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Hyperplane Method for Reachable State 
Estimation for Linear Time-Invariant Systems ~ 
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Communicated by M. Simaan 

Abstract. A numerical algorithm is presented for generating inner and 
outer approximations for the set of reachable states for linear time- 
invariant systems. The algorithm is based on analytical results charac- 
terizing the solutions to a class of optimization problems which deter- 
mine supporting hyperplanes for the reachable set. Explicit bounds on 
the truncation error for the finite-time case yield a set of so-called 
e-supporting hyperplanes which can be generated to approximate the 
infinite-time reachable set within an arbitrary degree of accuracy. At 
the same time, an inner approximation is generated as the convex hull 
of points on the boundary of the finite-time reachable set. Numerical 
results are presented to illustrate the hyperptane method. The concluding 
section discusses directions for future work and applications of  the 
method to problems in trajectory planning in servo systems. 

Key Words. Reachable sets, simplicial approximation, linear systems, 
optimal control. 

1. Introduction 

A genera l  nth  o rde r  con t inuous - t ime  d y n a m i c  system S can be desc r ibed  
by  the set o f  di f ferent ia l  equa t ions  

~(t) =f(x(t), u(t)), x(O) = Xo, 
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where x(t)~ E" is the state vector, u(t )e  Em. is the input vector, and 
f :  E ~ ×  E " -  E"  is a continuously differentiable function that determines 
the evolution of the system state. The initial state Xo is contained in an 
initial condition set Xo C E ~. In the sequel, we adopt the convention that 
x(t) denotes the state vector at a particular time t, and x denotes the state 
for all time t --- 0. Further, given an input signal u, we let xu be the correspond- 
ing state trajectory. 

The input signal u is constrained pointwise in time such that u(t)~ l~, 
where l~ C Em. A class of  input signals is then defined as 

U~ = {u ~ fo lu( t )~ l~ ,  Vt>-O}, 

where Co is the set of  all piecewise continuous functions. With these 
designations, we can define the reachable set at time T as 

Fr (Xo,  Ua) = { ~  E ~ 13u ~ U ,  such that ¢ = xu(t), for some t~ [0, T]}. 

Hence, the reachable set Fr (Xo,  Ua) is the subset of  the n-dimensional 
state space that is reachable in time T. In the sequel, we omit the arguments 
X0 and Ua when they are fixed, and denote the reachable set at time T 
simply as Ft .  

The capability of the system S to be driven to a region of  the state 
space, subject to the input bounds f~, is characterized by the reachable set. 
For example, consider an optimal control problem for which the objective 
is to drive the system S from an initial state Xo ~ Xo to a final state x s in a 
target set Xy C E ~ in minimum time. The minimum time required to reach 
the set X s is the first time T for which F r  n X s ~ 0 .  Conversely, suppose 
that a subset A C E n of  the state space is to be avoided. If  F r  n A = ~ ,  then 
any input u c Ua guarantees avoidance of  the subset A during the time 
interval [0, T]. The subset A can represent state operating constraints that 
must be satisfied for acceptable performance of  the system S. To determine 
whether a given set of control bounds ensures satisfaction of  such operating 
constraints, the reachable set for system S must be computed or approxi- 
mated. 

Recent analytical work on the theory of  reachable sets concerns the 
determination of conditions under which a target set is reachable by a 
nonlinear control system (Ref. 1). The set is reachable or not reachable if 
the value of  a particular convex optimization problem is zero or infinite, 
respectively. Locally Lipschitz functions are shown to permit arbitrarily 
accurate estimates of  the reachable set for a nonlinear system in reference 
(Ref. 2). Under relatively weak assumptions, such functions allow an exact 
description of the reachable set. However, selection of  appropriate, locally 
Lipschitz functions for the description has not been addressed. 
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Several approaches hve been taken to provide a useful description of 
the reachable set Fo~. Analytic techniques produce state trajectories on or 
asymptotically approaching the boundary of the reachable set. These 
methods are based on the reachability maximum principle and so-called 
abnormal control laws, which generate the appropriate state trajectories 
(Refs. 3-4). However, these approaches are limited to first- and second.order 
systems. 

Other methods yield conservative outer approximations to the reachable 
set. The box method of Gayek (Ref. 5) decomposes (via the eigenvector 
modal matrix) an n-dimensional, stable, linear, time-invariant (LTI) system 
into one- and two-dimensional subsystems. The analytic results, described 
above, are applied to determine rectangular (boxlike) bounds in the one- 
and two-dimensional state spaces of the subsystems. These bounds are 
mapped linearly (via the modal matrix) into the original, n-dimensional 
state space, forming a parallelepiped that contains the reachable set Foo, 
the reachable set as T ~ co. 

Grantham has proposed a technique of reachable set estimation appli- 
cable to both linear and nonlinear systems (Ref. 6). A Lyapunov-like 
boundary surface is defined, and a semi-infinite optimization problem is 
solved to determine the unknown parameters of the boundary surface. The 
region enclosed by this boundary surface contains the reachable set F~. 
A volume criterion has been applied by Summers to determine reachable 
set approximations via this approach (Refs. 7-8). No guidelines exist, 
however, for selecting an appropriate Lyapunov-like boundary surface; 
hence, the method tends to be very conservative. 

In this paper, we describe a hyperplane method to generate reachable 
set estimates for a class of linear, time-invariant systems. The input u is a 
piecewise-continuous vector function of time, and it is constrained pointwise 
such that u(t)eFt, where 

E l!uj(t)l-< ~i,J = 1 , . . . ,  m}. 

The hyperplane method is based on a finite-time, optimal control 
problem, formulated as a search in a given direction of the state space. The 
solution to the problem yields a point on the boundary 0Fr and a supporting 
hyperplane to the reachable set Ft.  By searching a number of directions in 
the state space, an outer approximation to the reachable set Fr  is generated 
as the intersection of the reachable half-spaces determined by the supporting 
hyperplanes. This approach is illustrated in Fig. 1, where the reachable set 
Fr  for a system S is shown as the shaded region. Several supporting 
hyperplanes forming an outer approximation are illustrated by the solid 
lines. Dashed lines depict the convex hull of the boundary points which 
comprises an inner approximation to the reachable set. 
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Fig. 1. Inner and outer approximations to the reachable set for a system $. 

If the system S is stable, the finite-time results can be extended to 
approximate the infinite-time horizon case by computing a truncation error 
tolerance E. An e-supporting hyperplane is then determined which is parallel 
to an actual supporting hyperplane and within a distance E of the boundary 
of the reachable set Foo. The E-supporting hyperplanes give an outer approxi- 
mation to the reachable set Foo. Thus, the outer approximation has a simple 
representation as a list of linear inequalities. An inner approximation to 
the reachable set Foo is obtained simultaneously as the convex hull of the 
points on the boundary of the reachable set. By selectively choosing direc- 
tions for refinement, the accuracy of the outer approximation can be sig- 
nificantly improved with only a small number of c-supporting hyperplanes. 
We employ a heuristic approach to determine search directions in the state 
space which best improve the inner and outer approximations to the reach- 
able set F~. 

To summarize, the hyperplane method of reachable state estimation 
that is described in the sequel has the following features. First, the hyper- 
plane method is flexible since arbitrary directions in the state space can be 
searched, in contrast to the box method which obtains bounds only in n 
fixed directions. Second, both finite and infinite-time problems can be solved. 
Finally, an arbitrarily good approximation to the reachable set is obtained 
by searching sufficiently many directions in the state space and computing 
the corresponding supporting hyperplanes or c-supporting hyperplanes. 

Details of the hyperplane method are developed in the following 
sections. In Section 2, the optimal control problem for computing supporting 
hyperplanes and ~-supporting hyperplanes is formulated and solved. Section 
3 presents a complete description of the hyperplane method as an algorithm. 
The generation of initial inner and outer approximations is specified. The 
selection of search directions for refinement is discussed, followed by the 
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procedure for updating the inner and outer approximations. The criteria 
for terminating the algorithm is then described. A flowchart outlines the 
steps in the computations. To illustrate the algorithm, several examples are 
presented in Section 4. Inner and outer approximations are computed, and 
the results are plotted. The concluding section summarizes the contributions 
to this work and discusses directions for future research. 

2. Computing e-Supporting Hyperplanes 

In this section, we develop the notions of supporting hyperplanes and 
e-supporting hyperplanes for the reachable set FT. We consider an LTI 
system S described by the state model 

ic(t)=Ax(t)+Bu(t) ,  x(0) =0, (1) 

where the state vector is x( t )c  E", the input vector is u(t)~ E m, and A, B 
are matrices of appropriate dimension. The n eigenvectors of A are assumed 
to be linearly independent; hence, A is diagonalizable. Thus, the modal 
matrix M, composed of the eigenvectors of A, is invertible. The input signal 
u is a piecewise-continuous vector function of time, constrained pointwise 
such that u(t) ~ UL, where 

a = {u( t )  e E m IluAt) I _< a j , j  = 1 , . . . ,  m}. (2) 

Under these assumptions, the forward solution to the state equations is 
unique for any u ~ Un. 

We state the following well-known properties of the reachable set FT 
without proof (Refs. 9-10). 

Symmetry Property. If the control bounds 12 are symmetric with 
respect to the origin, the reachable set Fr  is symmetric with respect to the 
origin. 

Convexity Property. If the control bounds f~ are convex, the reachable 
set FT is convex. 

The control bounds (2) that we have specified are both symmetric and 
convex. We make a further normality assumption, namely, we assume 

rank[bjlAb~[ ::: IA"-Ibj]=n, for all j  = 1 . . . .  , m, 

where bj denotes the j th column of B. Under this assumption, the reachable 
set Fr  is guaranteed to be a full n-dimensional body. Furthermore, this 
assumption guarantees that the time-optimal trajectories used in the theory 
of this section will not have singular arcs; i.e., the controls of interest will 
be bang-bang (Ref. 11). 
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A hyperplane in n-dimensional state space can be expressed in terms 
o f  a normal vector c c E"  and a scalar constant v ~ E 1 as 

c y  = v, (3)  

where the dummy variable ~" is used to denote an arbitrary point in the 
state space. Without loss of  generality, we assume Ilell = 1. A supporting 
hyperplane to the convex set F r  in the direction e is tangent to F r  at a 
point ~* and satisfies (3), where v = e'~*, as shown in Fig. 2. An a-supporting 
hyperplane in the direction c is given by 

c'~=v+e. 

Hence, the a-supporting hyperplane is parallel to the supporting hyperplane 
(since the normal vectors are identical). 

Figure 2 depicts an a-supporting hyperplane to the reachable set F r  
at a distance E from the supporting hyperplane. If  the reachable set boundary 
PFT is not smooth, there are an infinite number of  supporting hyperplanes 
at each boundary point where the s~rface is not smooth. This does not 
introduce difficulty, however, since the hyperplane direction is selected a 
priori. One boundary point may have an infinite number of  supporting 
hyperplanes, but a supporting hyperplane in a specified direction corre- 
sponds to a unique boundary point. 

The supporting hyperplane to F T in the direction c can be determined 
from the solution of the following optimization problem: 

(P(c) )  max  c'~r, 
¢ 

s.t. ~cFT.  

; _- cT ~* 

,rp~ane 
. . . . . .  E -supporting hyperplane 

Fig, 2. Supporting hyperplane and ~-supporting hyperp|ane for the reachable set. 
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The objective function value v = c'~* at the optimal solution if* defines the 
supporting hyperplane. To compute a supporting hyperplane when the 
reachable set F r  is unknown, we reformulate the problem as an equivalent 
optimal control problem: 

(OCP(c)) max c'x(t), 
tE[O,T] 

s,t, ~(t) = Ax(t) + Bu(t), x(O) = O, 

u(t)~a. 
To pose Problem (OCP(c)) above as a standard, linear optimal control 

problem, we present the following result. 

Lemma 2.1. Given times T1, T2, such that 0 < T1 < T2, if a control 
signal ul on [0, T1] reaches the state ~*=xu~(T~) at time T~, then there 
exists a control signal u2 on [0, T2] that reaches ~* = x,2(T2) at time T2 ~ 7"t. 

Proof. The final state x,~(T1) corresponding to the control signal ul(t) 
on [0, T1] is given as 

I0 rl xul(TO = exp[A(T1-7")]Bul(~') d~- = ~*. 

Since the system is time-invariant, choosing the control input Uz(t) to be 

0, O<-t<- T1- T2, 
u2(t) = u l ( t - ( T 2 - T , ) ) ,  T2-TI<~t<-T2, 

drives the system to the same final state at T2, which proves the 
lemma. [] 

The result of  Lemma 2.1 implies that the optimal solution to Problem 
(OCP(c)) can always be made to occur at the final time T. Thus, (OCP(c)) 
can be expressed as a fixed, finite final time optimal control problem. We 
define this problem to be the supporting hyperplane problem: 

(SHP(c)) max c'x(T), 

s.t. 2( t )=Ax( t )+Bu( t ) ,x (O)=O,  

u(t)ca. 
The solution to (SHP(c)) is presented in the following supporting hyper- 
plane theorem. 
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Theorem 2.1. The final state x**(T) maximizes the performance index 
of (SHP(c)) if and only if the control signal u* (expressed componentwise) 
satisfies 

t 
~, c' exp[a(  T -  t)]bj > O, 

u*(t) = - ~  c' e x p [ A ( T -  t)]bj <0,  

l -~j<-u<-~j ,  c' e x p [ A ( T - t ) ] b j = O ,  

where the vector bj ~ E n is the j th column of the matrix B. 

Proof. The Hamiltonian for Problem (SHP(c)) is 

H = p 7-(t)[Ax(t) + Bu (t)], 

giving the necessary conditions 

~*(t) = o n ( x * (  t), u*( t), p*( t) )/Op, (4) 

16"(t) = -OH(x*( t ) ,  u*(t), p*(t))/Ox, (5) 

H(x*(  t), u*( t), p*( t) ) >- H(x*(  t), u(t), p*( t) ), 

Vu such that luj(t) l-  t~j,j = 1 , . . . ,  m, (6) 

with the boundary conditions 

x*(0) = 0, (7) 

p * ( r )  = c. (8) 

The necessary conditions (4) and (5), coupled with the boundary 
conditions (7) and (8), respectively, give the state and costate equations 
which must be satisfied by an optimal solution. The costate equations have 
the solution 

p*(t) = exp[ A'( T - t)] c. (9) 

The necessary condition (6) requires u*(t) to satisfy 

I ~j, c' exp[A( T -  E)]bj > O, 
u*(t) = -~j ,  c' exp [A(T-  t)]bj < O, 

[-ftj<_u<_~j, c' e x p [ A ( T - t ) ] b j = O .  

The assumption of normality eliminates the possibility of singular control 
(Ref. 12). Applying the optimal control input u*(t) gives 

c'x**(T) = c' exp[A(T-  r)]blu*(r) dr+" " " 

+ c 'exp[A(r-r )]b , , ,u*(~ ' )  dr, 
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which is equivalent to 

j/o r c'x**(T)=al  Ic' e xp[A(T- r ) ]b l l  d r + . . .  

+am [c' exp[A(T-r ) ]bml  dr, 

o r  

} v(T)=cTx**(T)=j~=~ f~) Ic' exp[A(T-r )]b) l  dr . 

This completes the proof. D 

From the solution to (SHP(c)),  we can construct a supporting hyper- 
plane to the reachable set FT. The final state x~.(T) is well defined by the 
control signal u*, and it is on the boundary of OFT. The supporting hyper- 
plane in the direction c is tangent to OFT at the point x**(T). It is expressed 
as c '~--v,  where v = c'x*,.(T). For the control signal u*, the final state 
x**(T) is given as 

fo x**(T) = c' e x p [ A ( r -  r)]Bu*(r) dr. 

This expression permits the supporting hyperplane constant v to be deter- 
mined as 

fo v = c'x**(r) = c' exp[A( T -  r ) ]Bu*( r )  dr, 

which, upon substitution of  the control law u*, yields 

{f0 } v= ~ ffl I c ' e x p [ a ( T - r ) ] b i t d r  , (10) 
i=1 

where bi is the ith column of  the matrix B. We remark that, in this form 
(10), the supporting hyperplane in the direction c can be determined by a 
scalar integration, without computing the entire state trajectory. 

The foregoing analysis was performed for the case where a final time 
T1 was finite. We now seek to determine an e-supporting hyperplane for a 
final time T2 > T~, parallel and within a perpendicular distance e to the 
actual supporting hyperplane to the reachable set at time T2. In this way, 
the results can be extended to the case where T2 is infinite, and an estimate 
of  the ultimate reachable set Foo is obtained. We first note that the optimal 
values of  Problem (SHP(c)) are monotonically increasing with respect to 
the final time T. 
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Lemma 2.2. Given a direction c, let v(T) be the maximal value of the 
objective function in (SHP(c)). Then, v(T) is monotonically increasing with 
respect to the final time 7:. That is, 

v(T2)>v(T1), T2> TI. 

Proof. Given the times T2> T~ <0, we have from the expression (10), 

t v(r l ) - -  ~, Ic' exp[A( Tl-r)]b,I d'r , (11) 
i=1 

v(T2)= ~ ai lc'exp[A(T2-~')]b,I d,  . (12) 
i=l 

By splitting the integration at time T2- T~, we can write (12) as 

+ Ic' exp[A(T2- ~')]b,t d~- . 
r2-T1 

Under a change of variable, 3 = ~ ' - (T2-  T1), this becomes 

v(T2)=~l{f t ,[I~:-r ' lc 'exp[A(T2- ' t )]b,  td~" 

+~ ' l c ' exp[a(T , - f l ) ]b , [d f l ] } .  

We recognize the second term in the sum to be exactly the expression for 
v(T1). Hence, 

v(r2) = v(T~)+ ~ ~, lc 'exp[A(r2-r)]b, l  d ,  . (13) 
i=1 J0 

Since 

Ic' exp[A(T2- T1)]bil >0  

on any interval of finite length (Ref. 13), Eq. (13) implies 

v(T2)> v(T1), T2> T1, 

which completes the proof. [] 

The proof of the monotonicity property suggests an approach for 
determining e-supporting hyperplanes. Defining a truncation error 

e( T1, T2) = v( T2) - v( T1), 
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the result (13) gives 

e(T1, T2)= ~ a~ I c ' e x p [ A ( T 2 - r ) ] b ~ l  dr  . 
i=1 JO 

A bound on this truncation error can be determined as a function of the 
final time T 1 only, as stated in the theorem below. 

Theorem 2.2. If the system in Problem (SHP(c)) is stable, and if the 
matrix A has n linearly independent eigenvectors which form a modal 
matrix M, then the truncation error can be bounded as 

e ( T l ,  T2) < - ~; IId~,~tl exp[Re{ak}Td/tRe{ak} , 
i=1 1 

where Ak, k = 1 . . . .  , n, are the eigenvalues of matrix A. The (in general) 
complex coefficients dk.~ are defined as 

dk,, = ( c ' m k ) ( ~ [ b , ) ,  

with mk denoting the kth column of the modal matrix M and r ~  being 
the kth row of M -1. 

Proof. The truncation error is written originally as 

{r } e(T1, T2)= ~ - a, I c ' e x p [ A ( T 2 - r ) ] b , I  dr  . (14) 
i=1 dO 

Writing exp[A(T2- r)] as 

exp[A( 7"2- r)] = M exp[A( T2- r ) ] M  -1, 

where M is the modal matrix of the n linearly independent eigenvectors, 
and A is a diagonal matrix of eigenvalues, we have 

c' exp[A(T2-  r)]bi = ~ d~, exp[ak(T2-- r)], (15) 
k = l  

where ak is the kth diagonal element (eigenvalue) of A and 

dk, i = ( C' mk )( rfi'kbi), 

with mk denoting the kth column of  M and rill being the kth row of M -1. 
Partitioning the terms in (15) yields 

dk,~ exp[ak( T2 - ~')] 
k = l  

nc¢ 

= Y~ (dk~,, exp[ak~(T2-- r)] + d*~,i exp[X*~(T2- r)]) 
k c c  = 1 

+ ~ (dkr, i exp[Akr (T2- - r ) ] ) ,  (16) 
k r =  1 

where ncc and nr are the numbers of pairs of complex conjugate and real 
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eigenvalues, respectively. The first sum in (16) is composed of the complex 
conjugate eigenvalues hgcc and h*c~, with the corresponding complex conju- 
gate coefficients dkc~i and * , dk~,i, respectively. The real eigenvalues hkr in 
the second sum have real coefficients dkr,~. The total number of eigenvalues 
is n = 2ncc + nr. 

Writing the complex coefficients in polar form [e.g., dkc~,; = 
8k~,i exp(j0k~c,i)] and the complex eigenvalues in rectangular form [e.g., 
hk~ = gk~c +jtokc~], Eq. (16) becomes, upon simplification, 

dk., exp[hk(T2-- r)] 
k=l 

r1¢¢ { 
=2 E 8k~,i exp[/~uc(T:-1")] COS(tOk~(T2--r)+0k~,i) 

kcc = 1 

+kr=, ~ {dk~,,} exp[Akr(T2-r)]}. 

Substituting this result into expression (14) gives the truncation error as 

¢(T~, T2) 

<-- fir 2 E 8kcc, iexp[ld'kcc(T2--'r)]cos(t°kcc(T2--r)+Okcc, i) 
i=1 kcc=l 

An upper bound on the truncation error can be obtained by taking the. 
absolute value of each sum in the integrand, yielding 

e(T1, T2) 

<~ Ui ~,, ]$kcc, i e x p [ g k c c ( T 2 - -  "r)]l tCOS(tOk~c(T2-- "r)+ Ok~,-,i)] 
i=1 kcc=l 

Since 

we have 

Icos(,okc~(T2- r ) +  Ok~,~)[--< 1, 

E(T,, T~) 
Tl2 ncc 

~, E 18k¢c,, exp[~k~c(T2 - r)]I 
i~1 kcc=l 
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Performing the indicated integration, we obtain 

e( T1, T2) 

<- ~i 2 ~ [~kcc.i](--exp[~kccrll+exp[~kcc(r2)])/~k~ 
i = l  k c c = l  

+ Y. Id~.~l(--exp[~.k~Td+exp[,~k~T2])/,~k~ • (17) 
k r = l  

Under the assumption of stability,/~ko~ < 0, Ak~ < 0, and 

lira exp[/XkccT2] = lira exp[AkrT2] = O, 
T2~ T2-~ 

for all k~, k~, respectively. Thus, the worst case is obtained as T2 ~ oo for 
which 

E(T1, T2) = e(Tx) 

. . . . .  ]1 <-- ~ 2 2 l~k~,:/txkc~[ exp[tzkccT1]+ 2 [dk~,~/~k,] exp[hkrT~] . 
i = l  k c c = l  k r = l  

We recall that 

~k~ = Re{Zk~c} = Re{a*~c}, 

d* 

where N" II denotes the complex magnitude. With this, we have the final result 

which completes the proof. [] 

Obtaining a bound on the truncation error that is independent of the 
final time permits the finite time results to be extended to the infinite time 
case. The e-supporting hyperplane can then be determined in a straightfor- 
ward way as stated in the following e-supporting hyperplane theorem. 

Corollary 2.1. If  c'~ = v is a supporting hyperplane in the direction c 
to the reachable set FT, at final time T1, then c ' ~ = v + e ( T 1 ,  T2) is an 
e-supporting hyperplane to the reachable set Fr2 at final time T2> T1, 
including T2 ~ oe. 
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Proof. This follows directly from the definition of the truncation error 
~(T1, T2) in Theorem 2.2. [] 

Another interesting outcome of  this error analysis is that an estimate 
of Fo~ can be obtained without integration of any kind. By evaluating the 
truncation error for T1 -- 0, where v = crx(O) = 0, the E-hyperplane boundary 
in the direction c is given by 

rl 

This conservative estimate is improved, of course, by solving (SHP(c)) for 
some final time 7"1 and adding the corresponding truncation error term. 

Certain applications require computation of a set of e-supporting 
hyperplanes that are guaranteed to be within a single, given bound g of the 
actual supporting hyperplanes. It is useful to determine a fixed final time 
7"1 which ensures that e( 7"1, T2) ~- g for any such direction in the state space. 
Toward this end, we present the following result. 

Theorem 2.3. Given an arbitrary vector c e E"  and a truncation error 
bound ~ > 0, the truncation error is e(7"1, T2) ~ g if 

7"1 ---IRe{h*}[-' log[(cond(M)Su.b)/(#[Re{h*}[)], 
where cond(M) is the condition number of the modal matrix M, Sub is 
given by 

S.b= ~ a,l[b, ll, 
i = 1  

and the eigenvalue h* satisfies 

Re{A*}>- Ag, k =  1 . . . .  , n. 

Proof. The expression for e(T1, 7"2) is 

f r2-r' E(T~, T2)= a~ l¢'exp[A(Tz-~')]bij d~', 
i ~ l  d 0  

where [e' exp[A(7"2- r)]bi[ can be bounded as 

Ic'M exp[A(T2- ~')]M-~b,l 
-< Ilcll ItMJl llexp[A(Z=-~')]ll II M- ' l l  llb, ll. 

The norm []. [1 of a matrix F is denoted by its maximum singular value ~rmax, 
where 

O-max(F ) = max 11Fxll. 
Itxtl=l 
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Thus, with Ilcl[ normalized to 1 always, 

lc'M exp[A(T2-  r)]M-lb, t 

<__ or ... .  (M)  ormax(exp[A( 7"2 - "r )])O'm,x(M -l) I[ bi[I. 

The singular values O'm,,(M -1) and Crmin(M ) (the minimum singular values 
of M)  are related such that 

orm,x(M -1) = 1/O'min(M ). 

Hence, with the condition number of the matrix M given as 

cond(M)  = O'm~x(M)/ormin(M), 

we have 

!c'M exp[A( T2 - r)] M -~ b,[-< cond(M)  o'~ax(exp[A( T2 - r)])II b, It. 

The maximum singular value of  exp{A(T2- r)} is given by 

ormax(exp[A(T:- r)]) = exp[Re{X*}( T2-  r)],  

where the eigenvalue A.* satisfies 

Re{A*} - ak, k = 1 , . . . ,  n. 

T h u s ,  

0 rg-rl Ic' exp[A(T2-  r)]bil dr 

<- cond(M)II b, II (exp[Re{a*} T2] - exp[Re{a*} T1 ])/Re{h*}. 

For a stable system, Re{h*} < 0 and 

lira exp[Re{a*} T2] = 0, 
T2~co 

which implies that 

o T~-rl lc' exp[A(T2-  r)]b~ t dr 

- cond(M)tl  b/ti (exp[Re{A*} Td)/tRe{X*}l. 

Finally, we define the sum 

i=1 

To bound e(Tl) by a specified value ~, we require 

[Re{a*}l -~ cond(M)S~b exp[Re{a*}T1] ~ ~. 
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Taking logarithms and simplifying, the integration time required to satisfy 
the error bound g is 

7"t ---]Re{h*}1-1 log[(cond(M)S~b)/(gfRe{,~*}[)] ,  

completing the proof. [] 

3. Hyperplane Method for Reachable State Estimation 

Throughout the following development, the symmetry of the reachable 
set will be exploited, and we will work with the half-body only. In the 
previous section, a boundary point x*(T) and an E-supporting hyperplane, 

c'~ = c ' x * ( T )  + ~, 

were determined from the solution to the optimal control problem (SHP(c)) 
and from the truncation error bound for a given direction c in the state 
space. By solving (SHP(c)) for the unique directions cl, i = 1 , . . . ,  nbp, a set 
of boundary points is obtained as 

B = {x*(r),..., x*0p(r)}. 
To form an outer approximation to the reachable set F~, we form the 
intersection of the halfspaces defined by the corresponding e-supporting 
hyperplanes to yield 

P = {~'¢ E'~[cI~ < - c~xi*(r )+e,  i = 1, . . . ,  nb,}. 

The set of boundary points can be employed to give an inner approximation 
to the reachable set F~. Specifically, the convex hull I" of the points in B, 
denoted by 

_F =conv H { B } ,  

is contained in F~ since Fo~ is convex and since any point reachable at time 
T is also reachable at any time T1 > T, by the result of Lemma 2.1. 

The objective of the hyperplane method is to determine both inner and 
outer approximations to the reachable set F~. To obtain such approxima- 
tions, it is necessary to select directions for search in the state space. We 
employ a heuristic approach that has proven successful in design centering 
problems for VLSI fabrication (Refs. 14-15). First, a set of search directions 
is chosen until a closed outer approximation is found. Then, to improve 
the approximation, the largest simplex (face) of the inner approximation 
_F is chosen to be broken, since it is assumed to be the worst approximation 
to the reachable set boundary. The outward normal to the simplex is selected 
as the direction for refinement. Solving the optimal control problem 
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(SlIP(c)) yields a new boundary point and an E-supporting hyperplane. 
This procedure is illustrated in Fig. 3, where simplex Sl is the largest face 
of the current inner approximation to the reachable set. A search is per- 
formed in the direction of the outward normal ~71- The boundary point 
x*(T) determines a new a-supporting hyperplane (solid line) for the outer 
approximation, parallel to the broken face of the inner approximation. The 
new inner approximation (enclosed by the dashed lines) incorporates the 
new boundary point x* in the convex hull. 

In the remainder of  this section, we present the computational steps 
required to implement the hyperplane method. A flowchart of the algorithm 
is described, noting the initialization, refinement, and stopping procedures. 
Also detailed are the necessary steps to perform the direction selection and 
the inner and outer approximation set updates. 

The flowchart presented in Fig. 4 depicts the iterations of the hyperplane 
method algorithm. The system matrices A and B are assumed to be known. 
A vector r7 of input bounds defining f / i s  given, along with the permissible 
truncation error e used to form the e-supporting hyperplanes. From these 
values, the initialization procedure generates an initial list of boundary 
points B °, an initial inner approximation _F ° to the halfbody Fo~, and an 
initial outer approximation 17 °. These results can be accomplished in several 
ways. In our implementation of the algorithm, the initialization procedure 
uses the unit direction vector c~ corresponding to the ith coordinate direction. 
The boundary point x* is then determined from the solution 4 to (SHP(ci)). 
This boundary point x* and its symmetric counterpart - x *  are entered in 

Fig. 3. Inflation of the inner approximation and cutting of the outer approximation to the 
reachable set (single step). 

4 The final time dependence of the boundary points is omitted in the sequel for notational 
convenience. 
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( s ~  ) 
System (A,B) 
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Direction 
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I :::::: P . . . . . .  

boundary point x%+1, ~ 
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Outer Approximation 

Uvtate 
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Fig. 4. Flowchart of the hyperplane method algorithm. 

the list B ° as x~* and X*~+n, respectively. An E-supporting hyperplane c~  = 
t cix~ + e is formed, and the outer approximation ~o is updated by appending 

the appropriate halfspace, represented by the inequality 

c i ¢ > -  ' * CiX i ~- ~. 

This process is repeated n times, i.e., once for each of the n coordinate 
directions. As a result, 2n boundary points are contained in the completed 
initial boundary point set B °, and n inequalities form the initial outer 
approximation ~o. 
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The initial inner approximation (convex hull) F ° is formed only at the 
conclusion of  the n coordinate direction searches. Each simplex sj, j = 
1,° . . ,  h~, of  the inner approximation is represented by a vector of  n integers 
corresponding to the indices of  the n boundary points that form its vertices 
(where n is the dimension of  the state space). For example, in Fig. 5, simplex 
s~ is defined by boundary points x* and x*,  and simplex s2 is defined by 
boundary points x* and x*.  Hence, these simplices are represented by 
integer vectors as 

sl = [1,  2] ,  

s2 = [2, 3]. 

The ith element of  sj is denoted by s~( i ) .  
For the initialization procedure, the simplices are formed straightfor- 

wardly using a table of  binary combinations as illustrated in Table 1 for 
the case n = 4. In this way, 2 n-1 simplex vectors are formed to describe the 
initial inner approximation F_(0). 

To complete the initialization procedure and to prepare for subsequent 
iterations, it is necessary to determine an analytic expression for each 
simplex of the inner approximation. The equation of the simplex s~ can be 
written as 

where ~7~ ~ E"  is the vector (outward) normal to simplex sj and Kj ~ E ~ is 
a (positive) constant. From the n boundary points x *  ~ B °, i e sj  (which 
compose simplex s~), the normal vector r b can be computed by first forming 
n - 1 difference vectors d~ ~ E ~ as 

di * * = (Xsj( i+l)  i • , 1. - X~j(i)), = 1, . .  n - 

Fig. 5. Simplices forming the convex hull for the inner approximation. 
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Table 1. Tableau for forming the initial inner 
approximation from 2n initial bound- 
ary points. 

Boundary points 

x~ x~ x~ 

x~ x~ x~ 

x~ x~ x~ 

x~ ~ x~ 

x~ x~ x~ 

x~ x~ x~ 

x~ x~ x~ 

x,* 

x,* 

x4* 

x4* 

x4* 

x4* 

x4* 

x¢ 

Simplex 

St 

S2 

Sa 

S4 

$5 

$6 

$7 

$8 

Calculating the cross product  of  the n -  1 difference vectors di produces a 
vector ~j that is perpendicular  to the difference vectors, and hence normal 
to the simplex. In Fig. 6, an example in 3-space is illustrated. Simplex sl 
is defined by boundary points x*,  x2*, x*. Forming the difference vectors 
dl ,  dE and determining the cross product yields the normal vector ~ ,  
perpendicular  to the face of  s~. 

Fig. 6. 

rl 1 

d 2 

Cross product vectors normal to the simplex faces. 
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Taking the inner product of r~j with any boundary point x* ~ B °, i 6 sj, 
gives (for example) 

Kj~__. A ~jXsj(I)" 

If •j > 0, then ~2 is an outward normal, ~j = ~j, and the constant Kj is 

= - 9  unchanged. Otherwise, we obtain the outward normal as ~Tj j and the 
constant •j is negated, i.e., Kj =-Kj .  The main reason for determining the 
simplex normal via the cross product calculation is that the magnitude of 
~j for simplex s t is the size (volume) of the simplex. Determining the vector 
normals r/and the constants K for each of the 2 "-t initial simplices completes 
the initialization procedure. 

We now describe the refinement procedure which is outlined in the 
flowchart of Fig. 4. At the conclusion of step k, a list of boundary points 
B k, an inner approximation F_ k, and an outer approximation ~k are available. 
The number of boundary points contained in B k is denoted by nbp, and the 
number of inequalities (halfspaces) forming the outer approximation ~k is 
given by nh. The counter k is incremented to k + l ,  and the refinement 
procedure begins with a direction selection step. The largest simplex-of the 
inner approximation set (convex hull) is presumed to be the worst approxi- 
mation to the reachable set boundary. The simplex sj, having the greatest 
normal vector magnitude is thus selected to be broken, and the normal 
vector ~j, provides the direction for refinement of the inner and outer 
approximations via the solution of (SHP(c)). 

Solving the optimal control problem (SHP(c)) for the normalized 
direction Ck+~ = nj*/llnj*ll yields a new boundary point x* The number 

C k +  1 • 

of boundary points is incremented by one (i.e., nbp = nbp + 1), and the new 
point is included in the boundary point list B k+~. A new E-supporting 
hyperptane is given by 

The corresponding halfspace is represented by the inequality 

c'k+J~ <- C'k+,X*~k÷ , + ~. (18) 

The number of halfspaces is incremented by one (i.e., nn = nh + 1), and 
constraint (18) is appended to the current list r k to form the updated outer 
approximation ~k.l. 

To update the inner approximation set F_ k, n new simplices are created. 
They are formed as all combinations of the n integers specifying the 
boundary points of the largest simplex st., taken with the integer nbp 
representing the new boundary point. The list of simplex vectors becomes 

sj, j=l , . . . ,n~,n~+l, . . . ,n~+n-1,  
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where the simplex sj. is replaced with a new simplex, and the other n -  1 
new simplices are appended to the list. 

The new simplex vectors are formed by n single replacements of  the 
integer elements of  sj, with the integer nbp corresponding to the new 
boundary  point. That is, 

with 

s,s+k=sj*, k =  1 , . . . ,  n - l ,  

s.s+k( k ) = nb~, 

and the simplex sj. is replaced by an identical integer vector with the single 
modification 

sj . (  n ) = nbp. 

For each of  the n newly created simplices, an outward normal vector r b is 
computed via the difference vector/cross product  procedure described 
above. The constant K~ is also computed to ensure that rlj is indeed an 
outward normal. This completes the update procedure for the inner approxi- 
mation set. 

As an illustration, consider the list of  ns = 2 simplices 

s, = [1, 2], 

s2 = [2, 3], 

whre sl is to be broken. A new boundary point x4* is determined, and nbe 
is incremented such that nbp = 4. Simplex s3 is created as 

s3 = [4, 2] 

by copying sl and replacing the first element with nbp = 4. The broken plane 
sl is modified such that the element n = 2 is replaced by nbp = 4 to give 

s, = [1, 4]. 

The number  of  simplices is incremented by n - 1 = 1 such that n, = 3, the 
normal vectors 77 and the constants K are computed for the newly created 
simplices, and the update  of  the inner approximation is finished. 

We note that each step in the hyperplane method yields one new 
hyperplane for the outer approximation,  one new boundary point, and new 
simplices for the inner approximation.  Hence, the number  of  simplices can 
become very large for large n or for a large number  of  iterative refinements. 
This problem is always present in numerical methods when a nonlinear 
boundary is approximated with linear elements, for example, when finite 
element meshes are used to fill curved boundaries. 
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At the conclusion of the refinement procedure, a stopping criterion is 
evaluated. We use the following criterion: if all simplices forming the inner 
approximation are less than a user-specified size; i.e., if the normal vector 
magnitudes are less than a user-specified size, then stop. Otherwise, continue 
the refinement and select a new direction for search. This approach permits 
the reachable set to be approximated with a relatively uniform granularity 
with both inner and outer approximations. Other approaches for terminating 
the algorithm are discussed in the concluding section. 

4. Examples 

In this section, the hyperplane method is applied to two LTI example 
systems. One is a second-order, two-input system, and the other is a third- 
order, single-input system. The examples illustrate the algorithmic steps in 
the hyperplane method. The initialization procedure generates the initial 
inner and outer approximations. Refinement of the reachable set estimates 
continues via the direction selection and approximation set updates 
described in the previous section. Iterations are terminated when the stop- 
ping criteria is satisfied. Once again, since the reachable set is symmetric, 
we work only with the half-body. 

Example 4.1. A linear, time-invariant system S having real eigenvatues 
[A~, A2] = [-2.0,-1.0] is described by the state equations 

Lx=(t)J Lu2(t)J L~2(t)J -3  

where x ( t ) ~  E 2 is the state vector and u( t )~  E = is the input vector. The 
input is bounded such that 

lu,(t)[-< 1 .0 ,  1=1,2. 

For this problem, an estimate of F~ is sought. A truncation error less than 
0.001 is required, fixing the final time at 

T = 9.45 sec, 

by the bound determined in Section 2. 
Having specified the system and the problem parameters, the initial 

inner and outer approximations are determined as follows. A search is 
performed in the coordinate direction c~ = [ 1, 0] to yield the boundary point 

x* 2 = [ 1.999, -0.999]', 
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its symmetric counterpart 

-xc* = [-1.999, 0.999]', 

and the e-supporting hyperplane 

c~ ¢ = 2.000 

from the solution of (SHP(c0). Selecting the other positive coordinate 
direction c~ = [0, 1] and solving (SHP(c2)) gives the boundary point 

x*~ = [-1.749, 1.499]', 

its symmetric counterpart 

- xc2* -- [1.749, - 1.499]', 

and the E-supporting hyperplane 

c~  r = 1.507. 

The initial outer approximation to F~ is determined as the intersection 
of the halfspaces defined by the e-supporting hyperplanes. Specifically, ~o 
is the set of ~ c E 2 is defined in Table 2 and displayed graphically in Fig. 
7 as the region enclosed by the solid lines. 

Table 3 lists the initial set B ° of boundary points x*. The inner 
approximation I_ "° is formed as the symmetric convex hull of the boundary 
points. The simplices sa and s2 are thus specified by the integer vectors 
which contain the indices of the boundary points that are vertices. The 
normal vectors for each simplex and their corresponding magnitudes 
(simplex sizes) are given in Table 4. This halfbody inner approximation is 
enclosed by the dashed lines shown in Fig. 7. 

To refine the inner/outer reachable set estimates, a direction for 
computing a new supporting hyperplane is selected as the largest simplex 
normal vector, which yields G=[0.5546, 0.8321] upon normalization of 
[2.498, 3.748]. Hence, simplex Sl will be broken and replaced by n = 2 new 
planes. Solving (SHP(c3)) gives the boundary point 

x* 3 = [-0.1645, 0.8593]' 

and the e-supporting hyperplane 

c3ff = 0.6257. 

Table 2. Outer approximation ~o. 
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Initial inner (dotted) and outer (solid) approximations to the reachable set halfbody. 

Table 3. Boundary point list B °. 

Boundary point Coordinates [ r ,  fie] 

1 [1.999, -0.999] 
2 [ - 1.749, 1 A99] 
3 [-1.999, 0.999] 
4 [1.749, -1.499] 

Table 4. Inner approximation simplices I "°. 

Integer Normal Normal vector 
Simplex vector vector magnitude 

s~ [1, 2] [2.498, 3.748]' 4.504* 
s 2 [3, 2] [-0.500, 0.250]' 0.559 

* Largest magnitude indicates simplex to be broken. 
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Table 5. Outer approximat ion  F~. 

° 1[ ] 
0 1 ~1 -</1.507 [ 

0.5546 0.8321 ~'2 [0.6257 J 

/ 

[s 27/ 
/ 

3/ 

~2 

~'.~. 1.00 

-~!5o -1!oo -0% 0.50 ts ~(' ~ x  \ ,' 

-0.50 \ ~  
\ \ \ \ \ 

-1.00 

-1.50 

Inner (dotted) and outer (solid) approximations after one iteration. Fig. 8. 

Table 6. Boundary point  list B ~. 

Boundary point Coordinates [ r ,  ~2] 

1 [1.999, -0.999] 
2 [-1.749, 1.499] 
3 [ -  1.999, 0.999] 
4 [1.749, -1.499] 
5 [-0.1645, 0.8593] 
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Table 7. Inner approximation simplices _IS 1. 

Integer Normal Normal vector 
Simplex vector vector magnitude 

s I [1, 5] [1.858, 2.163] 2.852* 
s z [3, 2] [-0.500, 0.250] 0.559 
s 3 [5, 2] [0.640, 1.584] 1.709 

* Largest magnitude indicates simplex to be broken. 

581 

The outer approximation po is updated by appending the constraint 
c;ff---0.6257 to form pl. The complete representation is given in Table 5 
and is plotted in Fig. 8. Solid lines enclose the outer approximation. 

To form the updated inner approximation F 1, the boundary point 
[-0.1645, 0.8593] is appended to B ° to form B 1, given in Table 6. Simplex 
sl is broken into two new simplices, described by the integer index vectors 
[1, 5] and [5, 2]. These are the n = 2 combinations of the new boundary 
point (index number 5) and the n = 2 boundary points (index numbers 1 
and 2) that comprised simplex s~ prior to the refinement step. Table 7 
presents the new inner approximation _F 1, which is also illustrated in Fig. 
8 as the region enclosed by the dashed lines. 

Iterations continue by selecting a refinement direction corresponding 
to the largest simplex normal. In this case, normalization of [1.858, 2.163] 
yields c4= [0.6516, 0.7586]' as a search direction. The optimal control so- 
lution to (SHP(c4)) gives the boundary point x* 4 = [0.8380, 0.0851]' and the 
e-supporting hyperplane c~ff = 0.613. 

The updated outer approximation p2 is represented analytically in 
Table 8. A new boundary point list B 2 and inner approximation F_ 2 are 
given in Tables 9 and t0, respectively. At this stage in the refinement, the 
reachable set estimates are shown graphically in Fig. 9. Solid lines enclose 
the outer approximation, and dashed lines enclose the inner approximation. 
The exact reachable set boundary shown by the dotted line in Fig. 9 illustrates 
the accuracy of the approximations generated via the hyperplane method. 

Table 8. Outer approximation ~,2. 

f .5546 0.832 -- /0 .626 

[0.6516 0.7586.] [0.613 
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Table 9. Boundary point  list B 2. 

Boundary point Coordinates [~1, ~2] 

1 [1.999,-0.999] 
2 [-1.749, 1.499] 
3 [-1.999,0.999] 
4 [1.749,-1.499] 
5 [-0.165,0.859] 
6 [0.838,0.085] 

Table 10. Inner approximation simplices _1 "2. 

Integer Normal Normal vector 
Simplex vector vector magnitude 

s, [1,6] [1.084,1.161] 1.588 
s 2 [3, 2] [-0.500, 0.250] 0.599 
s 3 [5, 2] [0.640,1,584] 1.709 
& [6,5] [0.774,1.003] 1.267 

42 
' ..'~'~ -aC" ~- .... ~ ~ 1,*o~ 

" .  

0 . 5 0 ~  

-1.00 %"~ 

-1.50 

Fig. 9. Inner (dotted) and outer (solid) approximations after two iterations. 
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As can be seen from the sequence of inner and outer approximations 
in Figs. 7-9, rapid progress has been made in just two steps of the algorithm. 
Further improvements can be achieved by selecting new directions ck and 
by solving (SHP(Ck)) to determine new boundary points and new e- 
supporting hyperplanes. This example graphically illustrates the mechanics 
of the hyperplane method iterations and demonstrates its utility for simul- 
taneously estimating a reachable set from within and from without. The 
reader is referred back to Section 3 for the complete details of each step 
in the procedure. 

Example 4.2. Consider the third-order, single-input LTI system 
defined by the state equations 

o o 1 u(,), 
:~3(t)] -100 -80  -173Lx3(t) 

where x ( t ) c  E 3 is the state vector and the scalar input u(t) is bounded 
such that 

t u ( t ) l -  1.o. 

The hyperptane method can be applied for this system to estimate F~ with 
an absolute e error tolerance of 0.0001. Preliminary searches in the three 
coordinate directions yield 

I~,l ~- 1.010(10) -2, lff2l ~ 2.075(10) -2, [~'3[ -< 1.065(10) -1. (19) 

Since these bounds are relatively close (in magnitude) to the ~ tolerance, 
improved numerical conditioning can be achieved by scaling the state 
equations appropriately. By defining a diagonal scaling matrix D e  E "×" 
and a new state vector xs ~ E n such that 

x( t) = Dxs( t), (20) 

the state equations can be written as 

~s( t ) = D-1ADx~( t ) + D- l  u( t ). 

Inner and outer approximations to the reachable set in the scaled state 
space can be computed via the hyperplane method. The results are then 
mapped linearly into inner and outer approximations in the original state 
space using the transformation (20). 

For the current example, the individual coordinate bounds in (19) are 
used as the diagonal elements in the scaling matrix 

D = diag[ 1.01(~(10) -2, 2.075(10) -2, 1.065(10)-1]. 
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Table 11. Outer approximation for the 
scaled stated space. 

t.000 0.000 0.000] [0.990 1 

0000 1000 o ooo, f ] ,0984, 
o.ooo o.ooo 1.ooo / ~' /1 .ooo/  
0.406 0.593 0.695[ ¢2 -< [0.5t9[ 

-0.557 -0,817 0.149[ ¢~ / 0.749 / 
0.452 0.661 0.600j L 0.472j 

The resulting scaled state equations are 

ixsltli0 2.0545 01rXl t]i0 ] 
&2(t)|= o 0 5.1322//xs.2(t) + 0 u(,). 
&3(t) J -9.4841 -15.5877 -17.000J[xs,3(t) 9.3891 

In the scaled state space, inner and outer approximations to the reachable 
set are computed using the hyperplane method. The results are presented 
in Tabtes 11-13. We note that the choice of the scaling matrix D derived 
from the preliminary coordinate searches has a normalizing effect. That is, 
the coordinate constraints in the scaled space nearly define the unit cube, 
as evidenced by the first three inequalities in Table 11. 

Table 12. Boundary point list for the scaled state 
space. 

Boundary point Coordinates [¢1, ¢2, ~'3] 

[0.9900, 0.0000, -0.0018] 
[-0.4509, 0.9835, 0.0001 ] 
[-0.1114, -0,4178, 0.9975] 
[-0.9900, -0,0000, 0.0018] 
[0.4509, -0.9835, -0.0001 ] 
[0.1114, 0.4178, -0.9975] 
[-0.0028, 0.0057, 0.7395] 
[-0.1297, -0.7173, 0.6046] 
[0.1497, 0.2382, 0.4076] 
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Table 13. Inner approximation simplices for the scaled state space. 

Integer Normal Simplex 
Simplex vector vector RHS 

sl [1, 2, 9] [0.402, 0.588, 0.483] 0.3973 
s 2 [4, 2, 3] [-0.979, 0.538, 1.089] 0.9708 
s 3 [1, 5, 3] [0.982, -0.537, 0.858] 0.9708 
s 4 [4, 5, 8] [-0.594, -0.870, -0.187] 0.5879 
s 5 [7, 2, 3] [-0.061, 0.196, 0.296] 0.2202 
s 6 [1,7,3] [0.315,0.176,0.421] 0.3115 
s 7 [8, 5, 3] [0.076, -0.239, 0.t79] 0.2698 
s 8 [4, 8, 3] [-0.462, -0.327, 0.271] 0.4582 
s 9 [9, 2, 7] [0.153, 0.261, 0.253] 0.1884 
Sto [1, 9, 7] [0.174, 0.216, 0.232] 0A720 

The inner and outer approximations in the scaled state space are 
mapped via the scaling matrix D into the original state space. Hyperplane 
constraints of the form 

C' Xs ~ Co 

b e c o m e  

c ' D - l x  <- Co. 

B o u n d a r y  po in t s  x* are m a p p e d  to b o u n d a r y  po in ts  x* in the  or ig ina l  s tate 
space  as 

x*  = D x * .  

The  resul ts  o f  these  t r an s fo rma t ions  for  the  p resen t  e xa mp le  are  s u m m a r i z e d  

in Tables  14-16 which  p resen t  the  ou te r  a p p r o x i m a t i o n ,  b o u n d a r y  p o i n t  
list, and  inner  a p p r o x i m a t i o n ,  respect ively .  

Table 14. Outer approximation in the original 
state space. 

98.998 0.000 
0.000 48.187 
0.(3,00 0.000 

40.193 28.575 
-55.142 -39.369 
44.747 31.852 

0.0001 r0-9901 o.ooo,I 1 ,o.9 4, 
93.891 / ~' /1"°°°/  
6"5254/ ;~ -< /°-519/ 
1.399 | k~'~J IO.749 / 
5.6334j k 0.742j 
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Table 15. Boundary point list in the original state 
space. 

Boundary Point Coordinates [~:, ~2, g3] x 103 

[I0.000, 0.0000, -0.1917] 
[-4.5546, 20.410, 0.0106] 
[-1.1253,-8.6704, 106.24] 
[ -  10.000, 0.0000, 0.1917] 
[4.5546, -20.410, -0.0t06] 
[ 1.1253, 8.6704, - 106.24] 
[-0.0283, 0.0I 183, 78.762] 
[-1.3101, -14.886, 64.394] 
[1.5121, 4.9432, 43.412] 

5. Conclusions 

We conclude with some remarks regarding properties of the inner and 
outer reachable set estimates generated via the hyperplane method. First, 
the inner approximation is conservative with respect to system capability. 
If the objective of a reachable set analysis is to assess the extent of the 
system maneuvering capability at time T (e.g., for a minimum-time, optimal 
control problem), the inner approximation should be used. On the other 
hand, to guarantee avoidance of a specified set of states (e.g., to satisfy a 
set of operating constraints), the outer approximation ensures conservative 
results. The hyperp[ane method yields reachable set estimates for either end 
purpose, within arbitrarily specified accuracy. 

Table 16. Inner  approximation simplices in the original state space. 

Integer Normal Simplex 
Simplex vector vector RHS 

si [1,2, 9] [39.797, 28.334, 4.5349] 0.3973 
s 2 [4, 2, 3] [-96.919, 25.925, 10.225] 0.9708 
s 3 [1, 5, 3] [97.216, -26.876, 8.0558] 0.9708 
s 4 [4, 5, 8] [-58.805, -41.923, -1.7558] 0.5879 
s 5 [7, 2, 3] [-6.0389, 9.4446, 2.7792] 0.2202 
s 6 [1, 7, 3] [31.184, 8.4809, 3.9528] 0.3115 
s 7 [8, 5, 3] [7.5239, -11.517, 1.6806] 0.2698 
s 8 [4, 8, 3] [-45.737, -15.757, 2.5444] 0.4582 
s 9 [9, 2, 7] [15.147, 12.577, 2.3754] 0.1884 
s~0 [1, 9, 7] [17.226, 10.408, 2.1783] 0.1720 
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The finite precision of the numerical computations affects the accuracy 
of the reachable set estimates, particularly when the problem is poorly 
scaled. A problem is poorly scaled when the reachable set for a system is 
relatively elongated in one  or more dimensions, and is relatively small in 
other dimensions. From our numerical experience, this difficulty can arise 
quite often. We have found it useful to do preliminary searches in the 
coordinate directions. These searches yield values for a normalization matrix 
that can be used to scale the state equations. By computing the reachable 
set in the normalized space, the numerical accuracy is enhanced. The inner 
and outer approximations in the normalized space can then be mapped 
easily into inner and outer approximations for the original space via the 
normalization matrix. 

In our implementation of the algorithm, we used a heuristic direction 
selection in which the normal to the largest face of the inner approximation 
was chosen for improvement. Other heuristic approaches might prove to 
be more successful, and this remains a topic for future research. Finally, 
the stopping criteria was based on the size of the planes forming the inner 
approximation. Another approach would be to compute the volumes of the 
inner and outer approximations, and stop when the difference in volume 
is below a prescribed tolerance. Computation of the volume of convex sets 
is a topic of current research and has not been implemented in this 
work. 

We are currently applying the hyperplane method to the problem of 
trajectory planning for servosystems. In this application, the objective is to 
determine a set of constraints in the parameter space used to generate 
reference trajectories for which it can be guaranteed that the system operat- 
ing constraints are not violated and the tracking error does not exceed a 
specified tolerance. Outer approximations for the reachable set generated 
by the hyperplane method are being used in an embedded algorithm for 
generating bounds on the reference trajectory and its derivatives (Ref. 15). 
Another potential application of the hyperplane method is avoidance control 
(Refs. 16-17). 
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