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Role of Copositivity in Optimality Criteria 
for Noneonvex Optimization Problems 

G. DANNINGER ~ 

Communicated by G. Leitmann 

Abstract. Second-order necessary and sufficient conditions for local 
optimality in constrained optimization problems are discussed. For 
global optimality, a criterion recently developed by Hiriart-Urruty and 
Lemarechal is thoroughly examined in the case of concave quadratic 
problems and reformulated into copositivity conditions. 
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1. Introduction 

Nonconvex quadratic minimization problems over a polyhedron in n- 
dimensional Euclidian space N" arise in different fields of application from 
combinatorial optimization to database problems and VLSI design. The 
solution of such problems is, from the perspective of worst-case complexity, 
NP-hard. Even checking whether a given feasible point is a local solution 
is also NP-hard (Refs. 1-2). For general nonconvex problems, a local criter- 
ion for global optimality seems to be impossible. However, for the special 
case of concave functions and especially for quadratic functions, there 
exists a criterion for global optimality of a feasible point that may be seen 
as a local one. 

The paper is organized as follows. First, we will take a short look on 
local necessary and sufficient second-order conditions for optimization under 
constraints in Section 2. Section 3 is devoted to global optimality conditions, 
and Section 4 to their translation into copositivity conditions. In this last 
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section, we will also see the analogy between global and local optimality 
conditions in the special case under consideration. 

2. Second-Order Conditions for Optimality Under Constraints 

Consider the problem to minimize f(x) ,  subject to xeM, with 

M:= {xe~": gi(x)<O, 1 <_i~m}, 

where f :  N ' ~ N  and g;: R ' ~ N ,  1 <_i<m, are twice Fr6chet differentiable. 
The first-order approximation of M around an admissible point xeM is the 
tangent cone of M at x, 

F:= {ue~": Dgi(x)u <_ O, ieI(x) }, 

with 

l(x):= { i t { I , . . . ,  n}:gi(x)=0} 

denoting the set of binding constraints and D the derivative. 
The intuitive idea that it suffices to study the local behavior of f around 

x on F rather than on M to obtain optimality conditions can be made precise 
in the following way: if )2 is a Karush-Kuhn-Tucker point with Lagrange 
multipliers A.i>__0, 1 <i<m, we put 2~= [ Z j , . . . ,  ~,,]TE~m, where T signifies 
transposition of a column vector, and denote by 

hz (x) =f (x)  + ~ ~.igi(x) 
i=l 

the Lagrange function at )2. Then, hz ()2) =f(ff) and Dhz (9~) = o holds, i.e., )2 
is a critical point of h~. Now, the natural generalization of the elementary 
fact that a critical point with positive-definite Hessian (matrix of the second- 
order derivatives) yields a strict local minimum in an unconstrained problem, 
is that every Karush-Kuhn-Tucker point yields a strict local minimum under 
constraints, provided the Hessian Hz of the Lagrangian hz is strictly F- 
copositive. Here and in the sequel, a symmetric n x n matrix H is said to be 
F-copositive iff 

vrHv>O, for all v~F, 

and strictly F-copositive iff 

vrHv>O, for all veF\{o}.  

Theorem 2.1. If 2 e M  is a Karush-Kuhn-Tucker point and Hz = 
D2hz ()2) is strictly F-copositive, then 9~ is a strict local solution to the 
problem. 
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Proof. For a concise proof, see Ref. 3. [] 

By analogy, one might try to generalize also the necessary condition of  
positive semidefiniteness of  the Hessian in the unconstrained case to F- 
copositivity of  Hz in the constrained case. But the following example shows 
that this is not possible: 

Example 2.1. Consider the problem to minimize f ( x ) = l o g  x, subject 
to x >  1. Then, at the (global) solution 2 = 1, we have F = [0, co) and Ha = 
-1, which is certainly not F-copositive. 

This means that we have to modify the above conditions in some way, 
which is possible as we will show now. The Karu sh-Kuhn-Tucker conditions 
imply 

Df(2)v>_O, for all v~F. 

If  a direction ve F yields a strict inequality above, then the sign of  the second- 
order term vrH~v is irrelevant, because in this case one works directly with 
the Taylor expansion o f f ,  

f(x)=f(f)+Df(~)v+o(llvJl)>f(2), if v = x - f i s  small, 

where by [[xj[ = x / / ~  we denote the Euclidian norm of a vector x e ~  n. 
Therefore, we may and do shrink the tangential cone F to the subcone 

F *= {veV: Df(2)v=o}. 

Given a set of Lagrange multipliers ~, we put 

M~ = {xeM: f (x) =kx (x)} = {xeM: g~(x) =0, if ~ >  0}. 

Since 

F * =  {veF:  Dgi(f)v=O, if,~;> 0}, 

this cone can be viewed as the tangential cone of Mr .  Contrasting with 
F*, the set M* depends not only on the local shape of M and f ,  but also on 
2, (see Example 2.2 below). In Refs. 4-5, the last identity is used to define 
F*, from which it might not immediately be evident that F* does not depend 
on ,L 

As we shall see now, under a constraint qualification on M.~, any local 
solution 2 yields a Hessian H~ of hz that is F*-copositive [observe that, in 
the above example, F* = {0} holds]. Furthermore, as noted already in Ref. 
1, also the reverse direction holds: strict F*-copositivity of H~ suffices to 
guarantee that 2 is a local solution to the problem. 
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Theorem 2.2. Let 2 e M  be a Karush-Kuhn-Tucker point with the 
Lagrange multipliers ~=[~1 . . . .  , ~,,]r, and denote by Hx=D2hz (x) the 
Hessian of the Lagrangian 

hz (x) =f (x)  + ~ Zigi(x). 
i = l  

(a) Suppose that ff is a local minimizer of f on M which satisfies 
Abadie's constraint qualification w.r.t. M~, i.e., assume that every 
ueF* is the starting tangent vector of a trajectory in M~ starting 
at 2 (see, e.g., Ref. 6). Then, Hx is F*-copositive. 

(b) Conversely, if Hz is strictly F*-copositive, then :~ is a local solution 
to the problem. 

Proof. See Ref. 7 or Ref. 5, p. 61. [] 

Note that Abadie's constraint qualifications w.r.t. M* are implied by 
the following conditions corresponding to the constraint qualifications of 
Ref. 8 : 

(i) the gradients {Vg;(2) : 3~i> 0} are linearly independent; 
(ii) there is a direction w R "  satisfying 

Dgi(~)v<O, if,)~i= 0 and ieI(2); 

Dgg(f)v=O, if A,~> 0 and ieI(~). 

Example 2.2. Consider the example essentially due to Ref. 5, p. 62: 
MinimizefJ(x), subject to 

g~ (x) = -x~ - x2 - x3 < O, g2(x) = -x~ + x 2 -  x3 <_ O, 

g3(x) = -x3  <_ O. 

We investigate three different objective functions, 

f+(x)=(1/Z)x~l+x3,  f - ( x ) = - ( 1 / 2 ) x Z + x 3 ,  

f°(x) =x? + x3. 

Now, 

DH(o)= [O, O, 1], for a l l j e { - ,  0, +}, 

so that, for any choice of t~ [0, 1/2], the point ~ = o satisfies the Karush- 
Kuhn-Tucker conditions with 

~,=A(t)=[t,  t, 1-2t ]  r 
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for all three objectivesff,  

I(o) = { 1, 2, 3} 

and 

0 0 0 0 0 

Also, the cone F* is given by the set of  all vectors [vi, 0, 0] r where v~ ~N is 
arbitrary, while 

f {xsN3: Ix2t<x~, x3 =0}, if t=0 ,  

Ma*e) = ~( {o}, if 0 < t_< t/2, 

so that Abadie's constraint qualification is satisfied only if t = 0. Note that 
condition (i) above is violated for 0 < t_< 1/2, and even for t = 0  condition 
(it) fails to hold: indeed, the relations 

[ 0 , - 1 , - 1 ] v < 0 ,  [0, 1 , - 1 ] v < 0 ,  [0, 0, 1Iv=0, 

are contradictory for any v ~  3. 
On the feasible set, the point g = o is even a global minimizer of the 

funct ionsf  + a n d f  °, but no local minimizer o f f - .  Now, the Hessian matri- 
ces of the Lagrange functions corresponding to f +, f0,  f - ,  are given by 

+ E i 0!l Hk, ) - 0 0 H~i,) = O 
0 0 0 

o H~(,) = 0 0 , 

0 0 

respectively; hence, H~t) is F*-copositive for all t~ [0, 1/2]; H~,) is not F*- 
copositive for all tE [0, 1/2]; and H~,) is not F*-copositive unless t = 0. This 
example shows that: 

(i) even under Abadie's constraint qualification, the converse of  
Theorem 2.2(b) is not true; the same holds for Theorem 2.2(a) 
if one replaces f ° ( x )  by -x~ + x3; 

(it) the constraint qualifications on M* cannot be dispensed with to 
obtain the implication of  Theorem 2.2(a); 
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(iii) the local optimality of ~2 and F*-copositivity of Hx may be corre- 
lated to each other although Abadie's constraint qualifications 
are violated; 

(iv) the Cottle-Mangasarian-Fromovitz conditions are more restric- 
tive than Abadie's constraint qualification. 

The next example shows that Abadie's constraint qualification is not 
hereditary from M to M~. 

Example 2.3. Let m = n = 2 and 

gl(xl, x2) = exp(-xl )  + xl - x 2 -  1, 

g2(xl, x2) = exp(x0 - xl - x 2 -  1, 

which have at ~ = 0 the same derivative 

Dg,(o) = Dg2(o) = [0, - 1]. 

Hence, for 

M = (xE~2: g~(x) <0, i=  1, 2), 

even the Cottle-Mangasarian-Fromovitz constraint qualifications at the 
point f f=o  are satisfied: indeed, we have I(o) = {1, 2} and, for v=[0,  1] r, we 
obtain 

Dg~(O)v < 0, for all i. 

The tangential cone is 

F =  ( v e ~ 2 :  v2>_0}. 

For any objective function f with derivative Dr(o)= [0, 1], the point f f=o  
satisfies the Karush-Kuhn-Tucker  conditions, any admissible set ~ of Lag- 
range multipliers fulfilling ~1 + ~2 = 1. Now, 

F*= {ve~: v2=0}. 
If both ~x > 0 and/~2 • 0, then Mr = {o}, and Abadie's condition is obviously 
violated. If, however, ~l = 1 and ;t2 = 0, then 

M* = {xeM:  g,(x) =0} 

= {xe~2:x2 >_exp(xl) - x l -  1 and x2=exp(-xO +xl - 1} 

= {xe~2: sinh xl ___xl and x 2 = e x p ( - x O + x j -  l} 

= {xeR~: xl _<0 and x2=exp(-xl)  +xl - l}, 
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which also violates Abadie's condition, because v = [1, 0] reF * cannot be a 
starting tangent vector of any trajectory in M,~ starting in 2 =  o. Similarly 
~ilso for A.= [0, I] r, Abadie's constraint qualification is not met by 

M~t = {xe N2:x2 = e x p ( x l ) - x l -  1 and xl _>0}. 

3. Global Optimality Conditions for Concave Quadratic Problems 

In Ref. 9, Hiriart-Urruty studied necessary and sufficient conditions for 
global optimality of minimization problems with a concave objective func- 
tion, or equivalently, the problem 

h(x) --,max, s.t. xeC, (1) 

where h is a convex function and C a convex set. These conditions for 
global optimality of a point 2e  C involve essentially approximates of the 
subdifferential of a convex function h at 2 (see Rockafellar, Ref. 10) and 
approximates of the normal cone of C at 2 as defined below. 

Definition 3.1. The e-subgradient of a function h :N"--*~ [where ~ =  
Nw {+oo}, h not identically equal to +oo] in 2 is defined to be the set 

O,h(2) = {yeN": h(x) >h(2) +yr(x-2) - e, for all xG N"}. 

Definition 3.2. The set of the e-normal directions to C (nonempty, 
closed, convex) at 2 is defined to be 

N~(C; 2)=  {yeN": y r ( x -  2)_< e, for all xeC}. 

Furthermore, let us define an approximate directional derivative in the 
following way. 

Definition 3.3. The E-directional derivative of the function h in the 
point 2 into the direction d is defined to be 

h'(2, d) := inf([h(2 + ;td) - h(:0 + e]/A). 
,1,>0 

Remark 3.1. The set d,h(2) reduces to the usual subdifferential Oh(2) 
for e = 0  and also the set N~(C; ~) reduces to the usual cone of normal 
directions to C at ~ for e=O, but in general N~(C; ~) is no longer a cone 
if e>0 .  

Remark 3.2. In the infinite-dimensional case, one has to assume lower 
semicontinuity of h; see Hiriart-Urruty, Ref. 9. 
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Remark 3.3. Characterizing the convex set C ¢ ~  by its indicator 

yr(x-2)+U?c(2)<e+tPc(X), for all x e R  n . 

Recall that qJc (x) = 0, x e C, and Wc (x) = + 0% x ~ C, while ur'c (2) = 0, since 
2e  ¢7. Thus, y e d ~ c ( 2 ) .  

(b) I fye0 , tPc(2) ,  then 

yr(x-2)+Wc(2)<_e+q%(x), for a l l x e ~ L  

For xeC, we have u?c(x)=O, so that 

yr(x-2)<_e, for all xeC ,  

and therefore yeN~(C; 2). 

Remark 3.4. The e-directional derivative of U/c (see Definition 3.3) is 
given by 

(tgc)'(2, d) = inf{ [tgc (2 + Xd) - ~c(2) + el/Z} 

=inf{e /Z:  X>0 such that ~+  £deC}, 

where we set inf ~ = + o% from the definition of tgc. 
We now formulate the following theorem for general convex objective 

function: 

Theorem 3.1. Let h be a convex function, and let C be a convex 
set. For the problem (1), a feasible point 2eC is a global maximum of h 
on C iff 

O~h(2) c N~(C; 2), for all e >_ O. (2) 

function 

tPc(X)=IO, i f x e C ,  

~+~, if xq~C, 

one notes that 

c~q?c(2) =N~(C; 2). 

Indeed, consider (a) and (b) below: 

(a) If yeN~(C; 2), then 

yr(x-2)<e,  for all xeC,  

and it follows that 
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Proof. A proof can be found in Ref. 9. We will show below a direct 
proof for the special case of a quadratic objective function. [] 

However, relation (2) is in general not very helpful. We will show how 
to translate it into a calculable criterion in Section 4. The idea in Ref. 11 is 
to exploit in the quadratic case the special structure of h and C in order to 
simplify relation (2). So we wilt now study in more detaiI the quadratic 
concave problem, or equivalently the problem 

(1/2)xrQx+ crx-~max, s.t. Ax<b; (3) 

here, Q is a symmetric, positive-semidefinite n × n matrix; c~ ~ ;  A is an 
m xn matrix; and bE~". For this special quadratic case, we will prove 
Theorem 3.1 directly and reformulate the condition (2) into copositivity 
conditions. 

Remark 3.5. Since both S(e) =0,h(~) and N(e) =N~(C; 2) are convex 
sets, the inclusion (2) holds iff 

ers(,)(d) <_ erN(,)(d), for all directions de  ~ ,  (4) 

where for a set Yc  ~ we denote by 

err(d) =sup{dry: y~ Y} 

the support functional of  Y. This follows by standard separation arguments. 
For the proof of Theorem 3.1 (quadratic case), we will first describe 

the set of  G-normal directions and the e-subgradient explicitly. To this end, 
decompose the polyhedron C in the following way: 

C = co(x1 . . . .  , xk) + pos(rl . . . . .  rl), 

where we denote by co(x~ . . . . .  xk) the convex hull of the extremal points 
x~ . . . . .  x~ and by pos(r~ . . . . .  rt) the cone generated by the extremal rays 
rl . . . .  , rl (see Ref. 12) and use the following lemma. 

Lemma 3.1. If  Cis a convex polyhedron, the set of e-normal directions 
to C at ~ can be written in the form 

N(e) = {ye~' :  (xi-ff)ry_< 6, 1 <_i<_k; rfy<_<. O, 1 <_ j<_l} 

= {y~ff~" : Bry <e}, 

with B = [ x l - ~ , . . . , x k - . 2 ; r ~  . . . . .  r/] an n×(k+l )  matrix and e=  
[ e , . . . ,  e ; 0 , . . . ,  0] y a  (k + /)-vector, 
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Proof. 

(a) If for some yeR" we have 

(x ; -  2)ry_< e, l<_i<k and rfy_< O, l < j < l ,  

and so yeN(e )=N, (C ,  2). 
(b) On the other hand, if yeN(e),  then: 
(bl) (xi-2)ry<_ e, 1 <iNk,  since xieC. 
(b2) If there were j such that rfy > 0, we set z = Zrj + 2. Then, z e C for 

all 3.>0. From yeN(c), w e  obtain e>(z-2)ry=)~rfy.  But since rry>O, 
and ~ can be chosen arbitrarily large, this cannot be true, and so rfy <0 for 
all l < j<_t. 

We can now write 

N ( e ) = {yeN ' :B ry<e} ,  

with B = [ x , - 2  . . . .  , x k - 2 ; r , , . . . , r t ]  
[ e , . . . ,  e; 0 . . . . .  0] r a (k+ l)-vector. 

[] 

(5) 

an n x ( k + l )  matrix and e= 

Lemma 3.2. The e-subgradient of h(x) = (I/2)xrQx + crx at 2, with Q 
positive semidefinite, is of the form 

S( e) = O~h(2) = Q~ + c+ {uelm Q: urQ+u <2e}, 

Q+ being the Moore-Penrose inverse of Q. This set can also be written as 

S(e) = O,h(2) = Q~ + c+ {ueR':  urQ-lu <2e}, 

if Q is positive definite. 

Proof. First note that, due to Definition 3.1, deal,h(2) iff 

h(x) -h(2)  >_dr(x-2) - e, for all xeN' ,  

which is equivalent to 

x r Q x - 2 r Q 2 + 2 c r ( x - 2 ) > _ 2 d r ( x - 2 ) - 2 e ,  for all xeR ' .  

it follows that, for all x e C, we have 

( x - 2 ) r y  = Aixi+ p j r j -2  y 
t j = !  

k 1 

= E + E  Ay<- e, 
i~l  j = l  
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If  we set now 

d = Q 2 + c + u ,  

we obtain 

545 

deO,h(~) ~ xrQx - ~rQ2 + 2cr(x-- 2) 

> 2 ( Q f f + c + u ) r ( x - 2 ) - 2 e ,  Vx~N" 

xrQx - 2rQ2 - 2xrQ2 + 22rQ~ 

>_2ur(x- 2) - 2e, gx~It~" 

¢~ (x - 2)rQ(x - 2) >__ 2 u r ( x -  2) - 2e, Vx e N". (6) 

(a)  I f d = Q 2 + c + u ,  with ue Im  Q (there exists some v such that u =  
Qv) and urQ+uN2e, we obtain, since Q is positive semidefinite, 

0 <_ ( x -  2 -  v ) r Q ( x -  2 -  v) 

= (x - £ ) rQ(x  - 2) - 2vrQ(x - 2) + vrQv 

= ( x -  2) rQ(x - 2) - 2ur(x - 2) + vTQQ + Qv 

= ( x -  ~ ) r Q ( x -  2c) - 2 . r ( x  - 2) + urQ+u, 

and because of  (6) we see that deg~h(2). 
(b) For  the other direction: 
(b l )  Ifdsc~h(2), put u = d -  Q2-c and substitute x b y 2 +  Q+u in (6) 

to obtain immediately that urQ+u<_2e. 
(b2) If  we replace x by 2+)~( I -QQ+)u  in (6), w h e r e / i s  the n x n  

identity matrix, ,~_>0 arbitrary, we have 

deO¢h(2) ~.~2uT(I-- QQ+)rQ(I -  QQ+)u 

- 2)cur(I - QQ+)u + 2e >_ O 

uT(I - QQ+)u < e/~ 

l tu-  QQ+uII2 ~ E/L 

Since e is fixed and ,~ may be chosen arbitrarily large, we obtain u =  QQ+u 
and so u e l m  Q. [ ]  

In the following we calculate and reinterpret the support functional 
o'N(,)(d) of  the E-normal directions in the case of  a polyhedron. 
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Lemma 3.3. The following result holds: 

o-N(~)(d) = inf{e/2,: 2,> 0 such that ~ +  2de C} 

= (~c) '( :c,  d), by Remark 3.4. 

Proof. If  an~,)(d)< 0% it takes the solution value of the following 
linear program: 

(D) dry-,max, 

Bry<e, 

which is dual to 

(P) erw-~ rain, 

Bw=d, 

W>O~ 

where B and e are given as in (5). Now, (P) can be reformulated as 
k 

(P') e ~ u i ~ m i n ,  
i= l  

k I 

E ui(x - 2) + vjrj= d, 
i=l j= l  

Ui ~___ O, 

vj>_ o, 

where we set w = [~]. Three possible cases arise: 
Case 1. If  ut = 0 for all i and all u that constitute a feasible point w for 

(P'), then 
I 

d= 7, vir j 

is an unbounded ray of C and 

2+~wleC, for aU 2`>0. 

The optimal value of (P') is zero and hence ¢~N¢,)(d)=0 by the duality 
theorem. 

Case 2. If  u~>0 for some u constituting a feasible point w=[~], we 
obtain 

o-~,)(d) = inf{ e/2`: 2  ̀> 0 such that J2 + 2de C} ; 
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indeed, for 

~= 1 ui, 
i 

from the equality constraints of (P') it follows that 
k 1 

2+2d=(1/A.)  2 u, xe+(1/X) Z vjrjeC; 
i=1 j = l  

see the representation of C for Lemma 3.1. 
Case 3. If  (P') or (P) has no feasible point, then (D) is unbounded. 

In this case, there cannot exist a ~ > 0  such that 
k 1 

2+Zd= ~: Lxi+ Y~ ~/)  
i= l  j = l  

is in C, where 

,~i, pi>O, 
k 

2;=1, 
i=l 

since otherwise w = [~], with u; = ~i//~ and v s = pff~, would be a feasible point. 
So, taking the three cases together, we can write 

a~v(~)(d) = inf{ 6/~: )~ > O, such that ~ + 2~de C}. [] 

Now we are in the position to prove Theorem 3.1 in the special case of 
maximizing a convex quadratic function over a convex polyhedron: 

Proof  of  Theorem 3.1. Quadratic Case. 

(i) Let us first consider the necessary direction. 2EC a global maxi- 
mum means that h(£)>__h(x) for all xeC. Let now be yeS.h(2)=S(6) .  We 
have 

h(x) > h(2) + y r ( x -  2) - 6, for all x e ~ .  

Since h(x)-h(£)<<_0, we immediately obtain 

y T ( x - - x ) ~ 6 ,  for all x e ~ " ,  

and so yeN~(C; 2) =N(6),  for all 6>0 .  
(ii) To show the more sophisticated sufficient direction, we take four 

steps, where h'(£, d) is the 6-directional derivative of h (see Definition 3.3)" 

(a) h ( 2 + d ) - h ( 2 )  =sup,>o{h~(ff, d ) -  e}, 

for all d such that 2 + de C; 
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(b) h'(~, d) <__ as(,)(d), for all dsuch that ~+dEC, Ve>0; 

(c) cys~)(d) <_ aN(~)(d) holds because of (4) for all e > 0 and all d such 
that ff + dE C; 

(d) sup,>0{aN(,~(d)- e} _<0, for all d such that ~+d~C. 

Combining these four steps, we obtain the sufficient part: if S(e) c N(E), 
then 

h(~ + d) -h(~)  <_0 

holds for all d such that ~+d~C. 
It remains to prove the assertions (a), (b), (d). 
Assertion (a). Let 

q~ (,~) = h(~ + 2d) - h(ff) = (1/2)A2drQd+ A (Q,2 + c)rd, 

so that 4, (0)--0, q~ is convex, 

'(A) = 2drQd + (Q~ + c)rd, d? "(70 = drQ d, 

and 

h'(ff, d) = inf([(b (£) + el/;0. 
A>0 

Now, our first assertion is that 

/t ~b (1// l)= supl (inf[q~ (A) + e]/ ,~/-  ~/~}, for all p>O. 
~>O(\,t>O / 

Indeed, since 

inf[~b (Z) + e]/~,-  E/2 ~ ([~b (1/p) + e]/(1/p)) - e/z =/z~b ( l /p) ,  
A>O 

it follows that 

To prove the reverse inequality, we have to show that 

(7) 



JOTA: VOL. 75, NO. 3, DECEMBER 1992 

or its equivalent (replace 1/~ by v), 

Denote by p ( £ ) =  £~b (l/A). Then, p is convex for £ > O, and so 

Hence, 

P p ( v ) - p ( p ) _ p ( p ) ( v - p ) ,  for all v>O. 

inf[ p(v)  - p ( p )  + e(v-p)]  >_ inf[ (p ' (p)  + E)(v - p ) ] .  
v > O  v>O 
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for all p > 0. 

(8) 

Differentiation of  p gives 

p'(p ) = -(1/2p2)dr Qd. 

Substituting this into (8), we obtain 

[ -0% if e < (t/2p2)drQd, 
= if e = (1/2p 2)drQd, inf [ (p ' (p)  + e ) ( v - p ) ]  0, , 

v>0 L-p (p (p )+e) ,  if e>(t/21~2)drQd. 

Therefore, 

The last equation is evident if drQd> 0 [the supremum is attained for e = 
(t/2pZ)dTQd], while for drQd=O [i.e., p ' ( p ) = 0 ]  we have 

in f[ (p ' (p)+e)(v-p)]=-pe ,  for all E>0,  
v > 0  

and thus 

supl inf[( P'(P ) + e)( v -  I~ )]} tv >o 

Finally by 
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assertion (7) is proved. Putting p = 1 in (7), it follows that 

h(~ + d) - h(2) = sup{h'(2, d) - e}, 
~>0 

Assertion (b). We have 

h'(2, d) = inf{[~b (A,) + el/A,} 
Z>0 

= inf{(1/;c)[(1/2))~zdrOd+ A, (Qy~+ c) rd+ el} 
,t>0 

= inf{(1/2)[XdrOd+ 2(Q2 + c)rd+ 2e/Z]}.  
~>0 

Differentiating with respect to ~, we obtain 

Let now 

h'(g, d) =,j2ex/drQd+ (Qg + c)rd. 

z r= [~f2-e/x/-d~QdldTQ + (Q~ + c)r, 

z r = ( Q ~  + c) r, 

Then, 

zTd= h'(~, d) 

since z is of the form 

z=Qfc+c+u, 

with 

and 

and 

and zEO,h(2), 

for all d with 2 + dE C. 

uEIm Q, 

urQ+u = (2e/drQd)drQQ + Qd= 2e, 

if drQd > O, 

if drQd= O. 

if dr Q d > O, 

u = o e I m  Q, with urQ+u=oN2e, ifdrQd=O. 

So we can say that 

h'(~, d) = zrd<_ sup{dry: ye O,h(g)} = crs(,)(d). 

Assertion (d). Studying am~)(d) in more detail with the help of 
Lemma 3.3, one notices that, since 2 + d~ C, it follows that O'N(,)(d)<_ e for 
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all 6 > 0. Indeed, if we take in Lemma 3.3 the point w = [~,], with u; = $i and 
vj= pj,  if 

k t 

i=1  j ~ l  

with 
k 

;,i, pi>_O, ~ ,~i = 1, 
i = l  

see Lemma 3.1, then w is feasible for (P') and the value of the objective 
function is equal to 6. 

So, we have shown that 

sup(aN(,)(d) -- 6) _<0,  if,C+ de C. 
¢->0 

Concluding, we can see now easily that 

h(X + d) - h(£) = sup{h~(2, d)  - 6} <_ sup{ as(~(d) - 6} 
e '>0 e > 0  

_< sup{crN(,)(d) -- 6} <0,  
E>0  

and so finally we obtain that 

h(Yc+d)-h(£)<_O, i f2+d~C. [] 

4. Using Copositivity for Checking Global Optimality 

In the form (2), the relation of Theorem 3.1 is, as mentioned above, 
not very useful. But by taking a closer look at the special structure in the 
quadratic case, it will be possible to develop copositivity criteria for global 
optimality. First, we will study again the support functional of  N(e) and 
that of  S(e). Let 

h(x) = (1/2)xrQx + crx, 

with Q a symmetric positive-semidefinite matrix and c an n-dimensional 
vector. Then, the special structure of S(6)=  d~h(fc) and N(E)= N~(C; 2) is 
of  the form presented in the following two temmas. 

Lemma 4.1. We have 

~s~,~(d) = dT(Q~ + c) + ~ d .  (9) 
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Proof. The value of the support function Crs(,)(d) = supy~s(,)yrd is the 
solution of the following problem: 

(Q,) dry--max, 

ye[Q2 + c+ {u~lm Q: urQ+u<2e} ], 

which is equivalent to 

(Q') (Qd)% --* max, 

(1/2)vrQv< e. 

Let v be a feasible solution of (Q'). Then, we always have 

drQ v = (x/-O d ) r ( , ~  v) < 11,/-0 dlt llx/-0 vii 

and for 

O=fw/2~/drQdd, ifdrQd>O, 

o, if dr Qd = 0,, 

which is feasible for (Q'), we obtain 

Returning to the original problem (Q~), and remembering that QO=ti, we 
obtain the solution 

y =  QY+c+~,  with ~= Q0. 

For the support functional, we thus have 

Crs(,)(d) = drf: = dr(a)~ + c) + x/2~dTQd. [] 

Lemlna 4,2. We have 

cr m,)( d ) = ez( d), 

with 

z(d)={+a~l{O} w {(Ad)~/ui: i~I(2)} ], 

where we denote by 

1=1(2) : -  { i e { 1 , . . . ,  n}'(Af)i=bi} 

if de F, 
00 )  

otherwise, 
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the set of binding constraints at $, by 

u~:=bi- (A~)i> 0, 

the slack variables at £ for i(J(£), and by 

r =  {d: (Ad)i_<0, i~I(~)}, 

the tangential cone of C in if, if 

C = { x ~ " : A x < b } ;  

see (3). 

Proof. Recalling Lemma 3.3, we know that 

o-u(,~ (d) = E inf{ 1/A,: ,~ > 0, such that £ + 2d~ C}. 

(a) I fd~F,  then we have i n f ~ = + ~ .  
(b) If d~ F, then the infimum must be taken at £ = 0 if in direction d 

the polytope is unbounded. If in direction d the polytope is bounded, the 
infimum is taken for a point y = ff + ~,d fulfilling (Ay)i= b; for at least one 
i(~I(ff). Noting by short calculation that l/~,=(Ad)Ju~, we obtain in that 
case 

z(d) =max[{0} w { (Ad)ju~: i¢I(Yc) } ]. [] 

Remark 4.1, Solving the linear program 

(Pc) (Ad)Vv ~ max, 

(b-A~)Tv<_ E, 

O~O, 

we obtain the same solution as for the problem 

a~.(,)(d)= sup dry 
y~N(e) 

above by noticing that the vertices of the polytope 

S = { v ~ " :  (b-A£)rv<_ 1, v>_o} 

are the origin and (1/u~)ef for all i~I(ff), where e; is the ith vector of the 
standard basis in ~". Since this is true for all directions d, we can conclude 
that, the support functionals being equal, the corresponding convex sets 
N(e) and {AVv, v>_o, (b-A~)Vv<_E} must also be equal (see Remark 3.5). 
In this way, one can obtain a representation of N(e) alternative to that in 
Lemma 3.1. 
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Now, (4) [equivalent to (2)] can be reformulated in the quadratic case 
(3) into 

fd(6)=SZz(d)-82v/2d~--Od-dr(Q.2+c)>O, for all de[~ ", 

with 8 = ,re. Note  that always z(d) >0, and thus fa is a convex function. So, 
instead of  (4), we shall for the quadratic case check the inequality 

fa(8)>O, for all 6>_0, 

where de  ~" is fixed, but arbitrary. 
According to (10), the relation fd (8)> 0 is clearly satisfied for all 8 > 0, 

if d¢ F, so we only have to investigate directions d belonging to the tangential 
cone, as one would expect. In case of z(d) > 0, the function fa attains its 
minimal value at 

6 * =  x / 2 ~ d / 2 z (  d) > O, 

so that we have only to check that 

f,~(8*) = - [1 /2z (d ) ]d rQd  - dr( QY~ + e) > O, 

which can be rephrased as 

-dr  Qd-  2dT(QX + c )z( d) >_ O. (1 l) 

This relation also has to hold if z(d)= 0, since then fd is affine and thus has 
to have a nonnegative slope in order to be nonnegative for arbitrarily large 
6. If  we now denote, for ie {1 . . . . .  m}\I(ff), 

F~= {deF :  (Ad)~>O and uj(Ad)~>u~(Ad)j, for al l je{1 . . . . .  m}kI(ff)}, 

(12) 

then Fi is a polyhedral cone satisfying 

r,= {dEr: z(d) = ( Ad),/u,}. 

Similarly, 

Fo = { d e F :  (Ad)i<_O for all ie { 1 , . . . ,  m}\I(ff)} (13) 

is a polyhedral cone with 

AdZo} ={aer: z(a)=o}. 

Then, condition (11) can further be reformulated into the conditions 

drQ~d >>_ O, for all de  Fi and all ie {0 . . . . .  n} \I(~),  (14) 



JOTA: VOL. 75, NO. 3, DECEMBER 1992 

where the s)~nmetric n x n matrices Qi are defined by 

I - Q ,  i f i=0 ,  

Q~ = ( Bi - uiQ, otherwise, 

and 
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(15) 

Bi = -ai(Q2 + c) r _  (Q2 + c) (ai) r, (16) 

where (ai) r denotes the ith row of A. 
Conditions (14) alone do not suffice to ensure validity of (4), and hence 

global optimality of 2. Indeed, in the case of z(d) = 0, where fa is an affine 
function, not only the slope offd has to be nonnegative to ensure 

fg(fi) >_0, for all fi>0. 

In addition, the relationfa(0)> 0 has to hold in order to guaranteefd(fi ) >  0 
also for small values of & Now, observe that the condition 

O<fd(O)=-dr(Qy~+c)=-drVh(£c), for all d~F, (17) 

exactly corresponds to the Karush-Kuhn-Tucker conditions. Hence, for a 
Karush-Kuhn-Tucker point 2, the weaker condition 

dr(Q2+ c) _<0, for all cleF0, (l 8) 

is automatically satisfied. So (14) and (18) together ensure (4), and hence 
global optimality, but the latter can be ignored if :~ is a Karush-Kuhn- 
Tucker point. Note that (18) is a boundedness condition: indeed, any 
direction deFo, with 

(Qy~ + c)rd> O, 

satisfies 

2+td~C,  for all t>_0, 

as well as 

h(~ + td) - h(2) = (t2/2)drQd+ tdr(Q2 + c) 

>_>_tdr(QX+c)~oo, as t ~ .  

There is another unboundedness condition which is independent of the cur- 
rent feasible point 2: if Q o = - Q  is not F0-coposifive, i.e., if there is a 
direction deFo with drQd>O, then as above, .~+ tdeC, for all t>_.O, as well 
as 

h ( ~ + t d ) - h ( 2 ) = ( t 2 / 2 ) d r Q d + t d r ( Q . ~ + c ) ~ ,  as t~oo.  

Let us recapitulate the above arguments in the following theorem. 
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Theorem 4.1. Let ff be a feasible point of the quadratic problem (3). 
Define Qj and F~ according to (12), (13), (15), and (16). Then the following 
assertions are equivalent: 

(a) £ is a global solution to (3); 
(b) £ is a local solution to (3) and 

Q~ is (F~\F*)-copositive for all i~ {0 . . . . .  m)\I(~), 

F*= {d~F: Dh(£)d=o} 

= {de R": (Ad)i <_ O, if (A~),. = b~, and (Q£ + c)rd= 0} ; 

(c) ff is a Karush-Kuhn-Tucker point of (3) and 

Q~ is F~-copositive for all i t  {0 . . . . .  m}\I(£); 

(d) £ satisfies dr(QYc+ e)<0, for all dEF0, rather than for all d~F as 
in (c), and 

Q~ is F~-copositive for all i~ {0 . . . . .  m)\I(Yc). 

Proof. See Ref. 7. [] 

To stress similarity of local and global optimality criteria, one might 
compare Theorem 4.1(c) with the following, rather inefficient version of 
Theorem 3.1 in Ref. 7: a Karush-Kuhn-Tucker point ~ is a local solution 
of (3) iff 

Qi is (F~ c~ F*)-copositive for all i~ { 0 , . . . ,  m}\I(£). 

In any case, checking global optimality involves at most m -  1 copositivity 
problems of the same structure like that arising in the check of local 
optimality. 

Remark 4.2. If one wants to show (d)~(c)  directly without using (a) 
or (b), i.e., without using the knowledge that linearity of constraints makes 
constraint qualifications superfluous, then one may use the observation that, 
for an i e { 1 , . . . ,  m}\I(£) and any direction deF~\F0, we have 

(a,) rd= (Ad), > O, 

so that the inequality 

0 <_ drQ~d = -2(a~)rd(Qff + c)rd - ufdrQd< -2(ai)Td(Qff + c)rd 

immediately yields the desired relation dr(Q~+ c)<0, which establishes the 
Karush-Kuhn-Tucker condition (17). 
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From a computational point of view, formulations (c) or (d) of 
Theorem 4.1 seem to be preferable, since several procedures for checking F- 
copositivity are available if F is a polyhedral cone. See, e.g., Refs. 13-17, 
but of  course these algorithms suffer from a high worst-case complexity. 
Nevertheless, the above criteria may be useful in finding global optima in 
the quadratic case. A corresponding algorithm, which is able to escape from 
local solutions, has been developed in Ref. 18. 
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