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Abstract. In this paper, (~, 4, Q)-invexity is introduced, where 
a: X x X ~ i n t  R'~, ~b: X x X ~ X ,  X is a Banach space, Q is a convex 
cone of R m. This unifies the properties of many classes of functions, 
such as Q-convexity, pseudo-linearity, representation condition, null 
space condition, and V-invexity. A generalized vector variational in- 
equality is considered, and its equivalence with a multi-objective pro- 
gramming problem is discussed using (c~, 4, Q)-invexity. An existence 
theorem for the solution of a generalized vector variational inequality 
is proved. Some applications of (c~, 4, Q)-invexity to multi-objective 
programming problems and to a special kind of generalized vector 
variational inequality are given. 

Key Words. Generalized convex functions, generalized vector varia- 
tional inequalities, multi-objective programming problems, necessary 
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1. Introduction 

Variational inequalities and complementari ty problems play an impor- 
tant  role in many  fields, such as economics, control theory, engineering, etc. 
(see Ref. 1). Recently, these scalar problems have been generalized to the 
vector case, based on vector optimization problems and weak minimal 
element problems (Refs. 2-6) .  Vector variational inequalities were first 
introduced in Ref. 2 in a finite-dimensional space. Later, vector variational 
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inequalities and quasi-vector variational inequalities were discussed in Ref. 
3 in an infinite-dimensional space. Some existence theorems for the solu- 
tions of vector variational inequalities and quasi-vector variational inequal- 
ities were proved in Refs. 3 and 5. 

Let X be a Banach space, R m an m-dimensional Euclidean space, and 
let L(X, R") be the set of all linear continuous operators from X to R m. 
For I~L(X, R m) and x~X,  (l, x )  denotes the value of a linear continuous 
operator l at x. Let P be a convex cone of  R '~ with int P # ~ .  Define the 
partial orderings of  R m as follows: for all, Yl, y2eR", 

Yl > Y2 ¢~ Yl -- y2~P, 

Yl ~ Y2 "¢¢" Yl -- y2¢ in t  P. 

Note that 

Yi C Y2"c*" Y2 ~ Yl • 

A useful relation between > and ~ is that 

a>>_b¢c=*.a~c, 

which is derived from the cone equality, 

int P + P = int P; 

see Ref. 5. Let P* be the dual cone of  P, i.e. 

P* = {y*~Rm: yry * >_ O, Vy~P}. 

Consider the following vector optimization problem: 

(VPC) V-minef(x), s.t. x~K, 

where K is a subset of X a n d f  = ( f~ . . . . .  f,n): X ~ R m .  Recall that a point 
a e K  is called a weak minimum of (VPC) if f (x) - f ( a )  ~ O, Vx ~K and that 
the point a ~K is called a minimum (efficient solution) of (VPC) if there 
exists no x ~ K  such tha t f (x )  - f ( a ) ~ - P \ { 0 }  (Ref. 18). It should be noted 
that a weak minimum, or a minimum, of (VPC) is just a nondominated 
solution of (VPC) with a constant domination cone in Ref. 7, i.e., with an 
open or closed convex cone as domination cone. For  the details of 
nondominated solutions, the reader may refer to Refs. 7 and 8. However, 
for simplicity, we discuss (VPC) in the sense of weak minimum and 
minimum in this paper. 

Consider the following vector variational inequality (Refs. 3 and 5): 

( W I )  f i n d x ~ C , ( T ( x ) , y - x > ¢ O ,  Vy~C, 

where C is a convex subset of  X and T = (TI . . . . .  Tin): X---, L(X, R"). The 
following results were given in Ref. 3, which shows that (VVI) is closely 
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related to a convex vector optimization problem° Note that ~ is the 
G~teaux derivative to f and f '  = ( f ' ~ , . . .  , f~).  

Theorem 1.1. See Ref. 3. Assume that K = C is a convex subset of X 
and that f :  X - . . R  m is differentiable, T,. =f'i,  and P is a dosed convex cone. 
Then, we have: 

(i) if a is a weak minimum of (VPC), a is a solution of the vector 
variational inequality (VVI); 

(ii) if f is a G~teaux differentiable P-convex function (see Example 
2.1) and a is a solution of the vector variational inequality (VVI), 
a is a weak minimum of (VPC). 

Recently, in Refs. 9 and 10, the following scalar prevariational in- 
equality was considered: 

(VI) find x~C1,F(x )Tr l (y , x )  >_0 ,  Vy~Ct ,  

where F: R " ~ R " ,  q: R '~ × R " ~ R " ,  and C~ is a subset of RL The relations 
between (VI) and a minimization problem and existence theorems for 
the solution of (VI) were given in Refs. 9 and 10. It should be noted that 
this kind of variational inequality is closely related to the invexity (see 
Refs. 9-12). 

In this paper, we introduce (ct, ~b, Q)-invexity, which unifies the prop- 
erties of many classes of functions, which recently appeared in optimization 
literature, such as pseudo-linearity (Ref. 13), representation condition 
(Ref. 14), null space condition (Ref. 15, see also Ref. 16), and V-invexity 
(Ref. 17). We show that this class of functions is applicable to many 
optimization problems and that various sufficient conditions for multi- 
objective programming problems can be obtained. We introduce a general- 
ized vector variational inequality and study its equivalence with a multi- 
objective programming problem. 

The outline of the paper is as follows. In Section 2, we introduce 
(~, ~b, Q)-invexity and give various examples and properties of (~, ¢, Q)- 
invexity. In Section 3, we study a generalized vector variational inequality 
and establish its equivalence with a multi-objective programming problem 
using the (a, q~, Q)-invexity condition. We also prove an existence theorem 
for the solution of the generalized vector variational inequality. In Section 
4, we give sufficient conditions for the weak minimum of a multi-objective 
programming problem. In particular, we derive a sufficient condition for 
properly efficient solution of an inequality and equality constrained multi- 
objective programming problem. In Section 5, we present a necessary 
condition and a sufficient condition for the solution of a vector variational 
inequality. 
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2. Generalized Convex Ftmetions 

Let us first look at some examples. 

Example 2.1. P-Convex Function. See Refs. 8 and 18. The function 
g: X ~ R  m is called P-convex if, for x~ . . . . .  x,,~X, ~i=l 7i = 1, 2i >_0, 

~ 2 i g ( x i , - g ( ~ l ) , i x i ) E P .  (1) 
i = l  i 

Assume that P is closed and g is Ggtteaux differentiable. Then (1) holds if 
and only if 

g(y) -- g(x) ~ (g'(x), y - x )  + P, Vx, y e X. (2) 

It is easy to verify that g is P-convex if and only if g(X) is P-convex, i.e., 
g(X) + P is convex. It is well known that P-convex functions have many 
applications in economics and engineering. But examples of  functions do 
exist which are not P-convex. 

Example 2.2. Let 

x = (xl, x z ) e D  = {(xl, x2): xl -> 1, x2 >- 1} c R 2, 

and let 

h(x)=((x l /x2)  "~ . . . .  , (xl/x2) '") ,  n,>_l, i =  l , . . . , m .  

Then, it is easy to verify that, for any convex cone P of  R" ,  P :~ R m, h is 
not P-convex. 

Next, we introduce a class of  generalized convex functions which 
includes the above examples as welt as many other classes of  functions as 
we show later. L e t f  = ( f l , . . .  ,fm): X -'* R m. Define F x : X x • -- x X ~ R "  
by 

Fx(y, . . . . .  y,,,) = (( f ' , (x) ,  y ~ ) , . . . ,  (fm(X), Ym ))" 

Definition 2.1. Let f :  X ~ R  m, dp: X x X ~ X ,  a: X x X ~ i n t  R'~, Q a 
convex subcone of P. If  for any x, y e X, the relation 

f ( y )  - f ( x )  eFx(cXl (x, Y)4)(Y, x ) , . . . ,  Ctm(X, y)dp(y, x)) + a (3) 

holds, then f is called (~, 4, Q)-invex on X. 
I f  x is fixed, (3) holds for each y e X ,  then f i s  called to be (c¢, ~, Q)- 

invex at x. 
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Remark 2.1. 

(i) We always assume that q~(x, x)---0, ¥xeJ(.  
(ii) The relation (3) is equivalent to 

( f ,  (y) . . . . .  f , , (y))  - ( f~ (x) . . . .  ,fro(x)) 

567 

~(cq(x, y ) ( f ]  (x), ~b(y, x) ) . . . . .  o~,,,(x, y)(f',,,(x), dp(y, x) )) + Q. 

(iii) If  X = R", m = 1, Q = R+, (3) becomes 

f l (Y)  - f~ (x )  >__f'j(x)rrl(y, x), 

where q(y, x) = cq (x, y)~b(y, x). Hence f~ is an invex function 
with respect to q(y, x); see Refs. 11 and 12. 

(iv) In Example 2.2, h is (cq ~b, RT)-invex on D if we choose 

~i((x~, x2), (Yl, Yz)) = x2/Y2, i = 1 . . . . .  m, 

~b((y~, Y2), (xl, x2)) = (y~ - x, ,  Y2 - x2). 

The following examples show that (0c, ~b, Q)-invexity includes many 
classes of  functions. 

Example 2.3. V-Invexity. See Ref. 17. Let P = Q = R "  Then (3) +. 
becomes 

f i (Y)  - f i ( x )  >_ei(x,y)(f ' i(x),  (~(y,x)),  i =  1 . . . . .  m, Vx, y e X .  

This means that f i s  a V-invex function; that is, eachf~ is invex with respect 
to q~(y , x )=~(x , y )4 ) ( y , x ) ;  see Remark 2.1 (iii). I f  el (x ,y )  . . . .  = 
e,,(x, y) = o~*(x, y), we say that f i s  (0~, ~b, P)-invex with respect to the same 
~*(x, y).  

Example 2.4. Representation Condition. See Ref. 14. Let 

~ ( y ,  x) = zx,y - x, 

o~i(x,y)sintR+, i = t ,  . . . .  m, Q = {0}. 

From (3), we get 

f ~ ( y ) - f ( x ) = c q ( x , y ) ( f ' ~ ( x ) , z x ,  y - x ) ,  i = l  . . . . .  m, Vx, y ~ X .  

Then, f satisfies the representation condition in Ref. 14. 

Example 2.5. Null Space Condition. See Refs. 15 and I6. Let 

~i (x , y ) s in tR+,  i = l , . ,  m, P - R . ,  Q = { 0 } .  
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It follows from (3) that 

f i ( y ) - f i ( x ) = ~ i ( x , y ) ( f ~ ( x ) , ~ ( y , x ) ) ,  i = 1  . . . . .  m, Vx, y~X.  

This means that f satisfies a null space condition. At this time, we say that 
f i s  (~, ~b, 0)-invex. If  ~l(x,y) . . . . .  ct,,,(x,y) = ~*(x,y), we say that f i s  
(~, ¢, 0)-invex with respect to the same ~*(x, y). 

Example 2.6. Pseudo-Linearity. See Ref. 13. Let 

X =  R", dp( y, x) = y - x, 

~t;(x, y) t in t  R+, i = 1 , . . . ,  m, P = R'~, Q = {0}. 

Then, (3) becomes 

f i(Y) - f . ( x )  =e i (x ,y ) ( f ' t ( x ) , y  - x ) ,  i =  1 . . . . .  m, Vx, y eX .  

Hence, each f~ is a pseudo-linear function. 

The following theorem summarizes the relations among these proper- 
ties of a function: 

Theorem 2.1. We have the following relations: 

pseudo-linearity =~ representation condition =~ null space condition 

=~ V-invexity =~ (~, ~b, P)-invexity. 

Proof. The proof  follows easily from the definitions and is omitted. 
[] 

Next, we show some properties of  the (e, ~b, Q)-invex functions. 

Theorem 2.2. I f  for each i = 1 . . . . .  k, g~ = ( f~l . . . . .  f ~ )  satisfies the 
(c~, ~b, Q~)-invexity condition, ).; > 0, i = 1 . . . . .  k, then ~k= 1 2~gi satisfies 
the (e, ¢, Q)-invexity condition with Q = co U k= 1 Qi. 

Proof. For x, y e X, we have 
k k 

E ~',g, (Y) -- E 2ig, (x) 
i = 1  i = 1  

k k 

e ~ 2,F~x(~, (x, y)dp(y, x) . . . . .  ~m(x, y)~(Y, x)) + ~ 2,Q, 
i = 1  i = 1  

k 

~ 2i((f'il(X), ~l(x, y)¢(y, x))  . . . . .  
i = l  

k 

(f'#,,(x), ~,,,(x,y)~p(y, x))) + ~ 2~Qt 
i = l  
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) = 2-Ja (x), e t(x,y)dp(y, x) , . . . ,  
/=1 

= Fx(cq(x, Y)4)(Y, x) . . . . .  ~Zm(X, Y)4)(Y, X)) + Q, 

k 

Q = co U Qi, 
i=1 

) ) )) F x ( " )  = 2 i f l  ( x ) ) .  , . . . ,  Xif~n ( x ) , .  . 
\ k \ i =  l i=  t 

Then, ~ = l  2igi is an (~, ~b, Q)-invex function. 

Theorem 2.3. Let f = h o g .  If  h : R n + R  m is 
g: X ~ R" is (~, ~b, 0)-invex, then f is (~, 4, P)-invex. 

Proof. We have 

f ( y )  - f ( x )  = h(g(y))  - h(g(x)) ~(h'(g(x)) ,  g(y)  - g(x) ) + P 

= (h'(g(x)),  ((g'l (x), ~1 (x, y)dp(y, x ) )  . . . . .  

(g',,,(x), ~,,,(x, y)~b(y, x) ) ) )  + P 

= (((hi og)'(x), oq(x, y)ck(y, x)> . . . .  , 

((hmo g)'(x), ~m(x, y)~a(y, x) )) + P 

= F,(~I (x, y)~b(y, x) . . . . .  ~,,,(x, y)~b(y, x)) + P, 

where 

569 

Ix ("  ) = ( ( f ' l (x ) ,  . ) , . . . ,  (fro(X), .)). 

The proof is completed. 

[] 

( 1, y - x, P)-invex, 

[] 

3. Generalized Vector Variational Inequalities 

Let X be a Banach space, and let P be a convex cone of R m with 
i m P  ~ ,  T = ( T ~  . . . . .  T~): X ~ L ( X ,  Rm), 4: X × X ~ X .  Consider the 
following generalized vector variational inequality problem: 

(GVVI) find x ~ g ,  Fx(q~(y, x) . . . . .  dp(y,x)) ¢ 0 ,  Yy~K,  

where K is a subset of X, F x ( z ) = ( ( T l ( x ) , z l )  . . . . .  (Tm(x),z,,,),), z =  
( z ~ , . . . , z , , , ) ~ X  × . . .  x X. 
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Remark 3.1. 

(i) I f  ¢ ( y , x ) = y - x ,  then the generalized vector variational in- 
equality (GVVI) becomes 

(VVIm) ( ( T , ( x ) , y  - x )  . . . .  , (Tm(x) ,y  - x ) )  ¢ 0 ,  VxeK.  

This is the vector variational inequality studied in Refs. 4 and 5 when K is 
convex. 

(ii) If  m = 1, X = R n, this was considered in Refs. 9 and 10; see 
Section 1. 

Consider the following generalized multi-objective programming prob- 
lem: 

(GVPC) V - m i n e ( f i ( x )  . . . . .  f , ,(x)), s.t. x e K ,  

where f~: X --* R is Ggteaux differentiable, i = 1 . . . . .  m, P is a convex cone 
of  R m with int P ~ ~ .  

Theorem 3.1. If  K is open and a is a weak minimum of (GVPC), then 
a is a solution of the generalized vector variational inequality (GVVI). 

Proof. For any x eK, there exists 
a + t¢(x, a) eK, and 

f ( a  + tqb(x, a)) - f (a)  ~ O. 

Then, 

Let 

We get 

t0>0 ,  such that 0 < t < t 0 ,  

((ill  (a), ¢(x, a))  . . . . .  ( f ' ( a ) ,  ¢(x, a)))  ¢ 0. 

T; = f ; ,  i = 1 . . . . .  rn, 

Fo(z) = ((T~(a), zl ) , . . . ,  (Tin(a), Zm )), 

z = ( z l  . . . . .  z m ) e X x " "  xX.  

FA¢(x, a) , . . . ,  ~(x, a)) ¢0, VxeK.  

Then, a is a solution of the generalized vector variational inequality 
(GVVI). [ ]  

Remark 3.2. In Theorem 3,1, other than the condition that K is open, 
we may assume that K has the O-connectedness; i.e., Vx, y eK, t e[0, 1], we 
have x + t~b(y, x) eK; see Ref. 10. 
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Theorem 3.2. Assume that f is (~, qb, Q)-invex and Q is a convex 
subcone of  P. If  a is a solution of  the generalized vector variational 
inequality (GVVI), then a is a weak minimum of  (GVPC). 

Proof. 
inequality (GVVI), we get 

F,,(~(x, a ) , . . . ,  q~(x, a)) ,~ 0, Vx ~K. 

Equivalently, 

Fa(~(x, a ) , . . . ,  ~b(x, a)) ¢ - i n t  P, YxeK, 

i.e., 

(Fa(~(x, a ) , . . . ,  ~(x, a)) + Q)c~- in t  P = ~ .  

It follows from the (~, ~b, Q)-invexity o f f ( x )  that 

f (x)  - f ( a )  ¢ - int P, Vx ~ K, 

f (x)  --f(a) ¢ O, Vx ¢K. 

So, a is a weak minimum of  (GVPC). 

Since a is a solution of  the generalized vector variational 

[] 

Corollary 3.1. Assume that T = f '  = ( f~,  . . .  , f ' ) ,  f is an (~, q~, P)- 
invex function with the same ~*(a, x) = 1 and tk(x, a) = x - a .  If  a~K is a 
solution of  the vector variational inequality (VVIm), then a is a weak 
minimum of  (GVPC). 

Next, we consider the existence for the solution of  the generalized 
vector variational inequality ( G W I ) .  

Theorem 3.3. Let K be a compact convex set of  X, and let T, ~b be 
continuous. If  the function q~(y) = Fx(c~(y, x) . . . . .  ~b(y, x)) is P-convex for 
each fixed x eK, then the generalized vector variational inequality ( G W I )  
is solvable. Furthermore, the solution set of  (GVVI) is a compact set. 

Let 

Then, 

ProoL Let 

G(y) = {z~K:Fz(c~(y,z) , . . . ,  ~(y,z)) ~O }, yeK.  

{Yl . . . .  ,Yn} CK, ~ 2t = I ,  2l>->-0 • 
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y = E U C(y,). 
i = l  i ~ l  

Otherwise, y CG(y~), Vi; thus, 

Fy(tk(y,, y), •. •, ~(yl, y)) < 0, Vi. 

Then, 

2,Fy(ck(y~, y), . . . , ~(y~, y)) < O. 
i = 1  

By the P-convexity of 

tp(y) = Fx(dp(y, x) . . . . .  dp(y, x)), 

0 = Fy(q~(y, y) . . . . .  ~p(y,y)) < ~ 2,Fy(qb(y,, y ) , . . . ,  ~b(y,, y))<0,  
i=1 

we have 

a contradiction. So, 

Y = ~ 2iYi~ 0 G(yi). 
i ~ l  i l l  

From the continuity of T and ~b, G(y) is closed. By using the Knaster, 
Kuratowski, and Mazurkiewicz theorem (Ref. 5), we get 

Let 

Then 

G(y) ~ ~ .  
y e K  

A G(y). 
y e K  

Fx(~p(y,x) . . . . .  dp(y,x)) ~ 0 ,  VyeK.  

Since the intersection of closed sets is closed, the solution set of (GVVI), 
()y~x G(y), is closed, so it is compact. [] 

Remark 3.3. In order to prove the existence for the solution of the 
generalized vector variational inequality (GVVI) for the case where K is 
not compact, we require additional conditions, such as the coercitivity 
conditions (Refs. 9 and 10). 
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4. Sufficiency of the Generalized Karush-Kuhn-Tueker Conditions 

In this section, we continue to present the applications of the (~, ~b, Q)- 
invexity. We give various sufficient conditions for the generalized Karush- 
Kuhn-Tucker conditions of multi-objective programming problems. 

Consider the following multi-objective programming problem: 

(GVP) V-minp f ( x )  = ( ~ ( x ) , . . . , f m ( x ) ) ,  

s.t. x ~ X ,  

- g ( x )  = ( - g l  (x) . . . . .  -g , , (x ) )  eS ,  

h ( x )  = (h, ( x )  . . . . .  h , ( x ) )  = O, 

where f . ,g j ,  h k : X ~ R  are G~teaux differentiable, P and S are convex 
cones of R '~ and R n, respectively, and int P v~ Z;. 

By using some regularity conditions, such as local solvability, the 
following generalized Karush-Kuhn-Tucker  necessary conditions for 
(GVP) were given (Ref. 20), which are a generalization of the well-known 
Lagrange multiplier theorem (see Ref. 19): if a is a weak minimum of 
(GVP), then there exist ( = ((t . . . .  , (m) eP*\{0}, • = ( z i , . . . ,  z,)~S*, 
2 = (2~ . . . . .  2t) such that 

~,f~(a) + zjg'j(a) + ~ 2kh;(a) = 0, (4) 
i= l  j = l  k = l  

zjgj (a) = O, j = 1 . . . . .  n. (5) 

In this, a condition which is called a constraint qualification is used to 
confirm that ( = (~ . . . . .  ~,,) ~P*\{0}. 

Next, we consider the sufficiency Of the above generalized Karush- 
Kuhn-Tucker necessary conditions using the (~, ~, Q)-invexity. 

Theorem 4.1. If f is (a,q~,P)-invex with respect to the same 
a*(a, x) > 0, g is (fl, ~b, S)-invex with respect to the same fl*(a, x) > 0, h is 
(7, ~b, 0)-invex with respect to the same ~*(a, x) > 0, and the generalized 
Karush-Kuhn-Tucker  conditions (4)-(5) hold at a, then a is a weak 
minimum of (GVP). 

Proof. Suppose that a is not a weak minimum of (GVP). Then, there 
exists a feasible point x such that 

( f l  (x) . . . . .  f,,,(x)) - ( f l  (a) . . . . .  f,,,(a)) ~ - i n t  P. 

From the (~, q~, P)-invexity of f and 

= ( ( , , . . . ,  
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we have 

0 > ~ ~i(f.(x) -f~(a)) >_ ~' ~* (a ,  x)(f;(a),  q~(x, a)). (6) 
i = 1  i = l  

From the generalized Karush -Kuhn-Tucke r  conditions (4)-(5) ,  we get 

(i (f'i (a), ~b(x, a) ) 
i = 1  

= - zj (gj. (a), q~(x, a ) )  - ~,  2~ (h ; (a ) ,  tk(x, a ) )  
j = l  k = l  

> -  ~ [1/fl*(a, x)]zj(&(x)-gj(a)) 
j = l  

/ 

- ~ [1/7*(a, xll2k(hk(X) -- h~(a)) 
k = l  

Hence, 

>0 .  

0 > ~ ~i(fi(x) --fi(a)) > O, 
i = 1  

a contradiction. Then, a is a weak minimum of (GVP). [] 

Remark 4.1. The (~, ~b, P)-invexity of  f can be replaced by the 
(~, ~b, Q)-invexity of  f ,  where Q is a convex subcone of  P since (6) still 
holds for this case. 

When P = R~ ,  S = R~., (GVP) becomes the following multi-objective 
programming problem: 

(GVP1) V-minR~ 

s.t. 

( f l ( x )  . . . . .  fro(X)) 

x eX, 

gj (x) < O, j = 1 . . . .  , n, 

h~(x) =0, k = 1 , . . . ,  l. 

Now, we obtain a sufficient condition for a minimum of (GVP1) using 
less restrictive assumptions than Theorem 4.1. 

Theorem 4.2. If  f is (a, q~, R'~)-invex, g is (fl, q~, R'~)-invex, h is 
(y,~b, 0)-invex, and the generalized Ka rush -Kuhn-Tucke r  conditions 
(4 ) - (5 )  hold with ~ = (~1 . . . . .  ~m) ~int R'~ at a, then a is a minimum of 
(GVP1). 
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I~oofi If  a is not a minimum of  (GVP1), there there exists a feasible 
point x such that f~(x)<f~(a),  i = I , . . .  ,m, and strict inequality holds 
for at least one i. Since (; > 0, i = 1 . . . . .  m, we get 

( ,(f~(x) - f / ( a ) )  > 0, i = 1 . . . . .  m, 

and strict inequality holds for at least one i. On the other hand, since f is 
(c~, ~b, R~)-invex, g is (fl, 4, R~)-invex, h is (% ~b, 0)-invex, we have 

0 > ~ [(,/cti(a, x)](f(x) -f~(a)) 
i = 1  

>- ~ ~i (f'i (a), ~b(x, a ) )  
i ~ l  

f ' = - ~j(g'j(a),  ~(x ,  a ) )  - ~ ~ ( . h ; ( a ) ,  ~.(x, a)) 
j = l  k ~ l  

n 

>- - ~ [5/BJ (a, ~) l (gj (x)  - gj(a))  
j = l  

l 

k = l  

_>0, 

a contradiction. The proof  is completed. [] 

At this time, if we strengthen the hypotheses in Theorem 4.2, we obtain 
a sufficient condition for properly efficient solution of  (GVP1). Recall that 
a eX is a properly efficient solution of  (GVP1) (Ref. 22) if it is an efficient 
solution (minimum) of  (GVPI)  and there exists a real number M > 0 such 
that, for each i, 

[ f~(a) -f~(x)]/[  f~(x) - f i ( a ) ]  < M, 

for some j satisfying f j ( a ) < f j ( x )  whenever x~X is a feasible solution 
satisfying f~ (x) < f i  (a). 

Theorem 4.3. Assume that the generalized Ka rush -Kuhn-Tucke r  
necessary conditions (4) - (5)  hold at a with ( = ((1 . . . .  , (m) t in t  R'~. If  f is 
(~, q~, R'~)-invex with respect to the same ~*(a, x), g is (fl, ~, R~)-invex 
with respect to the same fl*(a, x), h is (7, ~b, 0)-invex with respect to the 
same v*(a, x), then a is a properly efficient solution of  (GVPI).  

Proof. From Theorem 4.2, a is an efficient solution of (GVPI).  
Consider the following scalar minimization problem: 
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(GPVls) min ~ (;f~(x), 
i = 1  

s.t. x e X ,  

g~(x) ~<0, j =  1 . . . . .  n, 

hk(X) =0,  k = l  . . . . .  l. 

If x is a feasible solution of (GVP1), then x is also a feasible solution of 
(GVPls). It follows from the invexity o f f ,  g,h  that 

2 -f,(a)) 
i = 1  

>_ o~*(a, x) ~ ~i(fi(a), ¢(x, a))  
i = 1  

= ot*(a, x) "~ (g'i (a), ~b(x, a) ) - ~ 2k (hi(a), ~b(x, a) ) 
k = l  

_> --[~*(a, xl/fl*(a, x)] ~ "cj(gj(x) --&(a)) 
j = l  

I 

-- [a*(a, x)/y*(a, x)] Z 2k(hk(x) -- hk(al) 
k = l  

>0.  

Then a is an optimal solution of (GVPls). It follows from a theorem in 
Ref. 21 that a is a properly efficient solution of (GVP1). [] 

Remark 4.2. In comparison with other sufficient conditions for the 
properly efficient solution, the conditions in Theorem 4.3 subsume the ones 
used in Ref. 16 in which ~*(a, x) = fl*(a, x) = 7*(a, x) were assumed. 

5. Vector Variational Inequality 

In this section, we study a vector variational inequality which is a 
special ease of the generalized vector variational inequality given in Section 
3 and present a necessary condition and a sufficient condition for the 
solution of the vector variational inequality problem. We intend to general- 
ize the results ifi Refs. 22 and 23 to the vector case. 

Let T = (I"1 . . . . .  Tin): X ~ L(X, R ' )  be continuous, and let gj, hk be 
as in (GVP), P is a convex cone of R m with int P ~ ~ .  Consider the 
following vector variational inequality: 
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( W I k )  find aeK,  ((Tl(a) ,  x - a )  . . . .  , (Tin(a), x - a ) )  ¢ O, Vx~K, 

where 

K = { x e X : g j ( x ) < _ O , j = l  . . . .  ,n, h k ( x ) = O , k = l  . . . . .  l} 

is a feasible region. Then, we have the following result. 

T he or e m 5.1. I f  a is a solution of  the vector variational inequal- 
ity (VVIk) and if g~(a),jeI(a), h'~(a), k = 1 . . . .  , I, are linearly indepen- 
dent, then there exist ( = ( ( ~  . . . .  ,~m)sP*\{0}, z= (T l  . . . .  ,z,)>__0, 
2 = (2~ . . . . .  21) such that 

(iT~(a) + Tjg)(a) + ~ 2kh•(a) = 0, 
i = 1  j = l  k = l  

(7) 

zjgj(a)=O, j = l , . . . , n .  (8) 

Proof. Consider the multi-objective programming problem with the 
linear objective function and nonlinear constraints: 

(GVPk) V-mine ( k l ( x ) , . . . , k m ( x ) ) = ( ( T l ( a ) , x - a )  . . . . .  ( T m ( a ) , x - a ) ) ,  

s.t. x ~K.  

Then, a is a solution of  (GVPk). From the generalized K a r u s h - K u h n -  
Tucker necessary conditions, there exist ( = ( ( ~  . . . .  , (m)~P*\{0}, 

= (zj . . . . .  %) > 0, 2 = (2~ . . . . .  2~) such that 

(ik~(a) + zjg)(a) + ~ 2kh~:(a) = 0 ,  
1=1 j = l  k = l  

zig j(a) = O, j = 1 . . . .  , n. 

Since. 

k;(a) =Ti(a),  i = 1  . . . . .  m, 

the proof is completed. D 

Theorem 5.2. If  g is (fl, y - x, R~)-invex, h is (7, Y - x, 0)-invex, (7) 
and (8) hold at a, then a is a solution of the vector variational inequality 
(VVIk). 



578 JOTA: VOL. 79, NO. 3, DECEMBER 1993 

Proof. It follows from (7) and (8) and the invexity of g and h that 

~ , ( T i ( a ) , x - a ) =  x jg j (a) -  ~ 2kh'k(a),x--a 
i = l  j = l  k = l  

>__ - ~ [~j//~j (a, x)](gj (x) - gj (a)) 
j = l  

I 

-- ~ [)~k [~,k(a, x)](hg(x) -- hk(a)) 
k = l  

> 0, Vx eK. 

Since ( = ( ~  . . . . .  (m)eP*\{0),  we get 

( (Tl (a) ,x  - a ) , . . . ,  (T,,,(a),x - a ) )  ¢0 ,  VxeK. 

Therefore, a is a solution of the vector variational inequality (VVIk). [] 

6. Conclusions 

In this paper, a generalized vector variational inequality was consid- 
ered and its equivalent relations with a generalized multi-objective pro- 
gramming problem were established. Various sufficient conditions for the 
solutions (i.e., weak minimum, minimum, and properly efficient solution) 
of multi-objective programming problems were given. A necessary condi- 
tion and a sufficient condition for the solution of  a vector variational 
inequality were presented. These results were obtained using the (~, 4, Q)- 
invexity, introduced and studied in Section 2, which unifies P-convexity, 
pseudo-linearity, representation condition, null space condition, and V- 
invexity. An existence theorem for the solution of the generalized vector 
variational inequality on a compact convex set was also proved. 
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