppose that x = 0. Let x*, £, and /~ be as in the 
proof  of  Proposition 4.2. and take Cn = cone(Y+ (1 + 1/n). cl(/~)). There 
exists t ~ N *  such that x*(Xc~ (-C~)) is bounded. Otherwise, for every n, 
there exists x~ ~ X c~ ( -C~)  such that [(xn, x*)t-> n. Thus the sequence (x,)  
is unbounded.  Because Xo is bounded,  we may assume that (x,)  c X\Xo .  
As X \ X o  is a.c., by Proposition 2.2(v) of  Ref. 9, there exist a subnet (yj) 
of  (x,)  and (t~) c ]0, 0o[ such that t~ ~ 0 and tjyj ~ y ~ 0. Of course y 6 X~.  
As C,+1~ C,, it follows that - y ~ c l ( C ~ )  for every n. By the preceding 
temma, we get that - y ~  cl(C);  i.e., y~X~c~ ( - c l ( C ) ) ,  which is a contra- 
diction. 

Let ~ be such that x * ( X n ( - C ~ ) )  is bounded. As 0c  
PropE(X n (e - C), C), it follows that 0c  PropE(X c~ ( -C~)  c~ (e - C), C). 
As x*(X ~ (-C~)) is bounded, by Proposition 4.2 (see also Remark 4.1), 
0~ P ropE(Xc~( -Cn) ,  C). Therefore, there exists a convex cone K such 
that C \ { 0 } c i n t ( K )  and X ~ ( - C ~ ) c ~ ( - K ) = { O } .  But K ~ C ,  is a con- 
vex cone with C\{0}= int(C~) ~ i n t ( K )  = i n t ( K  c~ C~). Hence, x = 0 
PropE(X, C). [] 

Note that, for E finite-dimensional, the result stated in Proposition 
4.3. is a little bit more general than Luc's result, because we do not suppose 
that C is acute, i.e., c l ( C ) n  ( - e l ( C ) ) =  {0}. 

The above notion of  proper efficiency with respect to C is exactly 
Lampe's minimality. Other notions of proper  efficiency are also known. 
Among them, there are those due to Slater, Gerstewitz, and lwanow-Nehse 
(denoted by S, G, E in Ref. 12). It is easy to see that Propositions 4.2 and 
4.3 still hold for G-minimality and E-minimality (in fact, with the same 
proof),  but they do not hold for S-minimality. 
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