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Terminal Repeller Unconstrained Subenergy Tunneling 
(TRUST) for Fast Global Optimization 1 
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Communicated by G. Di Pillo 

Abstract. A new method for unconstrained global function optimiz- 
ation, acronymed TRUST, is introduced. This method formulates 
optimization as the solution of a deterministic dynamical system incor- 
porating terminal repellers and a novel subenergy tunneling function. 
Benchmark tests comparing this method to other global optimization 
procedures are presented, and the TRUST algorithm is shown to be 
substantially faster. The TRUST formulation leads to a simple stopping 
criterion. In addition, the structure of the equations enables an 
implementation of the algorithm in analog VLSt hardware, in the vein 
of artificial neural networks, for further substantial speed enhancement. 

Key Words. Global optimization, dynamical systems, terminal repel- 
lers, subenergy tunneling function, artificial neural networks. 

1. Introduction 

Many engineering applications can be formulated as nonlinear function 
optimization problems in which the function to be optimized possesses 
many local minima in the parameter region of  interest. In most cases, it is 
desired to find the local minimum at which the function takes its lowest 
value, i.e., the global minimum. The problem of designing algorithms that 
can distinguish between the global minimum and the numerous local minima 
is known as the global optimization problem. This paper presents a new 

1This work was supported by the Department of Energy, Office of Basic Energy Sciences, 
Grant No. DE-A105-89-ER14086. 

2Graduate Research Assistant, Department of Electrical Engineering, California Institute of 
Technology, Pasadena, California. 

3Head, Nonlinear Science and Information Processing Group, Jet Propulsion Laboratory, 
California Institute of Technology, Pasadena, California. 

4Assistant Professor, Department of Mechanical Engineering, California Institute of Tech- 
nology, Pasadena, California. 

97 
0022-3239/93/0400-0097507.00/0 ~ 1993 Plenum Publishing Corporation 



98 JOTA: VOL. 77, NO. 1, APRIL 1993 

global optimization scheme whose acronym is TRUST (terminal repeller 
unconstrained subenergy tunneling). In this approach, we formulate 
optimization as the solution to a deterministic dynamical system which 
incorporates a novel subenergy tunneling functional and terminal repellers. 
In addition, the TRUST formulation leads to a well-defined stopping criterion. 

In standard benchmark tests, TRUST has proven to be significantly faster 
than previously published techniques. More importantly, this algorithm has 
been especially designed for implementation in parallel analog VLSI cir- 
cuitry (i.e., artificial neural network architectures) for substantial speed 
enhancements. In related work (Ref. 1), the authors have successfully 
designed, fabricated, and tested analog VLSI circuits which implement most 
of the basic components of this algorithm. We hope to report in a future 
article a complete hardware implementation. 

The TRUST computational scheme can be guaranteed to find the global 
minimum for functions of one variable. The method is currently not guaran- 
teed to find the global minima in multiple dimensions. However, in the 
multidimensional case, the method will always escape from one local 
minimum to another with a lower functional value. In practice, the global 
minimum was found in all benchmark simulations, including 10- 
dimensional test functions. Furthermore, the structure of the optimizing 
dynamical system is highly parallel, allowing implementation in a form 
whose computational complexity is only weakly dependent on problem 
dimensionality. 

The global optimization problem to be considered in this paper can 
be stated as follows. Let f(2)  : R n ~ • be a twice continuously differentiable 
function, where 2 is a vector of n state variables or parameters. Hereafter, 
f (2)  will be referred to as the objective function. The goal is to find the 
value 2oM of the state variables which minimizes f(2),  

f *  =f(XoM) = min{f(2) 12 ~ ~}, (1) 

where ~ is the domain of interest over which one seeks the global minimum; 
is assumed to be compact and connected. In the sequel, and without loss 

of generality, we assume @ to be the hyperparaltelepiped 

= {xjlxjL <- xj <~xju ; j  = 1, 2 , . . . ,  n}, (2) 

where XjL and xju are respectively the lower and upper bounds on the j th  
state variable. The compactness of ~ and continuity of f(2)  ensure that 
f (2)  is bounded away from infinite magnitude in the domain of interest. 
Further, we assume that every local minimum 2LM of f(2) in ~ satisfies 
the conditions 

Of(xLM )/02 = 0, (3) 

yT(o2f(2LM)/022)2 >- O, V2 e R". (4) 
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We further assume that the global minimum satisfies these local minimum 
criteria and that the global minimum does not occur on the boundary of 9. 

Section 2 reviews previous global optimization approaches which are 
relevant to this work. This review focuses on tunneling methods, since the 
TRUST algorithm introduces a novel approach to tunneling. Section 3 pre- 
sents the one-dimensional TRUST optimization algorithm. Section 4 discusses 
the convergence properties of the one-dimensional algorithm, while Section 
5 considers the multi-dimensional TRUST scheme. Section 6 presents the 
results of benchmark simulations and compares the TRUST performance to 
other global optimization methods. Section 7 summarizes our conclusions. 

2. Methodologies for Global Optimization: Background 

Previously developed global optimization algorithms can be roughly 
categorized into two classes: probabilistic and deterministic. An extensive 
review of probabilistic computational schemes can be found in Ref. 2. Here, 
we focus on deterministic tunneling methods, as these are most closely 
related to the concept presented in this paper. 

Tunneling for global optimization was introduced by Levy and 
Montalvo (Ref. 3). Their tunneling method is composed of a sequence of 
cycles, where each cycle has two phases: a local minimization phase and 
a tunneling phase. In the first phase, minimization algorithms such as 
gradient descent or Newton's method are employed to minimize f(g).  We 
assume that, starting from an initial point ~o(o) the minimization converges 
to the first local minimum ~(*), which satisfies conditions (3) and (4). 

In the second phase, a tunneling function is defined, 

r (  x, x ~(*)) = ] (  X) / [  ( X - X~(*)) T ( x - ~(*))F, (5) 

where 

f (X)  =f(~)  -f(x~(*)). (6) 

The tunneling phase searches for the zeros of T(g, g~(*)); that is, T(g, :~1(.)) = 
0 is solved for any g~(o) such that g~(o)# g~(.) but f(~(o))=f(~l(.)).  The 
denominator of (5) is a pole of strength o~, located at the previously 
determined local minimum ~1(*), thus preventing the zero-finding algorithm 
from rediscovering gt(*) as a zero of the tunneling function. The zero ~1(o) 
of (5) is used as the starting point of the next cycle, and the process is 
repeated sequentially, as shown in Fig. 1, until a stopping criterion, such 
as the failure to find a zero within a prescribed CPU time, is met. The last 
local minimum to be found is assumed to be the global minimum. 
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Fig. 1. Schematic diagram of tunneling operation. 
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If we denote 97 i(*) as the minimum reached during the ith minimization 
phase, the tunneling algorithm implements a global descent property, 

f(~i+,(*))<_f(~i(*)). 

However, this method has a number of disadvantages: 

(i) The pole strength a is problem dependent. While searching for a 
zero, a should be incrementally increased until the pole in the denominator 
of (5) becomes strong enough to eliminate the last local minimum of higher 
order. Every increase in a requires the algorithm to be restarted, leading 
to increased computational effort. 

(ii) The tunneling algorithm may find another local minimum ,2(*), 
such that f()71(*)) =f(~72(*)). In this case, an additional pole must be placed 
at the second local minimum, and the tunneling process must be restarted. 

(iii) Division by a pole causes smoothing of f(~)  as ~-)oo; that is, 
f(~)--) 0 as ~-> oo. This smoothing increases with a, yielding a tunneling 
function that becomes very fiat. In this case, zeros can be difficult to detect 
correctly. 

(iv) The zero-finding algorithm in ReL 3 is based on a modified 
Newton iteration which requires finding the roots of a scalar function with 
multiple variables. This can be a computationally expensive procedure, and 
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as yet there are no globally convergent zero-finding algorithms. Thus, 
stopping critieria cannot easily be defined. 

The difficulties associated with finding the zeros of (5) have been partly 
overcome by the dynamical tunneling algorithm of Yao (Ref. 4). His 
dynamical tunneling procedure has two phases: dynamic optimization and 
dynamic tunneling. The dynamic optimization phase implements minimiz- 
ation via gradient descent, 

= -of(~)/O,~. (7) 

Starting from an initial point ~o(o~, the system (7) reaches its first equilibrium 
at a local minimum x~¢*k However, in the second phase, instead of finding 
the zeros of the tunneling function (5), Yao defines an energy function, 

E(g, gl(*~) = T(X, if*(*))+ k zu(z) dz, (8) 
, / 0  

where u(z) is the Heaviside step function, 

1, z_>0, 
u(z)= 0, z<0 .  (9) 

The energy function in (8) is minimized in Yao's tunneling phase, instead 
of finding the zeros of T()~, ff~(*)). The derivative of (8) with respect to its 
state vector ~ is 

oE(~, Y?~*~)/oX 

(of/oX) II X - X ~(*) II :~  - 2 ~  (X - X "* ) )  II ( ~  - X'(*>)II z(° - ' ) ] ( ~ )  

+ k(of(x)/ox)f(x)u(f(x)). (lO) 

From (10), it is clear that the second term in (8) enforces the constraint 
f (~)  <- 0 [i.e., f(X) ---f(Xl(*~)] if the magnitude of k is chosen large enough. 
When gradient descent is applied to E(~,g  I~*)) in (8), we obtain the 
dynamical system 

x = -OE(g, gl(*))/OX. (11) 

The initial conditions for this system are X~¢*~+g, where g is a small 
perturbation which displaces the system from the tunneling function pole 
located at ~"*). When (11) converges to its final equilibrium state, it 
minimizes the tunneling function with respect to the constraint f ( g ) -  O. 
Thus, the system in (11) will reach an equilibrium point g~o> that lies in 
another basin of attraction, with functional values lower than f(X*(*>), if 
one exists. This new equilibrium point will be the starting point for the 



102 JOTA: VOL. 77, NO. 1, APRIL 1993 

dynamic optimization phase of the next cycle. The procedure is repeated 
until a new equilibrium in a lower valley cannot be found in a prescribed 
amount of time. It is then assumed that the last minimum is the global 
minimum. 

This approach also has a number of deficiencies: 

(i) The pole strength a must be chosen sufficiently high to enable the 
pole in the denominator of (5) to cancel the last local minimum of higher 
order, and thereby prevent restarting of the tunneling phase, as this necessi- 
tates backtracking of (11). 

(ii) The penalty constant k is problem dependent, and a global 
minimum cannot be guaranteed for a prescribed k. 

(iii) An implementation of global optimization in terms of the solution 
of two different dynamical systems in two different phases makes the 
algorithm impractical for implementation in analog VLSI hardware of the 
neural network type. A method based on a single differentiable equation 
would be preferable. 

In this article, we introduce a deterministic global optimization 
methodology which is also based upon the concept of dynamic tunneling. 
However, in contrast to these previous approaches, tunneling is implemented 
here in a substantially different manner, by employing so-called terminal 
repellers and a novel subenergy tunneling function. The next section intro- 
duces these concepts and assembles them into an optimization algorithm 
which is the solution of a single vector differential equation. This characteris- 
tic simplifies the hardware implementation of our algorithm. 

3. Terminal Repeller Unconstrained Subenergy Tunneling Algorithm 

3.1. Subenergy Tunneling Function. We define a subenergy tunneling 
function, or subenergy function for short, as follows: 

Esub(£, X*) = log(l/[1 + exp( - ( f (£ )  + a))]), (12) 

where 

f (£ )  = / (£ )  - f ( 2 * )  (13) 

and a is a constant whose value will be considered below. In the above 
expression, 2" is a fixed value of 2, whose selection will also be discussed 
in the sequel. 

Equation (12) is a nonlinear but monotonic transformation of f (2)  
which has several useful properties. First, the derivative of Esub(£, 2") with 
respect to 2 is 

OEsub(X , 2*)/02 = (of(2)/OYQ(1/[1 + exp(f(2)  + a)]). (14) 
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Since 

1/[l+exp(f(g)+a)]>O, ~2~@, 

we conclude that 

OE~ub(~,~*)/O:g=O ¢¢' of(~)/O~=O. (15) 

From (15), it is clear that E~uu()7, ~*) has the same critical points as f ( ~ )  
and the same relative ordering of  the local and global minima. In other 
words, E~ub(~, ~*) is a transformation o f f 0  7) which preserves alt properties 
relevant for optimization. In addition, this transformation is intended to 
have the following effect. We wish Es~b(~, ~*) to asymptotically but quickly 
approach zero for f ( ~ ) - - 0 .  Second, we would like to leave f ( ~ )  nearly 
unmodified for f (~ )  < 0. Hereafter, f()~*) will be referred to as the zero 
subenergy limit, since 

Esuu(x, x*) --- 0, for f (~ )  >-f(~*). 

The monotonicity of the transformation is not affected by the particular 
value of the constant a, though the asymptotic properties are affected by 
its value. Figure 2 plots E~b(~, g*) vs f ( ~ )  for various values of  a. The 
algorithm can be formulated to work for nearly any reasonable value of 
this parameter. In subsequent analyses, the necessary and sufficient values 
of  other TRUST algorithm parameters are derived in terms of  a. However, 
for practical applications, a value a = 2 is chosen, as it leads to the most 
desirable asymptotic behavior of  the subenergy tunneling transformation. 

Figure 3 shows an example of  a one-dimensional function, 

f(x) = [sin(2x) - x  - l ]  2, 

to which the transformation in (12) has been applied for the case 

x* = -6.80678, a = 2. 

F-WB(~,~*) 

a =  6 4 2 0 -2 

f (~) -  f (~) 

Fig. 2. Behavior of E~ub(~, 2*) vs f(~7) for various values of a. 
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Fig. 4B. Subenergy tunneling transformation applied to the example of Fig. 4A. 

Figure 4 shows an example of  the transformation applied to the two- 
dimensional function: 

f(x, y) = (x - 0.1)2(y _ 0.2)2_b 3 sin(0.2 + 1.5 ~rx 2) sin(0.3 + ~ry) 

for the case 

(x*, y*) = (0, - 3 /2 ) ,  a = 2. 

As can be observed, the subenergy function has the following approxi- 
mate behavior, which is key to this optimization algorithm: 

~0, f (~ )  -> O, i.e., f (~ )  >-f(~*), 
Es~b(& ~*) (16) 

~*(f(~), )~(~) < O, i.e., f(g) <f (~*) ,  

OE~b(g, .~*)/O~ = {O0)(g)lOg ' f(x)f(~) < f(x*)-->f0?*)' (17) 

Next we summarize and review the properties of terminal repellers. 

3.2. Terminal Repellers. An equilibrium point xeq of  the dynamical 
system 

~ = g ( X )  (18) 

is termed an attractor (repeller) if no (at least one) eigenvalue of  the 
matrix g~, 

Jd = sg( ~¢q)/a~, (19) 
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has a positive real part. Typically, dynamical systems such as (18) obey the 
Lipschitz condition 

log( oq)la. l < oo, (20) 

which guarantees the existence of a unique solution for each initial condition 
2(0). Theoretically, the system relaxation time to an attractor and escape 
time from a repeller is infinite, because the transient solution cannot intersect 
the corresponding solution to which it tends. 

Zak, Barhen, and Toomarian (Refs. 5-9) have used the concept of 
terminal attractors and repellers in the context of neural network dynamics 
to obviate the infinite-time solution limitations of regular attractors and 
repellers. Based on the violation of the Lipschitz condition at equilibrium 
points, these points induce singular solutions such that each solution 
approaches the terminal attractor or escapes from the terminal repeller in 
finite time. 

For example, the system 
= - - X  1 / 3  (21) 

has an attracting equilibrium point at x = 0 which violates the Lipschitz 
condition, 

t d : ~ / d x [  = l -  1 / 3 x - 2 / 3 1  ~ ~,  as x ~ 0. (22) 

The attractor is termed terminal, since from any initial condition xo ~ 0, the 
dynamical system in (21) reaches the equilibrium point x = 0 in a finite time, 

[ x~O 

to = - x - ' / 3  d x  = ( 3 / 2 ) x ~ / 3 .  (23) 
4¢ 9C o 

Similarly, the dynamical system: 
= x 1/3 (24) 

has a repelling unstable equilibrium point at x = 0 which violates the 
Lipschitz condition. Any initial condition which is infinitesimally close to 
the repelling point x = 0 will escape the repeller, to reach point x0 in a finite 
time, 

I f  ° 
t o = X -1 /3  d x  = ( 3 / 2 ) x 2 o / 3 .  (25) 

The behavior of the terminal attractor and repeller is shown in Fig. 5. 
Terminal repellers, in conjunction with the subenergy tunneling function 
introduced above, form the basis of our global optimization algorithm. 

3.3. TRUST Algorithm: One-Dimensional Case. We now assemble the 
above concepts into the TRUST global optimization scheme. For simplicity, 
the case of one-dimensional optimization is considered first. Section 5 
discusses the multi-dimensional case. 
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Fig. 5. Behavior of terminal attractor and repeller. 

Let f ( x )  be a scalar function which is to be globally minimized over 
a given interval. Define a new cost function to be minimized, 

E(x, x*) = log( l / [1  + e x p ( - ( / ( x )  + a))])  

- (3/4) k ( x -  x*)4/3u(~r(x)) 

= Esub(x, x * ) -  kErep(X, X*)u(f(x)).  (26) 
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The Heaviside step function u(. ) was defined in (9), andf (x )  = f ( x )  - f ( x * )  
as in (13). The first term in the right-hand side of Eq. (26) corresponds to 
the subenergy function; the second term is referred to as the repeller energy 
term, i.e., a term which when differentiated will yield an expression of the 
form (24). The parameter k > 0 is referred to as the power of the repeller. 
The selection of its value will be addressed below. 

Application of gradient descent to E(x ,x* )  in (26) results in the 
dynamical system 

.~ = -OE(x,  x*)/Ox 

= - ( O f ( x ) / O x ) ( 1 / [ l + e x p ( f ( x ) +  , 1/3 ^ a ) ] ) + k ( x - x  ) u ( f ( x ) )  

+ (3/4)k(x  - x*)4/36(f(x)).  (27) 

The third term in the r.h.s, of Eq. (27) is identically zero for any x. 
Consequently, (27) simplifies to 

2 = - ( O f ( x ) / O x ) ( 1 / [ l + e x p ( f ( x ) + a ) ] ) + k ( x - x * ) l / 3 u ( f ( x ) ) .  (28) 

Equation (28) represents gradient descent on E(x, x*); therefore, its equi- 
librium state will be a local minimizer of E(x,  x*). 

To qualitatively discuss the behavior of this sytem, we refer to the 
components of (28) as follows: 

1/[ 1 + exp(f(x)  + a)] = gradient multiplier, 

- (of(x)/Ox)(1/[t  + exp(f(x)  + a)]) = subenergy gradient, 

k(x  - x*)l/3 u ( f ( x )  ) = repeller term. 

The dynamical system (28) autonomously switches between the following 
two phases: 

Phase I. This phase, which is effectively a tunneling phase, is charac- 
terized by f (x )>- f (x*) .  Since the gradient multiplier rapidly tends toward 
zero for increasing f ( x ) ,  the subenergy gradient magnitude is nearly zero, 

oEsudx, x*)/Ox ~- O. 

In other words, the subenergy function is nearly flat and approximately 
zero in magnitude in the vicinity of x. Since the subenergy gradient magni- 
tude is negligible compared to the magnitude of the repeller term, in this 
phase (28) behaves approximately as 

)~-.k(x-x*)l/3. 

Thus, the dynamical system (28) is repelled from x* across the surface of 
the flattened subenergy tunneling function, until f ( x )  <f(x*) .  In effect, this 
phase tunnels through portions o f f (x )  where f (x )>- f (x*) .  
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Phase II. In this phase, which is a minimization phase, f ( x )  <f(x*) .  
The gradient multiplier term has approximately unit magnitude, and the 
repeller term is identically zero. Thus, (28) behaves approximately as 

2 = -of(x)/Ox. (29) 

This phase implements minimization via gradient descent. 
In summary, (28) behaves approximately as: 

• [ k ( x - x * )  1/3, f ( x ) ~ f ( x * ) ,  (30) 
x = ~-of(x)/Ox, f ( x )  <f(x*) .  

A more detailed analysis of the "rRtJST algorithm represented by (28) is 
considered below. 

3.4. Initial Conditions and Overview of the TRUST Algorithm Operation. 
In the one-dimensional case, 

~=[xL  <-x<-xu]. 

To initiate optimization, x* is chosen to be one of the boundary points of 
@. In effect, a repeller is placed at x*, and the dynamical system in (28) is 
given initial conditions x* + e, where e is a small perturbation which drives 
the system into the domain of interest. 

Remark 3.1. Consistency in the flow direction is necessary, i.e., e is 
of constant sign throughout a particular optimization. A system will be 
termed "positive flow" if it is initiated at XL and e > 0 is consistently chosen. 
Likewise, a system is termed "negative flow" if initiated at xu and e < 0 is 
consistently chosen. 

The selection of  x* defines a zero subenergy limit f (x*)  above which 
E~ub(x, x*) is nearly zero in value and approximately fiat. If  f ( x * +  E)< 
f(x*) ,  the system immediately enters a gradient descent phase (phase II 
above), which equilibrates at x = x 1~*~. Typically, x ~*~ is a local minimum, 
though it could be an inflection point (or saddle point in higher dimensions). 
We refer to x ~*~ as a lower critical point. Here, we assume that it is a local 
minimum, though the case of  an inflection point is considered in the sequel. 

We then set x * = x  1~*~ in (28), and perturb x to x*+e. Since x ~*~ is a 
local minimum, f(x)>--f(x*) in a neighborhood of  x*. Consequently, the 
repelling term is active in this phase (phase I above). Although the gradient 
of the objective function is uphill, the associated subenergy surface is 
essentially flat in the vicinity ofx*o If  the magnitude of k is chosen sufficiently 
large (see below), the repeller located at x* repels the system across the 
flattened subenergy surface, which in effect pushes the system up the hill 
of  the associated objective function surface. The dynamical system remains 



110 JOTA: VOL. 77, NO. 1, A P R I L  1993 

in the repelling phase until it reaches a lower basin of attraction, where 
f(x) < 0. In effect, this phase tunnels through all of the state space region 
with functional values that lie above that of the the last found lower critical 
point f(xl(*)). 

As the dynamical system enters the next basin, f(x)<0, and the 
algorithm automatically switches to gradient descent, leading to minimiz- 
ation off (x) .  The system will equilibrate at the next lower local minimum 
X2(*). We set x* = x 2(*) and repeat the process. This is shown graphically in 
Fig. 6. 

If f (x*+ E)>-f(x*) when the optimization procedure is initiated, (28) 
is initially in a tunneling phase. The tunneling will proceed to a lower basin, 
at which point it enters a gradient descent phase and follows the behavior 
discussed above. 

A sufficient value of k to ensure tunneling can be determined as follows. 
After reaching a critical point x*, the zero-energy limit is reset, effectively 
placing a repeller at the minimum x*. The dynamical system is restarted 
with initial condition Xo = x* + E, where e > 0 (assuming positive flow). The 
repeller need only be strong enough to push the system over the relatively 
flattened surface. If x* is an inflection point, then any positive value of k 

l f(x)-~ ^ 

- - - --tCx*) 

t I 

i t 
I I 

^ I 

• REPELLER f ( x )  
a ! 

F w  -x 
- LEs (x'x*) 

Fig. 6A. Schemat ic  of  T R U S T  opera t ion  (Cycle I). 
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is sufficient. If  x* is a local minimum, then for ~ to be positive when the 
positive flow dynamical system is restarted at the perturbed location xo = 
x*+  e, the following condition must be satisfied: 

k ( x o -  x*) '/3 > (of(xo)/ax)(1/[1 + exp(f(xo) + a)]). (31) 

A sufficient condition to satisfy (31) is that 

k >  (1/[El/3(1 +exp(a))])(Of(xo)/Ox) 

~- (E2/3/[1 +exp(a)l)(o2f(x*)/Ox2). (32) 

Note that e is typically a small number, like 0.001 or 0.01; hence, necessary 
values of k are typically very reasonable. Thus, stiffness considerations in 
the integration of  (28) do not arise from the choice of k. For example, for 
~=0.01 and a =2,  a value of k such that k>O.OO56(o2f(x*)/Ox z) is 
sufficiently large to ensure proper tunneling behavior. 

During the remainder of the tunneling phase, we need only ensure 
that, at any point x', 

k > [ 1/(x '  - x*)l/3](of(x')/OX)(1/[ 1 + exp(a)]), (33) 

since f ( x )  >-- 0 during tunneling. Note that the value of k computed using 
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(32) at the beginning of the tunneling process is almost always sufficiently 
large for the entire tunneling process. The gradient multiplier term decreases 
at an exponential rate with respect to increasing f (x) .  Thus, f ( x )  must 
increase at a rate faster than exponential to ever require an increase in the 
value of k over the value computed at Xo in (32); i.e., generally (32) is 
sufficient for (33). A similar analysis of the negative flow case shows that 
(32) and (33) hold in this case as well. 

TRUST'S implementation of tunneling as a repeller-induced flow over 
a subenergy surface has a number of advantages over other tunneling 
methods. First, the tunneling operation is algorithmically and computa- 
tionally quite simple. Second, i f f (x  2(*)) =f(x~(*~), the associated subenergy 
surface is still flat, and the system tunnels past this local minimum or 
inflection point into a basin with a lower local minimum. This feature 
eliminates the difficulty with multiple poles in the tunneling algorithm of 
Levy and Montalvo. Third, convergence of the gradient descent phase to 
an inflection point does not cause a problem, as the dynamical system will 
escape the inflection point during the next gradient descent phase. 

It must be stressed that TRYST was developed to be implemented in 
continuous analog circuitry, where the integration of (28) is stable. In digital 
computer implementation, some care must be exercised during the numerical 
integration of (28) to ensure that a basin of attraction is not jumped over 
due to the finite-step-length integration of (28). Determination of an 
appropriate stepsize could follow from Ref. 10. Finally, the TRUST tunneling 
method will always reach a point in the adjacent basin of attraction with 
lower functional values. Other tunneling methods which find the zeros of 
a tunneling function are not guaranteed to find the most adjacent tunneling 
point, and therefore have complicated and less reliable stopping criteria. 
The TRYST stopping criterion is outlined below, and a more detailed examin- 
ation of the convergence behavior of TRUST is given in Section 4. 

3.5. Stopping Criteria. The successive minimization and tunneling 
computational processes continue until a suitable stopping criterion is 
satisfied. For the one-dimensional case, the stopping criterion is quite simple. 
As soon as a local minimum XLM in @ has been reached, the optimization 
cycle is repeated by placing a repeller at XLM and perturbing the system to 
initiate the next tunneling phase. If XLM were the lowest local minimum 
(i.e., if XLM = X6M), the subenergy transformation would flatten f ( x )  in the 
entire domain of interest, sincef(xcM ) sould be the lowest objective function 
value in 9. The perturbed dynamical system, which is now in a repeller 
tunneling phase, will eventually flow beyond the upper boundary of 9. 
Assuming positive flow, when the state flows out of the domain boundary, 
x > xu, the last local minimum found is taken as the global minimum. 
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4. Analysis of One-Dimensional Convergence 

We now examine the convergence of  the TRUST algorithm in light of 
the above discussion. In the one-dimensional case, we seek to globally 
minimize f (x) ,  a twice differentiable function, over the domain @ = [xL, xu ]. 
To show that TRUST will converge, under the assumptions of  Section 1, to 
a global minimum (if one exists), we analyze its behavior during the different 
phases of  operation. The analysis proceeds as follows. First, the tunneling 
behavior of  TRUST is considered, assuming a local minimum has been found 
(after all initialization phase). We show that, from a local minimum, the 
tunneling phase of  TRUST reaches a point of  the same functional value in 
an adjacent basin of  attraction of  a lower critical point, or flows to a 
boundary of  ~ if no such point exists. Next, we show the obvious result 
that the gradient descent behavior of  TRUST will converge to a lower critical 
point. An inductive analysis of  these two phases leads to the global minimiz- 
ation behavior and stopping criterion. Finally, we consider the initialization 
of  the TRUST algorithm, showing that, from all possible initial conditions, 
TRUST will reach the first effective local minimum, if it exists, or flow out 
of 9.  The case of inflection points considered throughout the discussion as 
necessary. 

Let us first consider the tunneling behavior of  TRUST after finding the 
j th  local minimum #(*) o f f ( x ) .  To simplify the discussion, introduce the 
following notation. Let 

~u(X j(*)) = (x J(*), xu] and ~ L ( #  (*)) = [xL, x J(*)) 

respectively be termed the lower and upper  domains of x :(*). Let SL(x ~*~) 
and Sv(x i(*)) respectively denote the sets of  lower and upper  tunneling 
points of  x j(*), 

SL(X j(*)) = {X E ~ L l f ( x )  = f (xJ(*))} ,  (34a) 

Su(x :(*)) = {x ~ ~v  If(x) =f(xJ(*))} • (34b) 

That is, SL(x :(*>) and Sv(x i(*)) are points with the same functional values 
as f(xJ(*)). Note that SL(#(*)), or Su(x:(*>), or possibly both are empty sets 
depending on chosen direction of  flow. I f  SL(x j(*)) or Sv(x j(*)) are not 
empty, define the adjacent lower and upper tunneling points as follows: 

XAL~- min IIx-xJ¢*)ll, (35a) 
XESL(X j(*) ) 

XAu= min IIx-xJ('ll. (35b) 
x~Su(x j(*)) 

If  either SL(X j(*)) or Su(#  (*)) are empty, define the adjacent tunneling 
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points respectively as 

X AL = XL, (36a) 

XA~, = XU. (36b) 

NOW define the lower and upper tunneling intervals, 

~TL ( X ~(*~) = [ XA~ , M(*~), (37a) 

~ r u ( X  j(*)) = ( X j(*), XAu ]. (37b) 

Finally, we construct the tunneling interval @T(M (*)) as follows: 

~ r ( #  ~') = ~r,(xJ~')U ~Tu (xJ~*~) U {# ~'} 
={xe ~(x) lxAL<--x<-xau}. (38) 

That is, the tunneling region @r(x j(*~) is the connected interval containing 
x j(*) and whose endpoints are either points with the same functional value 
(and thus points for initiating a subsequent local optimization phase) or a 
boundary of  9.  Note that f ( x )  may assume local minima, maxima, and 
inflection points in ~T(XJ(*)), though 

f ( x )  >-f(xJ(*9), x ~ N.r (x;(*)). 

We wish to show that the dynamical system (28) is unstable on @T(X ~(*~) 
and will flow toward the boundary of this interval (thus performing the 
tunneling operation, or satisfying the stopping criterion). To do this, we 
define a Lyapunov energy function 

/~ (x(t),  x a(*)) = (3/4) k (x ( t )  - xJ(*~) 4/3. (39) 

We note that E(x)  is positive definite on @rL(X j(*~) and @r~ (xJ(*~), and is 
positive semidefinite in @T(M(*~), assuming a zero value only at x~(*k Further, 
note that /~(x, #(*)) is a strictly increasing function of  Ilx-x~(*)tl on both 
Nr~(M(*)), and respectively assumes its maximum values on the lower and 
upper boundaries of  ~rL(x j(*)) and ~r~(xJ(*)). The time derivative of 
~(x(t), x j ( ' )  is 

( d / d t ) E ( x ,  M (*~) 

= k ( x  - xJ(*))1/32 

= k 2 ( x - x ~ ( * ~ ) 2 / 3 - k ( o f ( x ) / O x ) ( 1 / [ l + e x p ( f ( x ) + a ) ] ) ( x - x J ( * ~ ) I / 3 ;  (40) 

k is a positive constant; from the discussion in Section 3.4, the value of k 
for positive flow is chosen so that 2 > 0 on Nr~ (M(*)). Similarly, for negative 
flow, k is chosen so that 2 < 0 on NrL(xJ(*)). Note that, for both cases (i.e., 
positive and negative flow), the same sufficient condition for k in (32) 
holds. Thus, ( d / d t ) E ( x , x  j(*)) is positive on ~r~(x j(*)) and NT~(xJ(*)); 
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(d /d t )E(x ,  x j(*)) assumes a zero value only at x j(*). This implies that 
IIx-xJ(*)ll must also be increasing with time on ~rL(x j(*~) or ~ru(xJ(*)). 
That is, from any initial condition in ~7¥(xJ(*)), (28) will flow to XAL (nega- 
tive flow). Similarly, from any initial condition in ~r~(xJ(*)), (28) will 
flow to XA~ (positive flow). 

Hence, we have just shown that (28), when perturbed to x jt*~ + e, will 
flow to a point x/(°) whose functional value is just below f(xJ(*~), i.e., 
f ( x  ~(°)) ~f(xJ(*)). If  no such point exists, the system will flow to the boundary 
of  9.  Also note that the analysis shows that any nonzero perturbation size 

leads to correct tunneling behavior. Further, because of the properties of 
the terminal repellers, the tunneling flow must occur in finite time. 

We also need to consider the behavior of the tunneling phase if x j(*) 
is actually an inflection point, and not a local minimum. Assume that the 
inflection point x/(*) was reached by a minimization phase which originated 
in ~L (i.e., from a positive flow system). In this case, ~ r~ (x  j(*)) is a zero 
length interval. A small perturbation xJ(*)+ e will put TRUST in another 
gradient descent phase. Similarly, if f (x) is infinitely degenerate, and thus 
flat in Nu(xJ(*)), the repeller-induced flow will push the system over the 
degenerate interval. 

Next, consider the behavior of the TRUST dynamical system in a gradient 
descent phase. Assume that a tunneling phase has been completed, and we 
are at point x a(°). This point must be within a basin of attraction of a lower 
local critical point, e.g., such that [Of(x)/Ox I # 0 and f ( x  j(°)) ~ f ( x  j(*)) holds. 
The dynamical system (28) then becomes 

:~ = -(of/Ox)(1/[1 + exp(f(x)  - f ( x  ~(*~) + a)]). (41) 

Again, we can analyze the convergence properties of this system by defining 
a Lyapunov energy function, 

E(x)  = f ( x )  -f(xJ+l(*)), 
where x j+~(*) is the next adjacent lower critical point o f f ( x )  and /~ (x )  is 
defined on the interval Ix j(°), xa+l(*)]. 

The time derivative o f /~ (x )  in the domain is 

(d /d t )E(x )  = (Of(x)/Ox)~ = -(of/Ox)2(1/[1 + exp(f (x)  + a)]), (42) 

which is a negative semidefinite function, assuming zero value only at 
Of(x)/Ox = 0. Thus, from x a(°), the dynamical system (28) will converge to 
a lower critical point x j+~(*), where we reset x* to x j+~(*) and repeat the 
same process, and the above analysis procedure holds. 

Thus, the above analysis has shown that, starting from a local minimum 
or inflection point x j(*) and applying the algorithm outlined in Section 3, 
Eq. (28) will converge to another local minimum or inflection point x j+x(*), 
or flow out of ~ if there are no lower minima. We call x j+l(*) the next 
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effective local minimum, as there may be many local minima located between 
x j(*) and x j+l(*), but these lower minima have functional values greater than 
f(xJ(*)). Thus, by the inductive analysis of  the two above phases, TRUST 
(assuming a positive flow system) will find a sequence of  effective minima, 

x t(*~ < x 2(*) < -  • • < x l(*), (43) 

such that 

f(x ~(*)) > f ( x  2(*~) > . . .  > f(xf(*)). (44) 

From x t(*), (28) will flow to xc,, and we know from the above discussion 
that no lower local minima can exist in the interval (x t(*~, xv].  Thus, the 
last local minimum found must be the global minimum. 

The above inductive analysis assumed that the TRUST algorithm was 
initiated at local minimum x r(*). We now turn to the operation of  TRUST 
from its initial conditions, to show that it will converge to the first effective 
local minimum x 1(*), if it exists. From there, the previous inductive analysis 
holds. Assume a positive flow system (a similar analysis holds for negative 
flow). Several possible different conditions at xc have to be considered. 

Case 1. xL is a local minimum. The above analysis holds immediately. 

Case 2. xL is an inflection point. If f(x) is increasing in a positive 
flow neighborhood of  xL, then an upper tunneling region exists. Initiation 
of  (28) at xL + e will initiate a tunneling phase, which as shown above will 
either flow out of  the domain @ if no global minimum [that satisfies the 
local minima constraints (3) and (4)] exists, or will reach a point where 
subsequent gradient descent converges to the first effective local minimum. 
If  f (x) is decreasing in a positive flow neighborhood of  xL, then the system 
enters a gradient descent phase, which will converge to a lower local critical 
point. 

Case 3. xL is a local maximum. Initiating (28) at XL+E puts (28) in 
a gradient descent phase, which will converge to xl(*k 

Case 4. of(x)/Ox > 0 at xL. An upper tunneling region Dr~ (xL) exists. 
According to the previous analysis, perturbing x to xc+  e will cause (28) 
to reach either an adjacent tunneling point, where subsequent gradient 
descent will find the first effective local minimum or inflection point x ~(~), 
or will flow to xv if in fact f(xL) is the lowest value f(x) assumes in ~. 

Case 5. of(x)/Ox<O at xL. At xL+e,  (28) immediately enters a 
gradient descent phase, converging to the first effective local minimum or 
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inflection point, if one exists; else, gradient descent will flow to xv if no 
such point exists in @. 

Thus, in the continuous case and under the assumptions in Section 1, TRUST 
is guaranteed to find the global minimum in a one-dimensional interval. If 
the function is degenerate (i.e., several global minima), TRUST will determine 
only the first encountered global minimum. In order to locate the consequent 
global minima, we iteratively reset xL to XOM + E and restart there. 

5. TRUST Algorithm: Multi-Dimensional Case 

The one-dimensional algorithm of Sections 3 can be extended to handle 
multi-dimensional global optimization, though convergence to the global 
minimum is not absolutely guaranteed. Let f(~)  be a function of the n × 1 
state vector ~, and define the multi-dimensional functional 

E(X, .~*) = log(l/[1 + exp(-( f (~)  + a))]) 

- k(3/4) ~ (xj --Xf)4/3~/(J~(X)) 
j= l  

= Esub(;2, 2*)+ kErep(x, ff*)U(f(ff)). (45) 

The multi-dimensional subenergy term is analogous to the one-dimensional 
subenergy function. The portions of the objective function surface which 
lie above the zero subenergy limit f(~*) are flattened by the use of the 
subenergy function (as shown in Fig. 4). 

Upon application of gradient descent to E(g, ~*) in (45), we obtain 
the dynamical system 

5 c j = - ( o f ( g ) / a x j ) ( 1 / [ l + e x p ( f ( g ) + a ) ] ) + k ( x j - x * )  ~/ u ( f ( x ) ) ,  (46) 

where x~ denotes the j th component of 2. Equation (46) has a highly parallel 
structure consisting of n weakly coupled differential equations. This dynami- 
cal system is analogous to the dynamical system described by Eq. (28). The 
initial conditions, operation, and stopping criterion for Eq. (46) are also 
highly analogous to those discussed above. 

In the multi-dimensional case, 2" is initially chosen to be one corner 
of the hyperparallelepiped ~, usually x* = X,L, Vi. A repeller is placed at 
g*. It should be noted that the repelling terms in the multi-dimensional 
case can be interpreted as hyperplane repellers and are active whenever 
f(~) -> 0. The initial state of the system is set to ~* + g, where g is a small 
perturbation which drives the system into ~. We assume that ~ has uniform 
sign during the optimization, analogous to the consistent positive or negative 
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flow operation of  the one-dimensional algorithm. Depending upon the 
relative values of  f (~*)  and f ( g * +  g), the dynamical system will initially 
be in a tunneling phase or a gradient descent phase. These phases are 
analogous to the one-dimensional case. An appropriate value for the repeller 
power k can be determined by analogy to (31)-(33). The multi-dimensional 
stopping criterion is also similar to the one-dimensional case. When the 
system state flows out of  the domain bounda6es,  the last local minimum 
found is taken as the global minimum. 

Theoretically, convergence of  the method to a global minimum is not 
formally guaranteed in the multidimensional case due to the constant 
perturbation direction vector g. However, in practice, due to its global 
descent property, the system dynamics escapes local minima valleys with 
help of  the repeller effect, and flows into lower valleys of  the error energy 
function using the information it gets from the gradient term. 

6. Benchmarks and Comparison to Other Methods 

This section presents results of benchmarking tests carried out for the 
TRUST algorithm using several standard one- and multi-dimensional test 
functions taken from the literature. In Tables 1-4, the performance of TRUST 
is compared to well-known global optimization procedures. Specifically in 
Tables 3 and 4, TRUST is compared against the best competing global 
optimization methods, where the term "best"  indicates the best widely 
reported results the authors could find for the particular benchmark test 
function. The criteria for  comparison is the number of  function evaluations. 
For the TRUST algorithm, the function evaluation count includes every 
iteration from the initial conditions to the satisfaction of  the stopping 

Table 1. Comparison of TRUST and other algorithms based on number of function 
evaluations. 

Method 

Function SM TM DT IM FFA TRUST 

l(i) 10822 1496 1469 168 
1 (ii) 10822 1496 1132 168 
l(iil) 10822 1496 32 
l(iv) 375 76 

2(i) 241215 12160 6000 7424 588 
2(ii) 241215 12160 6000 7424 269 
2(iii) 408 256 
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Table  2. C o m p a r i s o n  of  TRUST and  o ther  a lgor i thms 
based  on  n u m b e r  of  func t ion  evaluat ions.  

Method 

Function SM DT FSA TRUST 

3(i) 38 
3(ii) 1414 22 
3(iii) 21 
3(iv) 7871 9228 21 

4(i) 19940 74 
4(ii) 58 

5(i) 7390 40 
5(ii) 4853 94 
5(iii) 8235 163 
5(iv) 27859 1449 

Table  3. C o m p a r i s o n  of  TRUST and  other  a lgor i thms based  on  n u m b e r  of  func t ion  
evaluat ions.  

Method 

Function SA MRS P CRS SCA MLSL TRUST 

6 5917 1176 179 77 
7 160 133 1800 1558 206 60 

Table  4. C o m p a r i s o n  of  TRUST and  o ther  a lgor i thms based  on  
n u m b e r  of  func t ion  evaluat ions.  

Method 

Function PIJ BAT STR ZIL BRE TRUST 

8 462 120 45 33 25 19 

9(i) 3817 816 150 125 161 69 
9(ii) 3817 816 150 125 161 99 
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criterion outlined in Section 3.5. We note that, in every benchmark, TRUST 
converged to the global minimum. 

In accordance with Section 3.1, the constant a assumes the value a = 2 
in the sequel. Furthermore, Eq. (28) was integrated using a simple Euler 
integration scheme; that is, 

x = [)~(k + 1) - X ( k ) ] / A t  = - ,c[OE(X, X*)/O~], (47) 

where A~ is the stepsize. The time constant ~- is taken to be 1 in all cases 
studied here. For highly nonlinear and stiff objective functions, more robust 
integration schemes are preferable (Refs. 6 and 7). We note that, for Euler 
integration, the selection of the integration stepsize must be done carefully 
to ensure stability. We do not provide an analysis of the stepsize in this 
paper, since (as we have previously stated) our ultimate goal is implementa- 
tion of this algorithm in continuous analog VLSI circuitry (Ref. 1), where 
such considerations do not apply. 

A description of each test function, the relevant initial conditions, 
domain of interest @, TRUST parameters, and integration stepsize are given 
in the Appendix. In Tables 1 and 2, the following abbreviations are used: 
S M is the stochastic method of Aluffi-Pentini (Ref. 11); TM is the tunneling 
method of Ref. 3; DT is the dynamic tunneling method presented in Ref. 
4; tM is the interval methods of Walster (Ref. 12); FFA is the filled function 
approach of Ref. t3; and FSA is the fast simulated annealing method of 
Ref. 14. 

In Table 3, SA is an abbreviation of simulated annealing (Ref. 15); 
MRS is the multiple random start method (Ref. 16); P iS an abbreviation 
of the P-algorithm of Zilinskas (Ref. t7); CRS is the controlled random 
search of  Price (Ref. 18); SCA is the search clustering approach of  T6rn 
(Ref. 19); and MLSL is the multi-level single linkage method of Timmer 
(Ref. 2). 

In Table 4, PIJ, BAT, STR, ZIL, and BRE are respectively abbreviations 
for the results of Pijavskij, Batishchev, Strongin, Zilinkskas, and Brent 
(Ref. 17). 

7. Discussion and Conclusions 

This paper has introduced TRUST, a novel deterministic methodology 
for unconstrained global function optimization, which combines the concept 
of  terminal repellers with a new subenergy tunneling function. Global 
optimization is formulated as the solution to a system of deterministic 
differential equations which incorporate these novel features. The flow of  
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this dynamical system leads to global optimization. It was shown that, under 
very general assumptions (see Section 1), the algorithm is provably conver- 
gent to the global minimum in the one-dimensional case. 

Benchmark comparisons (Section 6) with other global optimization 
procedures have demonstrated that TRUST is significantly faster, as measured 
by the number of function evaluations, than the best currently available 
methods for these standard functions. Furthermore, our algorithm systemati- 
cally converged to the global minimum in all benchmark simulations, even 
in the multi-dimensional case. 

The number of function evaluations is only one criterion to be used 
in comparing this algorithm with other algorithms. It is important to empha- 
size that TRUST has a number of other advantages. First, while the algorithm 
is not guaranteed to find the global minima in multiple dimensions, it does 
have a global descent property. It is thus practically useful for multi- 
dimensional problems. For n-dimensional functions, the algorithm can be 
computed as the parallel solution of n weakly coupled differential equations. 
Consequently, the complexity and computational cost of the algorithm is 
not strongly dependent upon the problem dimensionality. Second, this 
formulation naturally leads to a simple and computationally efficient stop- 
ping criterion. Third, TRUST is robust with respect to the basic algorithm 
parameters. Necessary conditions on the algorithm parameters were derived 
in Section 3.4. Finally, as also discussed there, the effective tunneling 
procedure employed in TRUST has a number of additional advantages over 
other deterministic tunneling methods. 

Most importantly, the structure of our formulation makes it suitable 
for implementation in parallel analog VLSI circuits of the type used for 
artificial neural network architectures. Such a hardware implementation 
will lead to even more dramatic speed enhancements. For many applications, 
the algorithm may become real-time. In fact, analog VLSI circuits which 
implement terminal repellers and gradient descent have already been suc- 
cessfully designed, fabricated, and tested (Ref. 1). These circuits will be the 
subject of a forthcoming paper. 

8. Appendix: Test Functions and Parameters Used in Benchmark Studies 

The functions used in the benchmark studies of Section 6 are listed 
below. For the first function, we also summarize in tabular form the relevant 
parameters used in benchmark study. In this table, gt and gv are respectively 
lower and upper bounds of the domain of interest ~;  fit is the initial 
condition; g is the TRUST perturbation; At is the Euler integration stepsize; 
and k is the repeller power. The benchmarking parameters for the other 
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funct ions  can be found  in Ref. 20. In  all s imulat ions,  TRUSX used the same  
values for  ~ ,  ~ ,  and  At as the me thods  to which  its p e r f o r m a n c e  is compared .  

F u n c t i o n  1. Two-Dimens iona l  6 - H u m p  C a m e l b a c k  Funct ion:  

f ( x l ,  x2) = [4 - 2.tx12 + (xff3)]x14 2 + xlx2 + ( - 4 +  4x2)x2.2 2 

N u m b e r  o f  local  m i n i m a  = 6; 
n u m b e r  o f  global  m i n i m a  = 2; 
global  m i n i m u m  found  by  TRUST: 

[XIGM, X2GM] -~" [0.08983, -0 .71265] ,  for  (i), (iv), 

[ x ~ M ,  x2~M] = [ -0 .08983,  0.71265], for  (ii), (iii). 

Funct ion  2. Two-Dimens iona l  Shuber t  Funct ion:  

f ( x ~ , x 2 )  = i c o s [ ( i + l ) X l + i ]  ~ i c o s [ ( i + l ) x 2 + i ]  . 
i = 1  i 1 

N u m b e r  o f  local m in ima  = 760; 
n u m b e r  o f  global  m i n i m a  = 18; 
global  m i n i m u m  found  by TRUST: 

[XIGM, X2GM] : [ -7 .08351,  -7 .70831] ,  for  (i), (ii), 

[XtGM, X2CM] = [--0.80032, --1.42513], for  (iii). 

F u n c t i o n  3. ~N\Dimensional Test  Funct ion:  

N 

f ( g ) = ( 1 / 2 )  2 ( X 4 - 1 6 x 2 + 5 x j ) ,  
j = I  

= [x l ,  x 2 , . . . ,  x j , . . . ,  xN]. 

N u m b e r  o f  local m in ima  = 2"; 
n u m b e r  o f  global  m in ima  = 1; 
global  m i n i m u m  found by  TRUST: 

[X~M ] = [--2.90354, --2.90354 . . . .  , --2.90354]. 

Table 5. Benchmark parameters for Function 1. 

Trial xlL xl v x2L x2u xxl x2x ~ ~2 At k 

(i) - 3  3 - 2  2 -3 .0  -2 .0  0.01 0.01 0.01 10 
(ii) - 3  3 - 2  2 3.0 2.0 -0.0t -0.01 0.01 10 
(iii) -3 3 -2  2 -2.0 -1.0 0.01 0.01 0.10 10 
(iv) -3 3 -2  2 -1.6 0.9 0.01 -0.01 0.10 10 
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Function 4. Two-Dimens iona l  Test Funct ion:  

f (x , ,  x2) = 0.5x 2 + 0.5[1 - cos(2x,)]  + x2 2 . 

N u m b e r  o f  local min ima  = several; 
number  o f  global  min ima  = 1; 
global m in imum found  by TRUST: 

[x ,~M,  x2o~,] = [0, 0]. 

Function 5. Two-Dimens iona l  Test Funct ion:  

f (xl ,  xz) = 10"Xl 2 + x2 2 -  (x~ + x2~) 2 + 10" (x 2 + x~)',  

N u m b e r  o f  local m i n i m a >  3; 
number  o f  global  min ima = 2; 
global min imum found  by TRUST: 

[~OM] = 

[ ~ o M ]  = 

[ , a M ]  = 

[ . ~ C M ]  = 

Function 6. 

f (xl ,  x2) 

[0, 1.38695], for n = 1, 

[0, 2.60891], for n = 2, 

[0, 4.70174], for n = 3, 

[0, 8.39401], for n = 4. 

n = -- /~.  

The Two-Dimens iona l  Rastrigin Funct ion:  

= x ,  2 + x ,  ~ -  c o s ( 1 8 x 3  - co s (18x9 .  

N u m b e r  o f  local minima = 50; 
number  o f  global minima = 1; 
global min imum found  by TRUST: 

[x,  oM, x=~M] = [0, 0]. 

Fnnetion 7. Two-Dimens iona l  Branin Funct ion:  

f (xl ,  x2) = [x2-(5.1/4rr2)x21+ ( 5 / 7 r ) x 1 - 6 ] 2 +  10(1 - I /8~r)  cos xl + 10. 

N u m b e r  o f  local min ima = 3; 
number  o f  global min ima  = 3; 
global  min imum found  by TRUST: 

[X~M, X2OM] = [3.14158, 2.27505]. 

Function 8. One-Dimens iona l  Test Funct ion:  

f (x)  = sin x + s in(10x/3)  + log x - 0.84x. 

N u m b e r  o f  local minima = 3; 
number  o f  global min ima = 1; 
global m in imum found  by TRUST: 

XOM = 5.19978. 
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Function 9. One-Dimensional Test Function: 

f ( x ) = - { i = ~  ~ s in[( i+ 1)x+ i]}. 

Number of  local minima = 20; 
number of  global minima = 3; 
global minimum found by TRUST: 

xcM = -6.72004, for (i), 

Xc, M = 5.84633, for (ii). 
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