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Abort Landing in the Presence of 
Windshear as a Minimax Optimal Control 
Problem, Part 1: Necessary Conditions m 

R. BUL1RSCH, 3 f .  M O N T R O N E ,  4 AND H .  J. PESCH 5 

Abstract. The landing of a passenger aircraft in the presence of wind- 
shear is a threat to aviation safety. The present paper is concerned with 
the abort landing of  an aircraft in such a serious situation. Mathemati- 
cally, the flight maneuver can be described by a minimax optimal control 
problem. By transforming this minimax problem into an optimal control 
problem of standard form, a state constraint has to be taken into account 
which is of order three. Moreover, two additional constraints, a first- 
order state constraint and a control variable constraint, are imposed 
upon the model. Since the only control variable appears linearly, the 
Hamiltonian is not regular. Thus, well-known existence theorems about 
the occurrence of  boundary arcs and boundary points cannot be applied. 
Numerically, this optimal control problem is solved by means of  the 
multiple shooting method in connection with an appropriate homotopy 
strategy. The solution obtained here satisfies all the sharp necessary 
conditions including those depending on the sign of  certain multipliers. 
The trajectory consists of  bang-bang and singular subarcs, as well as 
boundary subarcs induced by the two state constraints. The occurrence 
of boundary arcs is known to be impossible for regular Hamiltonians 
and odd-ordered state constraints if the order exceeds two. Additionally, 
a boundary point also occurs where the third-order state constraint is 
active. Such a situation is known to be the only possibility f o r  odd- 
ordered state constraints to be active if the order exceeds two and if the 
Hamiltonian is regular. Because of the complexity of  the optimal control, 
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this single problem combines many of the features that make this kind 
of optimal control problems extremely hard to solve. Moreover, the 
problem contains nonsmooth data arising from the approximations of 
the aerodynamic forces and the distribution of the wind velocity compo- 
nents. Therefore, the paper can serve as some sort of user's guide to solve 
inequality constrained real-life optimal control problems by multiple 
shooting. 

Key Words. Optimal control, Chebyshev-type optimal control prob- 
lems, minimax optimal control problems, optimal trajectories, state con- 
straints, state constraints of third order, bang-bang controls, singular 
controls, multipoint boundary-value problems, multiple shooting 
methods, flight mechanics, landing, abort landing, windshear problems. 

1. Introduction 

One of the most dangerous situations for a passenger aircraft in take- 
off and landing is caused by the presence of low-altitude windshears. This 
meteorological phenomenon, which is more common in subtropical regions, 
is usually associated with high ground temperatures leading to a so-called 
downburst. This downburst involves a column of descending air which 
spreads horizontally near the ground. Even for a highly-skilled pilot, an 
inadvertent encounter with a windshear can be a fatal problem, since the 
aircraft might encounter a headwind followed by a tailwind, both coupled 
with a downdraft. The transition from headwind to tailwind yields an accel- 
eration so that the resulting windshear inertia force can be as large as the 
drag of the aircraft, and sometimes as large as the thrust of the engines. This 
explains why the presence of low-altitude windshears is a threat to safety in 
aviation. Some 30 aircraft accidents over the past 20 years have been attri- 
buted to windshear, and this attests to the perilousness of this occurrence. 
Among these accidents, the most disastrous ones happened in 1982 in New 
Orleans, where 153 people were killed, and in 1985 in Dallas, where 137 
people were killed (see the references cited in Ref. 2). 

This paper is concerned only with the abort landing problem, which is 
a safer procedure than the penetration landing if the initial altitude is high 
enough. The paper is strongly influenced by the results obtained by Miete 
and his coworkers (see Ref. 2 and the other references of this group cited 
therein). The purpose of the present paper is to give a highly accurate 
solution of the underlying Chebyshev-type optimal control problem for 
which an approximate solution was given in Ref. 2. Figure 1 shows the wind 
flow field and two trajectories. The first trajectory is flown with a maximum 
angle of attack strategy and hits the ground. The second trajectory is the 
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Maximum angle of attack trajectory (crash trajectory, solid line) and Miele's optimal 
trajectory (dashed-dotted line). 

approximate solution obtained in Refs. 2 and 3 by means of the sequential 
gradient-restoration algorithm. This solution will be improved in this paper. 
We show that the optimal trajectory has a very complicated switching struc- 
ture, which exhibits many of the features that make this kind of optimal 
control problems extremely hard to solve. 

In summary, besides a control constraint and a first-order state con- 
straint, imposed by the model, the problem also includes a third-order state 
constraint arising from the transformation of the minimax optimal control 
problem into a standard optimal control problem according to Ref. 4. Addi- 
tionally, the optimal solution has not only bang-bang snbarcs but also singu- 
lar subarcs--the only control variable appears linearly in the equations of 
motion. Thus, the Hamiltonian is not regular. Therefore, the theoretical 
results concerning the existence of boundary arcs and boundary points of 
state constraints in dependence of their order (see Ref. 5) do not apply here. 
The order of both state constraints is odd, and the solution has a boundary 
arc with respect to the first-order state constraint and touch points with 
respect to the third-order state constraint. Such situations can also appear 
in the case of a regular Hamiltonian, However, the third-order state con- 
straint leads also to a boundary arc, which is excluded in the case of a regular 
Hamiltonian and odd-ordered state constraints if the order exceeds two. So, 
the problem is also of mathematical interest. 

Moreover, this problem shows the complexity of the optimal control 
problems which at present can be solved by the multiple shooting method 
with a very high precision. For a description of the method, see Ref. 6. Based 
upon this method, there exists a new FORTRAN code called BNDSCO (see Ref. 
7), an offspring of the first author's code OPTSOL (Ref. 8) and its successors 
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(see Refs. 9 and 10). BNDSCO is published in its most recent version in Ref. 
11. However, the details of the numerical procedure and the numerical results 
are preserved for Part 2 of the paper (see Ref. 12). Both parts are based on 
Ref. 13. 

2. Mathematical Model 

In the following, we summarize briefly the complete mathematical 
description of the model according to Ref. 2. If the initial altitude is high 
enough so that it is safer to abort the landing procedure, the flight maneuver 
can be modelled as a minimax optimal control problem as follows. 

Performance Index. To avoid crashing on the ground, the ground 
clearance, or in other words the minimal altitude, has to be maximized, 

max min h(t). 
u~U O<_t<_tf 

Here, U denotes the set of all admissible control variables u, and [0, tf] is 
the fixed flight time interval. Instead, we can also minimize the peak value 
of the altitude drop, that is, the difference between a constant reference 
altitude hg and the instantaneous altitude, 

I , 

/[u]:=® max (hR-h(t)}-mln; (I) 
O<_t<_tf 

here, ® denotes a scaling factor to be used in Part 2 for a homotopy strategy, 
and the reference altitude has to be chosen so as to satisfy 

hR>_h(t), for all t~[0, tf]. 

Because of the relation between the Htlder norm and the Chebyshev norm, 
i.e., 

lim (hR-h(t)) ~ dt = max {hR-h(t)}, 
k~oo O~t<_tf 

the optimal trajectory of the Chebyshev functional (1) is approximated in 
Ref. 2 by the optimal trajectory of the Bolza functional 

f0 ~ q ' 
J[u]:=A (hR-h(t)) d t -  min, (2) 
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where q is a relatively large even integer (q = 6 in the examples of Ref. 2). 
Again, A is a scaling factor for homotopy purposes. However, in this paper 
and its Part 2 we mainly stay with the minimax funetional (1), and we will 
solve it. 

Differential Equations. To set up the equations of motion, we assume 
that the aircraft is a particle of constant mass, the flight takes place in a 
vertical plane, and Newton's law is valid in an Earth-fixed system. Moreover, 
the wind flow field is assumed to be steady. Under these assumptions, the 
kinematical and dynamical equations are 

2 =  Vcos 7/+ W~, (3a) 

/~= Vsin ~/+ Wh, (3b) 

V= (T/m) cos(a+ 8) - D i m  - g  sin )' 

- (W~ cos 7/+ I//h sin )0, (3c) 

}" = (T/m V) sin( ct + 6) + L /m  V -  ( 1 / V) g cos 7/ 

+ (1/V)(  1~ sin 7/- Wh cos )I), (3d) 

t~= u. (3e) 

The state variables are the horizontal distance x, the altitude h, the relative 
velocity V, and the relative path inclination ?. In the formulation above, the 
relative angle of attack a is regarded as a state variable, too. In fact, its time 
derivative is chosen as control variable. For the relations between relative 
quantities and absolute quantities (indicated by a subscript a, see Fig. 2), 
see Ref. 2. 

h 

i ~ ,  ¢ - 1 . . - t  : 

\ z , ~  lv Iv, 
. . . .  V__  _L . . . . . . . . .  

rag 

X 

Fig. 2. Coordinate system and explanation of  the variables. 
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These equations are supplemented by the approximations of the aerody- 
namic forces acting on the aircraft, 

T = f l T , ,  (4a) 

T. = A 0 + A l  V + A 2 V  z, (4b) 

D = (1/2) Cop S V 2, (4c) 

CD(a) = Bo + Bla+ Bza 2, (4d) 

L = (1/2) CLpS V 2, (4e) 

~Co + Ga, a<  a, ,  cr(a) (4f) 
C o + C l a + C 2 ( a - a , )  z, a,<_a<_a~x. 

Here T, D, L denote thrust, drag, and lift, respectively. The power setting fl, 
normally also a control variable, is specified in advance as in Ref. 2, 

(1, t0_< t <__ ty. (5) 

This is justified by the additional hypothesis that, upon sensing the aircraft 
to be in a windshear, the pilot increases the power setting at a constant time 
rate until maximum power setting is reached. The maximum power is then 
held constant afterward, 

Next, the windshear model, valid for h N 1000 ft, is given by the follow- 
ing wind velocity components: 

W~ = kA (x), (6a) 

Wh= k(h/h , )B(x) ,  (6b) 

with 

f --50 + ax 3 + bx 4, 0 < x < 500, 
] ( 1/40) (x - 2300), 500 < x < 4100, 

A ( x ) =  ] 5 0 _ a ( 4 6 0 0 _ x ) 3 b ( 4 6 0 0 _ x ) 4 ,  4100 <x_<4600, (6c) 
50, 4600 < x, 

dx + ex 4, 
-51  e x p [ - c ( x -  2300)4], 
d(4600 - x) 3 - e(4600 - x) 4, 
0, 

0 < x < 5 0 0 ,  
500 < x < 4100, (6d) 

B(x) = 4100 < x < 4600, 
4600 < x. 
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Fig. 3. Wind functions and their differentiability properties• 

Here, the parameter k characterizes the intensity of the windshear/down- 
draft combination. Its valne (see Table 1) corresponds to the horizontal 
wind velocity difference (maximum tailwind minus maximum headwind) 
of A Wx = 100 ft sec- 1. The differentiability properties of the wind velocity 
components at the matching points are indicated in Fig. 3. The continuity 
of the derivatives of the wind velocity components guarantees that the right- 
hand side of Eqs. (3) is continuous at these points• Note that our windshear 
model slightly differs from the one used in Ref. 2 in order to reduce the 
number of those matching points. Those points must be observed not only 

T a b l e  1. M o d e l  d a t a  for  a B o e i n g  B-727 a i rcraf t .  

Eqs. (1), (7), (8) Eqs. (3) Eqs. (4), (5) 

ty=40 sec p=0.2203 x 10 -2 lb s e c  2 f t  - 4  A 0 =0.4456 × 105 lb 
hR = 1000 ft S =  0.1560 × 104 ft 2 A1 = -0 .2398  × 102 lb sec ft -1 
u~ax = 3 deg sec -I  g =  3.2172 x 101 ft sec -2 A2 =0.1442 × 10-1 lb sec2 ft -2 
a~ax = 17.2 deg rag= 150,000 lb /30=0.3825 

= 2 deg ~ = 0.2 sec-  l 

to=(1 -t~o)/A 

Eqs. (4) Eqs. (6) Eqs. (9), (10) 

Bo=0.1552 k = 1 Xo=0 ft 
Bl =0.12369 rad -1 h ,  = 1000 ft ) ' 0=-2 .249  deg 
B2= 2.4203 rad -2 a = 6 ×  10-s  sec-1 ft -2 ho=600 ft 
(7o=0.7125 b = - 4 ×  10 TM sec -1 ft -3 ao= 7.353 deg 
Cj = 6.0877 r a d -  1 c = - 1n(25/30.6) × 10-12 f t -4  Vo = 239.7 ft sec-  i 
C 2 = - 9 . 0 2 7 7  rad -2 d = - 8 . 0 2 8 8 1  × 10-8 sec -1 ft -2 ~j-=7.431 deg 
a ,  = 12 deg e=6.28083 × 10 -11 sec - l  ft -3 
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during the integration, but must also function as interior point conditions 
in optimal control theory. Therefore, a reduction of the matching points, 
from 8 points in Miele's model to 3 points in our model, makes the derivation 
of the necessary conditions of optimal control theory much easier. Since 
Miele's model uses cubic splines, the wind components of his model are C 2- 
functions everywhere. Moreover, also the gradients of the wind components 
and their Hessians are different. Nevertheless, the modification of the wind 
model is negligible as can be seen when comparing Miele's approximate 
solution, given in Ref. 2, with the corresponding solution verified in Fig. 1 
for our wind model using the multiple shooting method. 

Inequality Constraints. 
to the inequality constraints 

The angle of attack and its time rate is subject 

lul ~ Umax, (7) 

a_<ar..~. (8) 

Boundary Conditions. We have the initial conditions 

x(0) = Xo, h(0) = h0, (9a) 

V(O) = Vo, 7(0) = 70, (9b) 

a(O) = ao, (9c) 

and the terminal condition 

~,(t~) = 7~. (10)  

These conditions are a consequence of the assumption of quasi-steady flight 
prior to the windshear onset, whereas the terminal condition corresponds to 
the steepest climb condition in quasi-steady flight. In Part 2, we will see that 
the model assumption of a fixed terminal time should be better replaced by 
an open-end problem. 

Data. The model description is completed by the values of the con- 
stants occurring in the previous equations; see Table 1 (some of the data 
are not available from Refs. 2 and 3). The data refer to a Boeing B-727 
aircraft powered by three JT8D-17 turbofan engines. For more details on 
the model, especially those which are of technical interest, the reader is 
referred to Refs. 2 and 3. 

Transformation of the Minimax Problem into Standard Form. To 
treat the minimax optimal control problem, it is useful to apply the 
transformation technique due to Ref. 4. By this transformation, an optimal 
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control problem in standard form is obtained where an additional state 
constraint has to be taken into account. To this new optimal control 
problem, the theory of optimal control can be applied conveniently. By 
the transformation 

((t):= max {hR-h(t)}, (11) 
o<_~<_tf 

we have 

I 

I[u] = ® ( ( t f )  "- min, (12) 

subject to the additional constraints 

~=0, (13) 

h R - h ( t )  - ( ( t )  <0 .  (14) 

We end up with an optimal control problem of Mayer's type (12), subject 
to the constraint (3), (13), (9), (10), (7), (8), (14). To treat the Bolza problem 
(2) as well as the Mayer problem (12) simultaneously, it is convenient to 
consider the combined functional 

fo t/ ~[u] :=A ( h n - h ( t ) )  6 d t + ®  ~(tf) .  (15) 

3. Necessary Conditions 

In this section, we apply the well-known theory of optimal control (see, 
e.g., Ref. 14) to derive necessary conditions for an optimal trajectory of the 
abort landing in a windshear. It results in a multipoint boundary-value 
problem, which is well suited for numerical treatment. 

State Unconstrained Subares. First, we investigate the state uncon- 
strained subarcs of the combined optimal control problem, i.e., we consider 
the scaling factor combination A > 0 and ® = 0. For the time being, the state 
constraints (8) and (14) are left out of consideration. 
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Defining the Hamiltonian on state unconstrained subarcs by 

H(y, 2~, u):=A(hR-h)6 + )~rf 

:=A(hR-h)6+)~x2+~hl~+)~v(-Z+Ar~'+A.,~u, (16a) 

y r :=(x ,  h, V, ~,, a), (I6b) 

ZT:= (~.x, Zh, Zv, Z r, Z~), (16c) 

f r :=(~, /~ ,  ~, 7;', a), (16d) 

we can establish the adjoint differential equations if both of the state con- 
straints are assumed to be inactive, 

L = - zx(O/~x) w x -  zh(a/~x) wh 

+ ).v[(C~/Ox) Iig~ cos 7/+ (O/Ox) Wh sin 7/] 

- ~Lr(1/V)[(O/Ox) I~x sin 7/- (O/Ox) l~h cos 7/], (lYa) 

L = 6 a ( h R -  h) 5 - 2h(O/~3h) Wh 

+ Av[(O/Oh) W~ cos 7/+ (O/Oh) Wh sin 7/] 

- ,~r(1/V)[(~/Oh) W~ sin 7/- (O/Oh) Wh cos 7/], (17b) 

.~v = -.~:, cos 7/-)~h sin r 

- Av[(1/m)Tv cos(a+ 6) - ( l /m)Dv 

- ((O/aV) l~Vx cos ~,+(O/OV)I,t"h sin y)] 

- .~r(1/V)[(1/m)(Tv- T /V)  sin(a+ 8) 

+ (1/m)(Lv-  L / V )  + (g /V)  cos 7/ 

- (1/V)(Wx sin 7/- l~h cos 7/) 

+((3/OV)W~ sin 7/--(O/OV)Wh cos 7/)], (17c) 

)~r=)~ Vsin 7/-,a.h Vcos 7/ 

+ Zv[g cos 7/+ (0/07/) ff'x cos ~'- l~. sin 7/ 

+ (~/07/) Wh sin 7/+ IlVh cos 7/] 

-) .r(1/V)[g sin 7/+ (0/07/) l~ sin 7/+ l ~  cos 7/ 

- (0/07/) Wh cos 7/+ Wh sin 7/], (17d) 

f~,~= £v(1/m)[ T sin( a + 6) + D,~] 

- Xr(1/mV)[Tcos(a + ~) + La]. (17e) 
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From the minimum principle, we obtain a bang-bang expression for the 
optimal control, 

f b/max, '~a < 0, u = ( 1 8 )  
v-- Umax, ,~a 2> 0. 

The adjoint variable ;t~ plays the role of the so-called natural switching 
function. Its isolated zeros, 

~La(tbang) = 0 ,  (19) 

mark the switches of the bang-bang structure. If nonisolated zeros of )~ 
occur, the following relation holds: 

)~(t) - 0, tent~y -< t < texit, t~t~ < t~x~t. (20) 

Repeating twice the differentiation of this identity with respect to time and 
substituting Eq. (3) and (17), we obtain an expression for the optimal control 
on singular subarcs, 

Using = -Asing/Bsing, (21) 

where 

A~ing(t) = '{v[T sin(a + a) + Da] 

- (1 /V) [~ , -  A,(l?/V)] [Tcos(a+ •) +L~] 

+ Zv[/~ sin(a + ~) + Day 

- A,r(1/V)[Tcos(a+ g) +L~vl)], 

Bsi,g(t) = Av[Tcos(a+ 6) + D~] - At(1 / V ) [ L ~ -  T sin(a+ 6)]. 

Hence, the order of the singular control is p = 1. Therefore, u is either discon- 
tinuous or continuously differentiable at the junction points te,t~ and t~xit, 
respectively; see Ref. 15. The generalized strong Legendre-Clebsch condition 
(see Ref. 16) is to be read in this case as follows: 

Bsing < 0, tentry--< t_</exit- (22) 

The two junction points are determined by the so-called entry or tangency 
conditions 

~,a(/entry) = 0, ~a(tentry) = 0. (23) 
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More switching points t; are induced by the nonsmooth approximations 
of the aerodynamic forces and the wind functions. They are determined by 
the specification of  so-called interior-point conditions of  the form 

N ( y ( ~ ) , ~ ) = 0 .  (24) 

These conditions imply the following additional necessary conditions: 

Ar(t +) = AT(t/-) -- ferNy, re  R", (25) 

H ( t ; ) = H ( t T ) +  tcoNt, tCo~. (26) 

We now discuss the results obtained from these so-called jump 
conditions. 

(i) Due to the approximation of  the power setting in Eq. (5), we have 
the interior-point condition 

Nffy(tO, tl) = tl - t0=0. (27) 

Thus, A is continuous, but H may be discontinuous at tl. On the other hand, 
H can be discontinuous only if a =  u is discontinuous. Since either u is 
continuous in the interior of a bang-bang subarc or A~ identically vanishes 
on a singular subarc, the Hamiltonian H is continuous at tl. However, 
because of the discontinuity of 2/', the control u is generally discontinuous at 
tl, if tl is within a singular subarc. 

(ii) The switching point, induced by the approximation of the lift 
coefficient (4) via 

Nz(y(t2), t2) = a(t2) - a ,  = 0, (28) 

implies a possible discontinuity of only ,~. Because of the continuity of the 
Hamiltonian, we have 

z~( t;  )u( t ;  ) = Zo( tI  )u( t ;  ). 

If  t2 lies in the interior of a bang-bang subarc as well as if t2 lies within a 
singular subarc, the above equation implies that Aa is continuous at t2. In 
the first case, this holds because u ( t f )  = u(t~)= ± U~ax #0 ,  and in the second 
case because Aa(t2) = A~(t2) = 0. However, again the singular control is gen- 
erally discontinuous at t2 because of the discontinuity of L ~ .  
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(iii) The windshear approximation (6) leads to three interior-point 
conditions, 

N3(y(t3) ,  t3) = x ( t 3 )  - 5 0 0  = 0,  ( 2 9 a )  

N4(y(t4), t4) = x ( t 4 )  - 4100 = 0,  (29b) 

N s ( y (  ts), t ,)  = x (  ts) - 4600 = 0. (29c) 

Because of the continuity o f f  and H, there holds 

L ( t T ) 2 ( t i )  = )~x(t?)2(h) ,  i=  3, 4, 5, 

which implies, since 2 ¢ 0, that Zx must be continuous at ti. However, ,(x is 
discontinuous at t3 and t4; here, the wind functions are of class C 1 only (see 
Fig. 3). 

In summary, all the adjoint variables as well as the Hamiltonian are 
continuous at the switching points induced by the nonsmoothness of the 
data. Nevertheless, the singular control is generally discontinuous at tl and 
t2, the two switching points induced by the power setting and the lift approxi- 
mation, respectively. 

Finally, the missing boundary conditions are given by the transversality 
or natural boundary conditions, 

)~x(tf) = Ah(tf) = )~v(tf) = Xa(tf) = 0. (30) 

Up to now, the necessary conditions of the unconstrained problem for 
A >  0 and ® =0 form a boundary-value problem with 10 differential equa- 
tions (3), (17) and the same number of two-point boundary conditions 
(9), (10), (30). If we assume that the switching structure is known, each 
bang-bang switching point is determined by an equation of type (19), 
whereas each interior singular subinterval is determined by two entry condi- 
tions (23). If there are singular subarcs adjacent to the endpoints of the 
interval [0, t A, one of the conditions (9), (10), (23), or (30) must be linearly 
dependent. It is important that the switching structure can be guessed by 
means of the switching function ,~a with the help of an appropriate homotopy 
procedure (see Part 2). Moreover, the discontinuity points ti, i=  1 . . . .  ,5, 
due to the nonsmooth data are determined by the interior-point conditions 
(27)-(29). Not only does this procedure enable the computation of the 
piecewise'defined relations for the aerodynamic forces and the wind 
functions, but it also marks the points of discontinuity in the higher deriva- 
tives of both the state and adjoint variables. These discontinuities must 
be carefully obeyed to preserve the order of convergence of the numerical 
integration routines. Because of these interior-point conditions, we speak of 
multipoint boundary-value problems. 
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State Constrained Subares. Now, we are concerned with the state vari- 
able inequality constraints (8) and (14), especially with the scaling factor 
combination A = 0 and ® > 0. In spite of the additional auxiliary state vari- 
able (, we may still use the notations of Eq. (16) with A = 0. Later, we will 
see that ff and its Lagrange multiplier L¢ can be eliminated. For 2¢, we have 

~ = 0  (31a) 

on unconstrained subarcs and 

L¢(0)=0, L¢(ty) =O. (31b) 

Thus, A c is piecewise constant at least on unconstrained subarcs. 
Before deriving the necessary conditions in the state-constrained case 

for this special problem, we cite here a set of sharp necessary conditions 
from Ref. 17, since this paper is not easily accessible. These necessary condi- 
tions may be very helpful for the rejection of nonoptimal solutions. The 
following theorem is due to Maurer. 

Theorem 3.1. Let y ( t )  and u(t)  be an optimal solution of a state- 
constrained optimal control problem which, without loss of generality, is 
assumed to be of the Bolza type and autonomous. Let the state constraint 
be 

S ( y ( t ) )  <_ 0 (32) 

and of order q. Let f and S be C2%functions. Let the control defined by" 
S (q) =---0 o n  ]tentry, texit[ be denoted by ub°Und; and let u b°una be a cq-function. 
Here, S (q~ is the qth total time derivative of S. Finally, let 

s (q ) (y ,  u) 5 0 ,  on ]te,~ry, texit[- 

Then, for i ~ { 1 , . . . , q } ,  there exist functions Lt:[O, tf] ~ R n and 
/~: [0, tf] ~ R such that the adjoint variables satisfy the system of differential 
equations 

iT (33a) ~i = _ Hy,  

H t := H ixree + I~iS (0, (33b) 

where H i'free denotes the Hamiltonian of the unconstrained problem built 
with the multipliers £i. Transversality conditions analogous to those for the 
unconstrained case hold for each function L i. Furthermore, there holds that, 
at an entry point of a boundary arc, 

i - - I  
i + ~, (tentry) = 2i(t~t~.) -- ~ cr, j S (i)t'y ~?~rteutryj~'~v, ~>__ 0; (34) 

j = O  



JOTA: VOL. 70, NO. t, JULY 199t 15 

at an exit point of  a boundary arc, 

~qt + ~_  i - . oxit: - Z (toxlt), ( 3 5 )  

at a contact point (not necessarily a touch point) of the state constraint, 

,~i(t~,t~ct) = ,qJ(t~o,tact) - aSy (y(tco,t~t)) r, or> 0. (36) 

Moreover, the functions p" satisfy 

p~S(y(t)) =0, on [0, tf]. 

They are C-functions on ]t,,t~y, t~xit[ and are given by 

~ { = ( - 1 ) q + l - i £ F X q - i / s ( q )  , 1 < i < q ,  (37) 

where 

Zo:=f~, Z j + l : = ~ j - f y Z j ,  j = 0 , 1  . . . .  , q - 1 .  

For  these adjoint functions, there hold the sign conditions 

( -1)k(dk/dtg)pi( t )  = pi-k(t)  >_ O, t~ ]t~.t~, t~xit[, k = 0 . . . . .  i, (38) 

and 

(dk/dtk)u~(t~it) =0, k = 0 , . . . ,  i - 2 ,  if i>_2. 

Finally, the optimal control satisfies the minimum principle, 

b/°primal = arg min Hi(y ,  u, &i, pl), (39) 
u~U  

and 

Hi(y ,  u °ptim~1, ,V', #i)_=const., t~[0, tf]. (4o) 

Remark 3.1. For  i = q, Theorem 3.1 contains the well-known necessary 
conditions of  Bryson, Denham, and Dreyfus (see Ref. 18), namely, 

pq(t) > 0 and pq(te~t) = O. 

However, Eqs. (38) describe a strengthening by which nonoptimal trajecto- 
ries can be rejected. Morever, the theorem distinguishes between entry and 
exit points. Therefore, by reversing the time scale, i.e., using 7 : - - t f - t ,  we 
obtain an additional set of  necessary conditions which, in general, is inde- 
pendent of the first one and which may be useful to eliminate nonoptimal 
trajectories. 
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First-Order State Constraint. The inequality constraint (8) is of the 
first order, since 

S(t) = a = u, with S(t) := a -  a ~  _< 0. (41) 

Lemma 3.1. As for a regular Hamiltonian, the state constraint S_<0 
can be active only on nonvanishing intervals. 

Proof. We proceed by contradiction. Suppose that an active contact 
point toont,ote ]0, t1[ exists; i.e., the solutions of  the unconstrained and the 
constrained problem are different. Then, there holds that a(tcontact)= amax. 
TWO cases must be considered. 

Case 1. tcontact lies within a singular subarc. According to Theorem 
3.1, especially Eq. (36), this implies o-=0, since there holds that ~a=0 on 
the singular subarc. 

Case 2. t~ont~ lies on a bang-bang subarc. Then, there hold that 

a(tgntact) = + {/max,  a(/c+ontaet) = - -  U m ax ,  

which are, according to Eq. (18), equivalent to 

Za(tg,~,)  _< 0, ~.~(t+,t,~) >_ 0. 

Therefore, by the jump condition in Eq. (36), we have a_<0; but the sign 
condition in Eq. (36) requires a_> 0. Hence, cr= 0. 

Since or= 0 holds in both cases, the solutions of the unconstrained and 
the constrained problem do not differ, a contradiction to toon,~t being an 
active contact point. [] 

Therefore, we can assume that the state constraint is active on a nonvan- 
ishing interval [tent~y, te~it], i.e., 

a = am~x, o n  [tentry, texit], tentry< texit. (42) 

We apply Theorem 3.1 for i = q = 1. For simplicity, we omit the superscripts 
i in the following. The control variable is determined along the constrained 
subarcs by 

ub°und-~-~0,  o n  [tentry, texit]. (43) 

Define the Hamittonian by 

H:=  H f~  +/iS(t) = ~.~2 +- • • + }~77 ~+ (X~ +/~)u, (44) 
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where H free stands for the Hamiltonian in Eq. (16). Then from Eq. (37), we 
have 

p =  - ~.~, o n  [tentry, texit]. (45) 

Since H is continuous at tent~y as well as at texit, and since there holds that 
H-=const,  for t > t o  [see Eq. (5)], we have 

~.~( texit)u( t¢xit) = O. ~ a ( t ~ n t r y ) U ( t ~ n t r y )  = O, + + 

Note that, as the only multiplier, 2,5 may be discontinuous at t~nt~y or at texit, 
according to Eq. (34). However, if te,try lies within a bang-bang subarc as 
well as if t~nt~y lies within a singular subarc, the above equations imply that 
(the same holds for texit, too) 

~,~(t~t~y) = 0, ~,~(t~+i0 = 0. (46a) 

Together with the entry condition 

a(te,try) = amax, (46b) 

we have three interior-point conditions to fix the unknowns tent~y, tox~t, and 
the jump a0 of  the jump condition according to (34), 

~,~(t+try) = ~L~(t~t~y) - a0. (47) 

The jump a0 enters the differential equations only via this jump condition. 
In this case, ~ is continuous at t~xit. The adjoint differential equations need 
not be modified, because Sy = 0. 

Moreover, the sign conditions (34) and (38) give additional infor- 
mation. Here, by these equations and (45), we have 

a0>0,  ~,~<0, ~ > 0 ,  on ]to~y, t~t[. (48) 

Incidentally, if these sign conditions are satisfied, then the generally inde- 
pendent sign conditions for entry and exit point interchanged are also 
satisfied. 

In summary, on a constrained subarc of the first-order state constraint 
(8), the optimal control is determined by Eq. (43). Besides, there are three 
interior-point conditions (46) to determine the unknowns tentry, texit, and a0. 
Additionally, we have a jump condition (47), too. Therefore, the necessary 
conditions define now a multipoint boundary-value problem with jump con- 
ditions. Finally, there are some sign conditions (48), which may lead to 
rejection of  nonoptimal solutions of  that multipoint boundary-value prob- 
lem by means of  an a posteriori check. 

A combination of  all the necessary conditions obtained so far define 
the multipoint boundary-value problem to compute a candidate for the 
optimal control problem of Ref. 2, i.e., for A = 1 and ® = 0. 
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Third-Order State Constraint. By virtue of the transformation of the 
minimax problem into standard form, we also have to take into consider- 
ation the state constraint (14), which is of order 3; thus, ~= 3 and 

= h e -  h(t) - ((t), (49) 

~=  - Vsin 7 -  Wh(x, h), (50) 

~= (D/m) sin 7 -  (L/m) cos 7 + g -  (T/m) sin(a+ 8+ 7), (5t) 

~=a+ bu, (52) 

with 

mA(t) :=Dr  l)'sin 7+D~,cos 7-Lv(/'cos 7+LT~sin 7/ 

- 7~ sin(a+ 8+ 7) - T~cos(a+ 8+ 7), 

mB(t) :=D~ sin 7-L~ cos 7 -  Tcos(a+ ~+ 7). 

Since the Hamiltonian is not regular, the well-known existence theorem of 
Ref. 5 (which says that, for odd-ordered state constraints, boundary arcs 
are excluded if the order exceeds two) cannot be applied here. Boundary 
points (here, touch points) as well as boundary arcs may occur; therefore, 
both cases are investigated here. 

Touch Points. If the optimal solution touches the constraint at a point 
ttouo~, we have two interior-point conditions for each touch point, namely, 

h(tto~h) = hn -- ~'(ttouch), (53) 

/~(ttou~h) = 0; (54) 

according to Theorem 3. t, Eq. (36), we also have the jump conditions 

,~,,(t&~h) =,~h(h;u~h) + O, 6"_>0, (55) 
+ 

~.dtto~°h) = A.~(ttou~h) + 6-. (56) 

By Eqs. (53) and (54), the two unknowns tto~h and 6" can be determined. 
Again, 6-is coupled with the differential equations, here only by Eq. (55), 
since ~ does not enter the system of differential equations. 

In general, the above equations make it possible to eliminate some of 
the variables. For example, if a unique minimum of the altitude exists, the 
jump 6-and ;,~ can be obtained directly from Eqs. (31) and (56). Because 6-= 
® > 0, this yields a fixed jump condition for (55). Moreover, ( is  decoupled. 
Therefore, Eqs. (13) and (53) can be omitted, and (can  be computed from 
the solution afterward. This procedure goes with the general framework of 
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Refs. 19 and 20 on how to formulate the multipoint boundary-value problem 
for minimax optimal control problems. 

Boundary Ares. If the optimal solution stays on the boundary of the 
constraint for a nonvanishing interval [t~try, t~,~t], we first have to modify 
the Hamiltonian according to Theorem 3.1, case i= ~ = 3, 

H:= H f~  + ft~ = H fr~ + ~(A + Bu). (57) 

Now, on constrained subarcs, we have to alter the right-hand sides of the 
adjoint differential equations. Denoting the right-hand side of Eqs. (17) by 
,(free, we obtain the rather complicated equations 

,~0=~-/~(0/0~7)  {A+Bu}, with rl=x, h, V, 7, a, (58)  

where the multiplier p is defined according to Theorem 3.1, Eq. (37), by 

I-I~.a/B , o n  [tentry , texit], 

/~ = (0, otherwise. 
(59) 

In order to give an impression of the complex structure of the right-hand 
sides defined on a constrained subarc, we give the differential equation 
for ~7, 

'(7= ]~¢ + {).a/[D~ sin 7/- L~ cos 7/- T cos(a + 5 + 7)] } 

x {[Dvcos 7+Lvs in  ?z]~'+ [Dv sin 7 - L v c o s  7] 

× [ -g  cos 4! + Vex sin r -  Wh cos )' 

- (0/07z) W~ cos 7 -  (0/07) IYVh sin 71 

+ [ -D  sin 7+ T sin(a+ 5+ 7)]7 

+ (1/V)[D cos y+ L sin 7 -  Tcos(a+ 5+ 7)] 

x [g sin 7+ IJVx cos 7+ VVh sin 7 

+ (0/07) #x sin 7 -  (0/0)0 Wh cos r] 

- 7~ cos(a + ~+ 7) 

+ [Do cos r+L~ sin ),+ T sin(a+ S+ )')]ub°Und}, 

where u b°u~a= - A / B  has to be substituted as defined by ~- -0  [see Eq. (52)] 
according to Theorem 3.1. Here, it is assumed that 

--Uma x ~ U b°und ,Q Uma x 

holds in the interior of any boundary arc. Therefore, the boundary control 
is singular in the sense of the minimum principle, i.e., the switching function 
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vanishes on boundary subarcs (see Ref. 21). Furthermore, the differential 
equation for ~: remains unchanged. Thus, ~,: is piecewise constant over the 
entire interval [0, ti]. 

The jump conditions are 

- +  

/~ (t  entry) = ~ (t~ntry) -- j~T 6"1 , 
#2 

- - - + -  - -  - - - -  

Z:(t~.~) - ; ~ ( t ~ )  + 6-o, 

with 

Ny:=(O/Oy)(S, ~, ~)r 

0 -~Wh/Ox 
-1 -OWh/Oh 

0 - s in  7 

0 - Vcos 7/ 

0 0 

0 

0 

(1/m)[(OD/~V) sin 7 

- (OL/OV) cos 7/- (OT/OV) sin(a+ ~+ 7/)] 

(t/m)[D cos 7/+L sin 7/- T c o s ( a +  ~+ 7/)] 

(1/m)[(~D/~a) sin 7/ 

- (¢3L/~a) cos 7/- T c o s ( a +  ~+ 7/)] 

(60) 

(61) 

The five unknowns, the two switching points tentry, texit and the three 
jump parameters o-o, o-,, o2 are determined by three tangency conditions and 
the continuity of  the Hamiltonian a t  gentry and te~t. Hence, 

h(t-entry) = hR-  ((tentry), (62) 

/~(7~t~y) = h'(ten~) =0,  (63) 

/~a(t-entry) [b/(t'e+ntry) -- b/(t'entry)] = O, (64)  

~,~(~it)u(~xit) - + - + ~--- Zg(t exit)U(t exit). (65)  

Finally, the sign conditions are 

6-0>0, 6-,>0, #2>0, (66a) 

/~>0, /~<0, /~>_0, ~ < 0 .  (66b) 

Here, the first derivative of/~ can be still computed analytically, whereas for 
the second and third derivatives numerical approximations by difference 
quotients are advisable. 

In the case where there exist only one fiat minimum of the altitude, we 
can in the same way eliminate the variables (, 2~, 6-o from Eqs. (31), (61), 
(13), (62); again, compare Refs. 19 and 20. 
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In view of the numerical results, we now discuss the elimination proced- 
ure in the case where one boundary arc and one touch point exist for an 
optimal trajectory. The multiplier ~ can be eliminated by Eqs. (31), (56), 
(61), resulting in the relation 

6-+ dr0 = ®, (67) 

from which, say, 6"o can be eliminated. There must hold that 

6 " 0 = 0 - 0 > 0 .  

Moreover, the auxiliary variable ~ can be still omitted by the new interior- 
point condition 

h(t'entry) = h(ttouch). (68) 

The auxiliary variable ( can  be computed afterwards. 

4. Conclusions 

In summary, the whole collection of necessary conditions defines a 
multipoint boundary-value problem of the following type: 

I Fo(t,z(t)), 0<t_<rb 
~(t) = F(t, z(t)) = (69a) 

[ F,(t, z(t)), r~< t<_tf, 

z( r / )  =Y.~ (r~, z(r~-)), 1 <k<s ,  (69b) 

ri(z(O), z(tf)) = O, 1 < i <_ 2n, (69c) 

r~(rki, z(vg)) =0, 2n+ 1 <<_iNN, (69d) 

where F combines the right-hand sides of Eqs. (3) and (17) or (58) as well 
as some so-called trivial equations of the form dr= 0 for each jump parameter. 
Depending on the type of the subarc, the control u and the multiplier p are 
chosen according to Eqs. (18), (21), (43) or S = 0  [see Eq. (52)] and (59). 
The first 2n components of ri contain the two-point boundary conditions 
(9), (10), (30), whereas the other components stand for the interior condi- 
tions such as (19), (23), (27)-(29), (46), (54), (63)-(65) as well as (68) if 
need be. Finally, ~ collects all jump conditions such as (47), (55), (60) 
considering eventually Eq. (67). In this form, the optimal control problem is 
accessible for a numerical treatment by the multiple shooting code BNDSCO. 

After a solution is obtained, the observance of the inequality constraints 
and of some sign conditions must be checked. If an inequality constraint 
(7), (8), or (14), or the switching condition (18) is violated, the assumed 
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switching structure is false. A graphical output usually gives valuable hints 
about modifying the formulation of the multipoint boundary-value problem. 
The occurrence of singular subarcs and the branching of a boundary point 
into two boundary points or one boundary arc can be detected by this 
procedure too. For example, if the necessary condition for a touch point of 
the third-order state constraint at a local minimum of the altitude is violated, 
i.e., h'(ttouch) > 0, we have an indication that this touch point may split either 
into two touch points or a boundary arc. Corresponding to that, we have 
to modify the boundary-value problem. Moreover, the other sign conditions 
such as (22), (48), (55), (66) may reject nonoptimal solutions. 

Complete numerical results and the description of how to get them will 
be presented in Part 2 of this paper (see Ref. 12). That part of the paper 
contains especially the homotopy strategy to overcome the laborious draw- 
back of indirect methods in obtaining both appropriate initial values and 
the switching structure. A brief summary of the multiple shooting method 
will be also given there. 
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