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Quasi Interiors, Lagrange Multipliers, and 
L p Spectral Estimation with Lattice Bounds ~ 

M. A. L I M B E R  2 AND R. K. G O O D R I C H  3 

Communicated by D. G. Luenberger 

Abstract. Lagrange multipliers useful in characterizations of solutions 
to spectral estimation problems are proved to exist in the absence of  
Slater's condition provided a new constraint involving the quasi-relative 
interior holds. We also discuss the quasi interior and its relation to 
other generalizations of the interior of a convex set and relationships 
between various constraint qualifications. Finally, we characterize solu- 
tions to the L p spectral estimation problem with the added constraint 
that the feasible vectors lie in a measurable strip [a,/3]. 
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1. Introduction 

We use as our  mo t iva t ion  two p r o b l e m s  f rom spect ra l  es t imat ion .  Let  
(K,  9) be  a finite measure  space;  let  A : L P ( K , ~ , ) - - > R  ", l < p < o o ,  be  a 
con t inuous  l inear  map ;  let b ~ R n be  a f ixed vector;  and  suppose  tha t  c~ and  
/3 a re  in U ' ( K ,  ~,). We seek to charac te r ize  so lu t ions  to the  pos i t ive  m i n i m u m  
L p es t ima t ion  p rob l em 

inf{ ( l /p ) I lx l l~ :  A x = b ,  0_< x a.e.} (1) 

and  the spectral  e s t ima t ion  p rob lem with L p bounds  

inf{  (1/p)llxll•: A x  = b, ~ <_ x <_ [1 a.e.} (2) 
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by showing that Lagrange multipliers exist for the nonlinear constraints. In 
more generality, we can suppose that a and/3 are simply measurable and 
characterize solutions to (2); this includes (1) as a special case a = 0,/3 = + ~ .  

Classically, one would appeal to Slater's condition to assert the 
existence of  Lagrange multipliers. However, in these problems, the interior 
of  the positive cone in L p, 

C= {x~LP(K, v) :  0 < x  a.e.}, 

is empty and Slater's condition fails to hold. A reasonable substitute for 
the interior would seem to be 

{x ~ LP(K, v): 0 < x a.e. }; 

this turns out to be the quasi interior of C. A natural alternative to Slater's 
condition would be that there is a feasible function in the quasi interior of 
the positive cone. 

This paper can be logically divided into two parts. Sections 2 and 3 
define the quasi interior of a convex set and contrast various generalized 
interiors and associated constraint qualifications, while Sections 4, 5, 6 use 
the weaker notion of the quasi-relative interior to produce Lagrange multi. 
pliers in the absence of Slater's condition and to characterize solutions to 
the minimum norm spectral estimation problem in L p, 

In Section 2, we define and discuss some of the properties of the quasi 
interior, particularly those that make it so similar to the true interior. We 
show how the quasi interior is a generalization to convex sets of several of 
the quasi interiors of  cones that have been defined in the literature. 

In Section 3, we then suggest a constraint qualification in the spirit of  
Slater's constraint qualification, but using the quasi interior, and discuss its 
relation with other recent qualifications. 

Goodrich, Steinhardt and Roberts' work on the positive spectral estima- 
tion problem (Refs. 1-2) circumvented the lack of  interior by showing that 
the problem can be formulated in L -~, where the positive cone has a 
nonempty interior; thus, Slater's condition holds and classical Lagrange 
multiplier theorems apply. More recently, Cole and Goodrich (Ref. 3) have 
characterized the solution to the positive L ~ bounded spectral estimation 
problem by imposing conditions to guarantee that Slater's condition holds. 
Using the duality theory of Borwein and Lewis (Ref. 4), we show in Sections 
4 and 5 that Lagrange multipliers exist for these two problems, provided a 
generalization of Slater's condition using the quasi-relative interior holds. 
This generalizes the method of Refs. 1-2 and Refs. 3, 5. 

Finally, in Section 6, we show how the duality theory can be used to 
include the cases where ~ and/~ are extended-valued measurable functions, 
potentially not in L p. 
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2. Quasi Interior 

In this section, we define the notion of the quasi interior and compare 
this definition with several other similar definitions found in the literature. 

2.1. Definitions and Equivalences. Let X be a real linear normed space, 
and let X* be its topological dual. Let k be a real number, and let 

Hk(x*) = {x ~ X: (x, x * ) -  k} 

be the closed half-plane associated with x* and k. It can be shown that the 
interior of  Hk(x*) is 

H ° ( x  *) = {x e X:  (x, x*)> k}. 

It follows from the Hahn-Banach  theorem that, for a closed convex set C, 

C =(-]  {Hk(x*): Hk(x*) m C}. 

It can also be shown that, if the interior of  C is nonempty,  then 

C ° = ~  -'] {H°(x*):  Hk(x*) ~ C}. (3) 

We are interested in the set on the right of Eq. (3) in the case where the 
interior of  C may be empty. 

Definition 2.1. For a convex set C in the linear normed space X, 
define the quasi interior of C to be 

qi(C) : /~ ]  {g° (x*) :  Hk(x*) m C} c~ C. (4) 

This definition ensures that qi(C) _c C. Note that, if C is closed, then 
the intersection with C in the definition is unnecessary. 

Recall that Xo c C is a support  point of C if there is a nonzero x* c X* 
such that 

<xo, x,>: x,> 

Also, the cone generated by K with vertex at 0 is 

cone(K)  = {a: a = hx, x e K, h --- 0}. 

Borwein and Lewis (Ref. 4) have defined the quasi-relative interior of 
a convex set C to be 

qri(C) - {x ~ C: cone(C - x) is a subspace}. 

Several facts are easily checked and summarized in the following 
theorem. 
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Theorem 2.1. Let C be a convex set with nonempty quasi interior in 
the linear normed space X. Then, the following statements hold: 

(a) q i (C) - -  ~ {H°(x*):  Hk(x*) D C} n C (by definition); 
(b) qi(C) = N ( C ) ,  the set of  nonsupport  points in C; 
(c) q i ( C ) = { x •  C : c o n e ( C - x ) = X } ;  
(d) qi(C) = qri(C);  
(e) qi(C)-= C. 

I f  X is finite dimensional, or if C ° #  0 ,  then q i ( C ) =  C °. 

Klee (Ref. 6) has shown that, in a separable Banach space, any convex 
set not contained in a hyperplane contains a nonsupport  point; thus, 
its quasi interior is nonempty. However, if the convex set is contained 
in a hyperplane, then it will still have a nonempty quasi-relative interior 
(Ref. 4), yet an empty quasi interior. 

Borwein and Lewis (Ref. 4) have shown that, if A : X  ~ R '~ is a con- 
tinuous linear map and C is a convex set with nonempty quasi-relative 
interior, then A(qri C) = r i(AC),  the relative interior of  AC. 

We give an example of  a nondense convex set C not contained in the 
intersection of Eq. (3). Denote by C this intersection. Klee (Ref. 7) has 
given an example of a compact  convex set C for which the extreme points 
properly contain the support  points. Let Xo be an extreme point of C that 
is not a support point, so that K = C\{xo} is convex and xo• qi(C). Then, 
/ ( =  C, thus K = C. However, since C is closed, /£ =q i (C) ,  and thus 
Xo~ K = qi(K) ,  so /£ # qi(K).  

Given a closed convex cone S, we can define orderings on both X and 
X*. We say 

x>_yC:>x-y •S .  

On X*,  we say 

x*>-y*Cz>(x,x*-y*)>-O, V x • S .  

The set of all x* -> 0 is denoted S +. One can easily show the following 
theorem. 

Theorem 2.2. Let S g X be a closed convex cone. Then, Xo e qi(S) if 
and only if 

(Xo, x*) > 0, Vx* -> 0, x* ~ 0. 

Other useful examples occur in Banach lattices. I f  a Banach space X 
is a Banach lattice, then there is a closed convex cone S such that S - S -- X, 
in which case S ÷ -  S ÷ =  X* (Ref. 8). We define an ordering on X based 
on this cone S. We can then decompose a point x* • X* as x * -  x_*. 
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Theorem 2.3. Let X be a Banach  lattice, let a and /3  be in X, and set 

C={x~X : e ~ x ~ } .  

Then,  

sup{(x, x*):  x ~ C} = (/3, x*) - (a, x*). (5) 

EquivaleRtly, x0 c C is a suppor t  point  with suppor t  funct ional  x* if and 
only if  

(xo, x*) = inf{(x, x * ) : x  e C} = (a,  x*) - (/3, x*_). 

The  fol lowing p r o o f  was suggested by A. S. Lewis. 

Proof .  We first do the special  case a = 0,/3 = e -> 0. We have 

sup{(x, x*): x c  C} = sup{(x, x*)+(e-x, 0): x~O, e-x>-O} 

= inf{(e, y*): y* -> O, y* -> x*} 

= inf{(e, y*): y* -> x*} 

= (e, x*),  

by  T h e o r e m  8.2 in Borwein and Lewis (Ref. 4). To do the general  C, let 

D=C-B. 

Then~ 

SO 

sup{(x, x*)} = (,8 - a,  x*+), 
x ~ D  

(/3 - a ,  x*)  = sup{(x - a,  x*)} = sup{(x, x*)} - (a,  x*), 
x ~ C  x ~ C  

and thus 

sup{(x, x*)} = (/~, x*)  - (a,  x*_). 
x ~ C  

This comple tes  the proof .  []  

2.2. Examples.  Let X = LP(K) for  some set K in n-d imens iona l  real 
space,  1 -<p <co ,  and Lebesgue  measure .  Let 

S= {xeX:x>_ Oa.e.}. 

Then using Theorem 2.2, we can see that  

qi(S) = {x~X: x > 0  a.e.}. 
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Now, let c~ and/3 be extended-valued measurable functions on K such that 
a </3, a.e. Let 

C= {xc X: a<- x<-/3}. 

One can check using Theorem 2.3 that 

qi(C)= {x ~ X: a < x < f l } .  

2.3. Comparison of Generalized Interiors. There have been many 
attempts to generalize the definition of the interior of a convex set. In this 
section, we compile and compare some of those definitions. 

Recall that the core of a convex set C is 

(a) c o r e ( C ) = { x c  C : c o n e ( C - x ) = X } .  

Gowda and Teboulle (Ref. 9) have defined the strong quasi-relative interior 
by 

(b) sqri(C) = {x ~ C: cone(C - x )  is a closed subspace}. 

For a cone S, Peressini (Ref. 8) has defined another quasi interior, 

(c) pqi(S) = {x ~ S: cone[ -x ,  x] = X}, 

where I -x ,  x] is the order interval {y: -x<_y<-x} and S is used to define 
the order on X. Fullerton and Braunschweiger's (Refs. 10-11) definition of 
a quasi interior is 

(d) fbqi(S) = {x c S: S c~ ( x -  S) is dense in X}. 

Finally, if X is a Banach lattice, Schaefer (Ref. 12) has defined 

(e) sqi(S) = {x c S: span(Sx) is dense in X}, 

where Sx is the ideal generated by x. 
If S - S  = X, then (c), (d), and (e) are equivalent. See Borwein and 

Lewis (Ref. 4) and the original sources for example. In general, 

C°_c core(C) _ sqri(C) c qri(C),  

C O ~ core(C) _ qi(C) c_ qri(C). 

Thus, assuming that qri(C) is not empty is a weaker assumption than 
assuming any of these other sets is nonempty. 

3. Constraint Qualification Comparisons 

As there have been several attempts to generalize the interior of a 
convex set, there have also been attempts to generalize the constraint 
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qualifications associated with convex programming. Here, we give a brief 
comparison of some of the qualifications. For other comparisons, see Refs. 
9 and 13. 

We consider the following problem. Let X be a Banach space, f :  X -~ 
( - ~ ,  +co] a convex function, A : X ~ "  a linear continuous map, and 
C ~ X a closed convex set. Finally, let b 6 ~" be a fixed vector and suppose 
that 

(P) / ~ = i n f { f ( x ) : A x = b ,  x e  C} 

is finite. 
A common constraint qualification, Slater's condition (Ref. 14), 

requires that the interior of C be nonempty. For (P), this would read 

(S) 32  ~ C O such that A)~ = b. 

This qualification cannot be met in the examples that we shall explore, 
for if 

C= {x~LP(K): x>O a.e.}, 

then C ° = Q .  However, the quasi interior qi(C) is not empty. The new 
qualification is then 

(CQ) =l~cqi(C)  such tha tA~ = b. 

Borwein and Lewis show that, with their qualification, 

(BLCQ) 3 ~ c q r i ( C )  suchthat  AS = b, 

there is equality between the primal problem (P) and the dual problem (D) 
discussed below, with dual attainment. Since qi(C)c_ qri(C),  we see that 
this implies that, with (CQ), we also have this duality relationship. 

Borwein and Wolkowicz (Ref. 15) introduced another constraint 
qualification that applied in the positive L p problem. In this case, the set 
C is the positive cone which we shall denote by S. If  we let 

F = { x ~  S: Ax = b}, 

then their qualification reads 

(BWCQ) c o n e ( F -  S) = X. 

We now show that this is our (CQ) when qi(S) ~ Q. 

Lemma 3.1. The Borwein and Wolkowicz constraint qualification, 

c o n e ( F -  S) = X, 

implies b c ri(A(S)). 
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For a proof, see Gowda and Teboulle (Ref. 9). 

Theorem 3.1. Suppose q i (S )~  ~3. Then, c o n e ( F - S ) =  X if and only 
if there is an x0~qi(S) such that A x o = b ;  i.e., there is an xocqi (S)  c~/~2 
That is, (BWCQ) if and only if (CQ). 

Proof. For xo~ qi(S) c~ F, since 

c o n e ( F -  S) ~ ~ ( x 0  - S) = X, 

by Theorem 2.1, we have that 

cone(F  - S) = X. 

To show the other implication, note that c o n e ( F - S ) = X  implies b e  
ri(A(S)) from Lemma 3A. Also, since 

ri(A(S)) = A(qi(S)),  

c o n e ( F - S )  = X implies there is an Xo ~ qi(S) such that Axo  = b. [] 

Micchelli and Utreras (Ref. 16) consider the problem 

tz = min{(1/2)Ilxll~: x ~ S, A x  = b}, 

where Xis a Hilbert space. This is our general problem (P) with the objective 
functional (1/2)II x II =2. Another constraint qualification is introduced, 

(MCQ) {A'y*: ( b , y * ) > - O } c ~ S - = { O } .  

Here, S -  = ( - S )  +. We show that (CQ) implies this condition. 

Proposition 3.1. If  S_c X is a closed convex cone, qi(S) ~ Q, A: X -> 
E" is a continuous linear map, and F = S c~ A - l [ b ]  ¢ Q, then (CQ) implies 
(MCQ). 

Proof. Let x * =  A ' y * ,  for some y * c  (Rn) * such that (b, y*)>-0, and 
let (x, x*) -< 0 for all x c 5:. By (CQ), there is an )Co ~ qi(S) such that Axo  = b, 
so (Axo, y*)_>0, which implies ()Co, A'y*}->0, and thus (Xo, x*}->0. Since 
(x, x*)-< 0 for all x ~ S, (xo, x*) = 0 which implies that xo is a support point 
of  the cone S. This contradicts the assumption that Xo ~ qi(S). [] 

Another constraint qualification is given in Irvine and Smith (Ref. 17). 
For X the dual space of Y, S a convex cone in X, they investigate the problem 

/x = inf{llxll: x ~ S, A x  = b}, 
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where Ax = ( ( y l ,  x ) ..... ( y~, x ) )  r for vectors y 1 ..... y,, e IC Their constraint 
qualification is that there exists e* e ~" such that (~*, b )  = 1 and 

(ISCQ) JO(i~l O[.~iYi) : inf{p(z~l c~y~): (a, b)=l, ac ,n) ,  

where 

p(y) = sup{(y, x): x~ S, Ilxll ~ i). 

It is shown that, if b is in the relative interior of A(S), then there is such 
a vector a*. 

Corollary 3.1. (BLCQ) implies (ISCQ). 

4. Duality Theory 

Borwein and Lewis (Ref. 4) have developed a Fenchel duality theory 
for the quasi-relative interior. For brevity, we only state the result. 

Theorem 4.1. S u p p o s e f : X - > ( - e o , + ~ ]  is convex, Cc_X is convex, 
/z is finite in problem (P), and b~ri(A(C)). If  

(D) d=--max{(b,A)+inf{f(x)-(Ax, A)}}, 

then ~ = d, where the maximum is attained at some ~ c R ". 

Note that 

d = max{(b, A)- f*(A*A)},  

where fc = f +  ic, f* is the convex conjugate offc, and ic is the indicator 
function of  C as defined below. Since r i (AC) = A(qri C) when qfi(C) ¢ 0 ,  
we can restate this as follows: if (BLCQ) holds, then/~ = d. 

5. Lagrange Multipliers 

We consider the following problem. Let Z be a linear normed space 
with a positive cone P. Define 

(P) /~ = inf{f(x):  An = b, G(x) ~ 0}, 
where G:X->Z is P-convex, 

A t ( x )  + (1 - A)G(y)  - G ( A x  + (1 - ~ ) y )  c P, 



152 JOTA: VOL. 78, NO. 1, JULY 1993 

for any x, y e Z ,  )t e (0, 1). A vector z * e Z *  is a Lagrange multiplier if 

tz = i n f { f ( x ) + ( G ( x ) ,  z*): a x  = b}. 

The paper  by Goodrich and Steinhardt (Ref. 1) characterized the 
solution to the problem in X = LP([-Tr, ~]) ,  

# = inf{ Ilxlt ~: A x  = b, x > 0 a.e. }, (6) 

where A : X --> R" and ( A x ) j  is the j th  Fourier coefficient of  x. The charac- 
terization was obtained by showing that the solution to (6) was in L ~ and 
that there is a feasible point ~ such that ~ >- e > 0, a.e. In this case, Slater's 
condition holds for the problem in L ~, and there is a x*->0, x*E (L~°); 
such that 

= inf {llxll -<x, x*>: a x  = b}; 

that is, there is a Lagrange multiplier for this problem. See Luenberger 
(Ref. 18) for example. The linear constraints are eliminated via another 
multiplier under a regularity assumption on A. 

More recently, Cole and Goodrich (Ref. 3) addressed the same problem 
with an L ~ bound, 

/z = inf{llxtl~: A x  = b, 0 <- x <- ~, a.e.}, (7) 

with fl ~ L ~, and it is assumed that there is an e > 0 and ~ feasible such 
that e < - ~ < - f l - e ,  which again is Slater's condition. Using Ref. 18, they 
characterized solutions again with a regularity condition on A. 

We shall derive two Lagrange multiplier theorems in a more general 
setting that imply generalizations of  the above examples without demanding 
that Slater's condition (S) hold. With these theorems, the techniques used 
in Refs. 1, 3 are more direct. We begin with a few definitions. 

Let C be a convex set; the normal cone to C at xo c C is 

N c  (x0) = {x* ~ X*  : (x - x0, x*)--< 0, x c C}. 

The indicator function of C is 

0, x ~ C, 
ic (x)  = +oo, x ~ C. 

Recall that, for a convex function f,  x * e  X* is a subgradient o f f  at 
Xo if 

( X - X o ,  x * ) < - f ( x )  - f ( x o ) ,  V x 6  X.  (8) 

Relation (8) is referred to as the subgradient inequality. The set of  all 
subgradients o f f  at x is denoted of (x ) .  A convex function f :  X --> (-oe,  +oo] 
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is proper if it is somewhere finite. It is a standard result from convex analysis 
that, if con t ( f )  is the set of points of continuity o f f  and 

(RC) con t ( f )  c~ C # Q, 

then for x e d o m ( f )  n C, 

a ( f  + ic)(x) = of(x)  + Nc (x). 

See Rockafellar (Ref. 19) or Holmes (Ref. 20) for example. We call (RC) 
our regularity condition. Recall our constraint qualification, 

(BLCQ) 3~ e qri(C) such that A~ = b. 

Lemma 5.1. Let X be a reflexive Banach space, let f :  X - )  ( - ~ ,  +oo] 
be convex and proper, let A:X->  ~ be a continuous linear map, suppose 
that Xo e C, Axo = b, and 

f(xo) = inf{f(x):  a x  = b, x e C} 

is finite, and assume (RC) and (BLCQ). Then, there is an x * e  Nc(xo) such 
that 

f ( x )  + ( x -  xo, x*)>-f(xo), 

for all x such that Ax = b. 

Proof. Let ic be the indicator function of  C, and let fc  = f +  ic. Then, 

f(xo) = inf{fc(x):  Ax = b}. 

By the duality theory, Theorem 4.1, 

f(xo) = maxI(b,  h )+  i n f { f ( x ) - ( x ,  A*A)}I 
a ~ " /  x~c j 

= (b, X) + i n f  { f (x)  - (x, A'X)} 

-< (b, X} +f(x0)  - (xo, A'X) 

=f(xo) ,  

so Xo minimizes 

f ( x )  - ( x ,  A ' h ) +  ic(x),  

and thus 

0c  a ( f -  A*X + ic)(Xo) =of(xo) -a*7~ + Nc(xo), 
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by our regularity condition. Therefore, there is an x * ~  N c ( x o )  and y*~  
Of(xo) such that 

x* + y* = A*X. 

Now, take any x such that A x  = b, 

(x  - Xo, x*)  = (x  - Xo, A *  Tt - y * )  = (x  - Xo, - y * )  >-f(xo) - f ( x ) ,  

and the proof  is complete. [] 

Our first Lagrange multiplier theorem applies to the problem (6). In 
that case, G ( x )  = - x ,  and C = S is the positive cone. 

Theorem 5.1. Let f : X - ~ N u { + o o }  be convex, let S e X  be a closed 
positive cone, let A : X  ~ R" be a continuous linear map, and let b c ~". 
Suppose that (RC) holds as well as (BLCQ). I f  there is feasible attainment 
for 

= inf{f(x):  A x  = b, x c S}  

at x0, then there is an element z*c  S ÷ such that 

Ix = inf{f(x)  - ( x ,  z*): A x  = b}. 

Furthermore, (Xo, z*) = 0. 
This is equivalent to saying that z* is a Lagrange multiplier. 

Proof. By Lemma 5.1, there is an x * ~  N c ( x o ) c  - S  + such that 

f ( x o )  = inf{f(x)  + (x - Xo, x*): A x  = b}. 

Since x * e  N c ( x o )  and xoc S implies (Xo, x * ) = 0 ,  we have 

tx = i n f { f ( x )  +(x ,  x*): A x  = b}. 

Let z * = - x * .  [] 

The other case that we consider is the generalization of the L p bounded 
problem discussed earlier. For this, we let X be a Banach lattice, a,/3 c X, 

C={x: ~-<x-</3}. 

To formulate a Lagrange multiplier theory, we let 

O~--X 

so that 

/z = inf{f(x):  x ~ C, A x  = b} = i n f { f ( x ) :  G ( x )  < _ O, A x  -- b}. 
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Theorem 5.2. Assume (RC), (BLCQ), and feasible attainment at xo. 
There is a z* c S + x S + such that 

Ix = i n f { f ( x ) + ( G ( x ) ,  z*): A x  = b}. 

Also, at the solution Xo, we have 

( G( xo), z*) = O, 

i.e., complementary slackness. 

Proof. By Lemma 5.1, we have an x * e - N c ( x o )  such that 

f (xo)  = rain{ f ( x )  - (x - xo, x*)}. 

Now, x* e - N c ( x o )  implies 

{x - Xo, x*) -> 0, for all x E C, 

which implies that Xo is a support point of C with support functional x*, 
so by Theorem 2.3, 

(Xo, x*) = (,~, x * ) -  (~, x*), 

SO 

If  we let 

( x -  xo, x*) = ( x -  a, x * ) -  ( x -  [3, x*_). 

z* = (x*+, x*)*, 

then we have our Lagrange multiplier, 

Ix = m i n { f ( x ) + ( a  - x ,  x * ) + ( x - f l ,  x*_)} 

= rain { f (x)  + (G(x) ,  z*)}. 
A x - - b  

[] 

These two Lagrange multiplier theorems can be used to characterize 
solutions to the problems in Eqs. (6) and (7), provided the linear constraints 
satisfy a regularity condition, for example, that the functions ~bi defining 
the linear constraints are linearly independent. In fact, these theorems make 
the details of the characterization easier than in Refs. 1 and 3, since we can 
work with L q as the dual of L p, 1 / p + l / q  = 1, instead of  (L~) *, the space 
of finitely additive measures. 

In addition, the approach previously taken with both of the model 
problems required the existence of a function that is bounded away from 
the bounds, whereas with these theorems we just need a function not equal 
to the bounds almost everywhere. 
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Rather than show the details of  these calculations, we now show how 
the duality theory of Borwein and Lewis can further generalize these 
problems. Note that the assumption of  linear independence on the linear 
constraints is not particularly restrictive, since any dependence lessens the 
amount  of  information to be gotten from the data. The following results 
can be obtained via a case-by-case study using the Lagrange multiplier 
theorems above, but we find the duality arguments to be more unifying. 

6. Minimum Norm Problems with Bounds 

Let a and /3 be extended-valued measurable functions on K, and 
consider the closed convex set 

C = [ a ,  /3 ] ~  L P ( K ) .  

Let 

t~  = inf{ltxrl~: a x  = b, x c C }  

be finite; i.e., there is an x c C such that A x  = b. Since L p is strictly convex, 
1 < p < 00, there is a unique solution Xo such that f ( x o )  = tz. 

The duality theory requires that there is a feasible vector in the quasi- 
relative interior of  C. That is, there is an :~ such that A~ = b and a < ~ </3. 
This in turn requires that we assume a </3, which is really no restriction, 
for if 

then 

E ={t:  ~(t)  = ~(t)} ,  

4)ix = bi ¢¢, dpix = bi - ¢bia - bl .  
K c 

So, we assume 

(BLCQ) 32 ~ LP(K), A 2  = b, oc < 2 < fl, a.e. 

This is equivalent to (CQ) in this context. 
We shall need to know how to go from a solution of the dual problem 

to a solution of  the primal problem. Let f :  X --> (-o0, +00] be strictly convex, 
and suppose that 

= inf{f(x):  Ax = b} 

by finite. By Theorem 4.1, 

#, = max{(h, b) - f* (A*A)} ,  
A 
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where f *  : X* ~ ~ is defined by 

f*(x*) = sup{(x, x * ) - / ( x ) } ,  
x~X 

is the convex conjugate functional (Ref. 21). Under  the assumption that 
c o n t ( f )  ¢ Q, the maximum in the dual is attained at h if and only if 

b c a(of*(a*)t)) (9) 

by the chain rule for subgradients (Ref. 21). 
Let Xo~Of*(A*X) and Axo=b; we now show f(x0) =/x. Since X is 

reflexive, xocX. By Rockafellar (Ref. 19), A*X ~of(xo), so f(xo)c ~ and, 
by the subgradient inequality (8), 

(x - Xo, A'X) <-f(x) -f(xo). (10) 

Take any x such that Ax = b; then, (10) implies f(xo)-<f(x), therefore 
f(xo) = Ix. By strict convexity of f ,  there is only one solution to the minimiz- 
ation problem, and thus 

Of*(A*X) ~ {x: Ax = b} = {Xo}. 

In fact, it can be shown that, when 

f(x) = [[XllW, 

f *  is Frechet differentiable and thus the subgradient is a singleton. We have 
shown the following lemma: 

Lemma 6.1. Let f :  X ~ (-oo, +oo] be strictly convex and proper  with 
ditterentiable conjugate f * ,  let A : X ~ N "  be continuous and linear, let 
b ~ N" such that (BLCQ) and our regularity condition (RC) hold. Suppose 
that 

/x = inf{f(x):  Ax = b} 

is attained at the feasible point xo. Then, 

XoeOf*(A*X), for some X c ~ n , 

and x0 is unique. 
We need to calculate Nc(xo). 

Lemma 6.2. For C = [a, 13] c~ LP(K), Xo~ C, x* ~ Nc(xo) implies 

I =0,  ~(t)<Xo(t)<~(t), 

x*(t) >_0, Xo(t)=fl(t), 

1<2_0, Xo(t)=~(t). 
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Proof. Recall that  

N c  (Xo) = {x* ~ X*:  (x - Xo, x*} --< 0}. 

E1 = {t: a ( t )  < Xo(t) </3(t)}.  

x(t)=(Xo(t)+E(t), teE1, 
[ Xo( t), t e Eel, 

where • > 0 is chosen so that  x E C. Then, x > Xo on El ,  and 

L , Lxox, 
so x*-<O on El .  Pick e ( t ) < O  in this a rgument  to get x*->O on E~. Thus,  
x * =  0 on  El .  

Let 

E2 = { t :  Xo(t) = ~ ( t ) } .  

Then,  for  any x ~ C such that x =x0  on E~, 

f xx*<-fE cex* 
2 2 

implies x*-< 0 on E2, since a </3. 
A similar argument  works for  

E3 = {t: Xo(t) : fl(t)}. []  

We now characterize solutions to the general L p spectral est imation 
problem with bounds.  We use the notat ion,  for  a and b extended real 
numbers,  

a v b = max{a, b}, a ^ b = min{a, b}. 

Theorem 6.1. Let K be a finite measure space with measure v, C = 
[a, f l]n LP(K), where o~ and /3 are extended real-valued functions,  p c  
(1, oo). Let {d~} be a finite set o f  functions in L q for  q coniugate to p ;  let 
A:LP(K)oR  " by 

(Ax)i = d fK x( t)qSi( t) dr; 

and let b c ~". The feasible set is 

F = C c~ {x: Ax = b}. 
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Provided there is a feasible poin t  2~ such that  ~ < 27 </3, a.e., the solut ion 
to the minimizat ion p rob lem 

inf{Hxl[~: A x  = b, x c C} 

is the unique feasible po in t  o f  the fo rm 

Xo=av(s ign(a*) la*lq-1)Af l ,  f o r s o m e a * ~ L P ( K ) .  

Proof .  Let 

f ( x )  = (1/p )llxFl ff, 

and consider  the p rob l em 

Iz = in f{ f (x ) :  A x  = b, x ~ C} = in f { fc (x ) :  A x  = b}, 

where f c  = f + i c .  Then  by L e m m a  6.1, the solut ion is Xo~Of*c(A*h), so 
A*A ~ Ofc(Xo) and  

a* = A*A c Of(xo) + Oic (Xo) = 0 ( ( I / p )  II xoll p) + N c  (Xo). 

By L e m m a  6.2, 

f =xofP  1 sign(xo), 

a*( t )~  < ]Xol p -  l sign(xo), 

[, > Ixo[ p l sign(xo), 

We n o w  solve for  Xo. 
On E l ,  

s ign(a*)  = sign(xo) and  

On E2, s imple calculat ions yield 

_> sign(a*)[a*[ q-~, 

and thus 

~(t)<Xo(t)<fl(t), 
~(t)=Xo(t), 
~(t)=Xo(O. 

xo = la*l q-l s ign(a*) .  

Xo = a v (sign( a*)la*lq-1), 

on E1 u E2. Finally,  u p o n  cons idera t ion  of  E3, we can show that  

xo = a v (s ign(a*) la*I  q-l)  ^/3 

on E~ w E2 ~ E3 = K and where  

a* = A*h = ~  h/~i. [] 
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Some special cases are now discussed. 

Positive Spectral Estimation. I f  ~ = 0 and/3 = + ~ ,  then we are in the 
case considered in Goodrich and Steinhardt (Ref. 1). The improvement  
here is that no regularity of  the linear constraints are needed. The solution 
is 

Xo = (~  A~4,~)~+ -1. 

Bounded Spectral Estimation. I f  c~, 13 ~ L p, then we are in the case 
considered by Limber (Ref. 22), again with the improvement  that the linear 
constraints do not have to be regular. This includes the L ~ bounded case 
in Cole and Goodrich (Ref. 3) if  a = 0 and 0 < E ~/3  ~ L ~. 

General  Lattice Bounds. By appropriate choices of  a and/3, we can 
allow the feasible functions to be free on subsets of  K. The solution is still 
the truncated function. See Dontch.ev (Ref. 23) for applications to con- 
strained interpolation. 

More general integral objective functions with lattice bounds will be 
explored in a future work (Ref. 24), and numerical investigations wilt be 
reported in Ref. 25. See also Ref. 26. 
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