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Geodesic Convexity in Nor-linear Optimization ~ 

T. R A P C S A K  2 

Communicated by F. Giannessi 

Abstract. The properties of geodesic convex functions defined on a 
connected Riemannian C 2 k-manifold are invesigated in order to extend 
some results of convex optimization problems to nonlinear ones, whose 
feasible region is given by equalities and by inequalities and is a subset 
of a nonlinear space. 

Key Words. Generalized convexity, nonconvex optimization, Rieman- 
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1. Introduction 

The concept of  convexity plays an important  role in mathematical  
optimization theory. The usual set convexity in linear topological spaces is 
based upon the possibility of  connecting any two points of  the space, which 
has led to the convex and generalized convex functions as well as to the 
convex optimization. Since convexity is often not enjoyed by real problems, 
various approaches  to the generalizations of  the usual line segment have 
been proposed recently (Refs. 1-16). In these order of  ideas, we propose 
here a generalization which differs from the other ones in the use of  a 
k-dimensional  Riemannian manifold of  R n, k -  n, as a definition domain. 

In the sequel, only the geodesic convexity will be considered, which 
wilt be denoted as g-convexity. In this case, the linear space is replaced by 
a Riemannian manifold,  i.e., by a nonlinear space; the line segment is 
replaced by  a geodesic arc. The advantage of  this approach,  motivated first 
o f  all by Luenberger 's  works (Refs. 17 and 18), is the recognition of  the 
geometrical structure of  the optimization problems which can lead to new 
theoretical and algorithmic results. 
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In order to check the g-convexity property of  a function on the feasible 
region, it is necessary and sufficient to state the positive semidefiniteness 
of  a suitable matrix in this domain. Such a matrix is constructed by means 
of  the gradient and the Hessian matrix. The corresponding computat ional  
complexity is of  the same order as in the convexity and less than in the 
pseudo-convexity. When the g-convexity has been proved, it is concluded 
that a stationary point is a global opt imum point  too; consequently, every 
algorithm which gives a stationary point gives a global minimum point, too. 

The g-convex optimization problems contain the convex ones as a 
special case. Let the optimization problem be set in the form 

m i n f ( x ) ,  ( la )  

s.t. hi(x) = 0, j = l  . . . .  , n - k ,  ( lb)  

x e R  '~, ( lc)  

where k -> 0 and f, hje C 2, j = 1 . . . .  , n - k. Denoting by h : R ~ -* R "-k the 
map whose components  are the h/s,  we assume that the following regularity 
assumption holds: 0 is a regular value of the map h; i.e., the Jacobian 
hT(x) ~ ~ ( R  n, R n-k) of h at x is of  full rank n - k for all x e h-l(0).  Under  
this assumption,  the set h- l (0)  is a k-dimensional submanifold of  R n of  
class C 2 (Ref. 19), which is endowed with the Riemannian metric induced 
by the Euclidean structure of  R ~. It  will be shown that, under g-convexity, 
a stationary point of  (1) is also a global minimum point. 

2. Some Properties of g-Convex Functions 

Let M C R  n be a connected Riemannian C 2 k-manifold. As is usual 
in differential geometry, a curve of  M is called a geodesic if its tangent is 
parallel along the curve (Ref. 19). 

Definition 2.1. It is said that a set A C M is g-convex if any two points 
of  A are joined by a geodesic belonging to A. 

This definition differs slightly from that of  differential geometry, 
because here a geodesic appears  instead of a shortest geodesic. The 
difference between the two definitions is shown by the following example. 

Example 2.1. I f  we consider a sphere and the arc-metric on the sphere, 
then a part  of  the sphere which is greater than a hemisphere is not g-convex 
in the former  sense, but  is g-convex in the latter sense. 
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Example 2.2. A connected, complete Riemannian manifold is g- 
convex (Ref. 19). 

Example 2.3. For every point m in M, there is a neighborhood U of 
m which is g-convex; for any two points in U, there is a unique geodesic 
which joins the two points and lies in U (Ref. 19). 

Definition 2.2. Let A C M be a g-convex set. Then, it is said that a 
function f :  A--> R is g-convex if its restrictions to all geodesic arcs belonging 
to A are convex in the arc length parameter. 

By the definition, the following inequalities hold for every geodesic 
y(s) ,  s E [0, b], joining the two arbitrary points rnl, m2 ~ A: 

f ( y ( t b ) ) < - ( 1 - t ) f ( y ( O ) ) + t f ( y ( b ) ) ,  0-< t---l,  (2) 

where y(0) = ml,  y(b)  = m2, and s is the arc length parameter. 
I f  M C R" is a connected Euclidean manifold, then the g-convex set 

A C M is a convex set and the g-convex function f : A ~  R is a convex 
function on A (Ref. 18), where 

y(tb) = m I + t(m2-- ma), (3) 

b = ]m2-m~l, and [ .  [means the Euclidean norm of a vector. 
In the case of  a g-convex function f :  A-~ R, define the following set 

in R "+1 lying above the graph of  the function: 

M1 + M2 = {(x, x,,+l) + (0, x~, 1)[(x, x,+l) c M1, (0, X~+l) c M2}, (4) 

where 

M, = {(x, x,+,)lx, ~ 1 - f ( x )  = O, x e R", X,+l ~ R}, (5) 

- "  ' R}.  (6) M2 = ((0,  c x . + ,  

It is clear that, in the case of  a convex function, the set M1 + M2 coincides 
with the epigraph (Ref. 20). The E-convexity of  the set M~ + M2 (E-convexity 
means the geodesic convexity in another Riemannian metric) requires 
further investigation, because the structure of  M~ + M2 is different from that 
of  M. 

From (2), we achieve obviously the following lemma. 

Lemma 2.1. Let A C M  be a g-convex set, and let f : A ~ R  be a 
g-convex function. Then, the level sets 

{m If(m) -<f(mo); m, mo c A} (7) 

are g-convex. 
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Theorem 2.1. Let A C M  be a g-convex set, and let f : A - ~ R  be a 
g-convex function. Then, a local minimum point is also a global minimum 
point. 

The proof  of  Theorem 2.1 is similar to that for the convex case and is 
omitted. 

Theorem 2.2. Let A C M be an open g-convex set. Then, a function 
f :  A ~ R is g-convex if  and only if it is g-convex in a g-convex neighborhood 
of  every point of  A. 

Proof. (i) I f f  is a g-convex function on A, then the statement follows 
from Example 2.3. 

(ii) Ab absurdo, assume that the thesis is not true, so that there exist 
two points, ml,  m2~ M, a geodesic y( tb) ,  0 < - t < - 1, y(O) = ml ,  y (b)  = m2, 
and toe [0, 1] such that 

f ( y ( t o b ) )  > f ( y ( 0 ) )  + to[ f (y (b) )  - f ( y ( 0 ) ) ] .  (8) 

Let 

and 

t ( t)  = f ( y ( t b ) )  - f ( y ( O ) )  - t [ f ( y ( b ) ) - f ( y ( O ) ) ]  (9) 

that is, 

we have 

21(t*) > / ( t l )  -t- l(t2), (12) 

f (~ / ( t*b ) )>  [ f ( v ( q b ) ) + f ( y ( t 2 b ) ) ] / 2 ,  

which is a contradiction. 

(13) 
[] 

l(t*) = max l( t) .  (10) 
O ~ t ~ l  

Then, 0 < t * <  1. I f  t* is not unique, then let t* be the smallest value. It 
obviously exists if the number of  the maximum points belonging to [0, 1] 
is finite; in the contrary case, the smallest value is the inferior limit point 
of  the maximum points, since the function value of  t ( t)  is equal to the 
maximum value at this point, because of  the continuity of  l( t) .  Let e >  0, 
tl=t*-e, tE=t*+E be such that y(tab) and y(t2b) are in a g-convex 
neighborhood of y( t*b) .  Since 

l( t*) > l(tl),  l(t*) >- l(t2), (11) 
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As a matter of  fact, the question arises: What is the relation between 
convex functions and g-convex functions? The g-convexity means that the 
function f :  M ~ R is convex along the geodesics. Thus, in order to answer 
the question, those Riemannian geometries must be considered where the 
geodesics are straight lines. This is a special case of  Hilbert's fourth problem 
(Ref. 21), which is characterized by the Beltrami theorem (Ref. 21) as 
follows. Let MI,  M2 be two manifolds. 

Definition 2.3. A homeomorphism ~ :M1 ~ M2 is called a geodesic 
mapping if, for every geodesic 3' of  M1, the composition ~3' is a repara- 
metrization of  a geodesic of  M2. 

Theorem 2.3. (Beltrami). If  M is a connected Riemannian k-manifold 
such that every point has a neighborhood that can be mapped geodesically 
to R g, then M has a constant curvature. 

The above theorem is the basis of  the next one. 

Theorem 2.4. The g-convexity of  a function f :  M ~ R coincides with 
the convexity (Ref. 18) in a coordinate neighborhood of  every point if and 
only if the manifold M has a constant curvature, that is, in the cases of  
Euclidean geometries, Riemannian elliptic geometries and Bolyai- 
Lobachevsky hyperbolic geometries. 

Proof. It is sufficient to prove the "only i f"  part. Assume that the 
g-convexity o f f :  M ~ R coincides with the convexity in a coordinate neigh- 
borhood of  every point. This means that every point has a convex coordinate 
neighborhood U C R k in which n functions x i (u )  ~ C 2, i = 1 . . . .  , n, u ~ U, 

are determined by the inclusion map from M to R n such that the composition 
function f ( x ( u ) ) ,  u c U is convex and the function f ( x )  is g-convex on the 
g-convex set x ( u ) ,  u ~ U of  M. So, every point of  M has a neighborhood 
that can be mapped geodesically to Rk;  consequently, M has a constant 
curvature by the Beltrami theorem. [] 

It is possible to introduce some other kinds of generalized g-convexity 
property, as in the case of  nonlinear optimization. Only the g-quasiconvex 
functions are defined here. 

Definition 2.4. Let A C M be a g-convex set. Then, it is said that a 
function f : A ~ R  is g-quasiconvex if all its level sets {rn l f ( rn )<-  
f(mo);  m, m0~ A} are g-convex. 
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Theorem 2.5. The g-quasiconvexity of a function f :  M--> R coincides 
with the quasiconvexity (Ref. 18) in a coordinate neighborhood of every 
point if and only if the manifold M has a constant curvature. 

The proof of Theorem 2.5 is similar to that for the g-convex case. 

3. First-Order and Second-Order Characterizations 

Lemma 3.1. Let A C M be an open g-convex set, and let f :  A-~ R be 
a continuouSly differentiable function. Then, f is g-convex on A if and only 
if, for every pair of points ml ~ A, m2 ~ A, and a connecting geodesic y(tb), 
0-</-<1, T(0)= ml, T(b)= m2, 

f(m2) - f (  m l )  ---~ Vf( m l ) ~(0), (14) 

where Vf(rna) and 7(0) mean, respectively, the gradient of f at the point 
ml and the derivative of y(tb) w.r.t, t at the point 0. 

The proof of Lemma 3.1 is similar to that for the convex case. 

Definition 3.1. The point rn ~ M is a stationary point of the con- 
tinuously differentiable function f:A-->R if the gradient Vf(m) is 
orthogonat to the tangent space, say TM, of M at m. 

Corollary 3.1. Let A C M  be an open g-convex set, and l e t f :A -~R  
be a continuously differentiable g-convex function. Then, every stationary 
point o f f  is a global minimum point. Moreover, the set of global minimum 
points is g-convex. 

Proof. As the right side of Ineq. (14) is equal to zero at a stationary 
point m ~ A by Definition 3.1, it follows that the first part of the statement 
is proved. The second part is obtained from Lemma 2.1. [] 

Theorem 3.1. Let A C M  be an open g-convex set, and letf:A-->R 
be a twice continuously differentiable function. Then, f is g-convex on A 
if and only if the following matrix is positive semidefinite at every point: 

ngf  = HSTM + [VfNI~eN. (15) 

Here, HJ~r~ is the Hessian matrix of the function f restricted to the tangent 
space TM of M, and Bryn is the second fundamental form of M in the 
normal direction of the vector Vf. 
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ProoL As the statement is valid in a g-convex neighborhood (Ref. 
14), the theorem is a simple consequence of  Theorem 2.2. [] 

Now, it will be shown that H g f  determines a second-order, symmetrical 
tensor field on A. The most important consequence of  this fact is that the 
quadratic form wTHgw, w e  R k, is invariant under nonlinear coordinate 
transformations. 

Let u ~  U C R  k be coordinates for a g-convex region of the C 2 k- 
manifold M C R  ~. Then, the inclusion map from M to R" determines n 
functions x i (u )  ~ C 2, i = 1 , . . . ,  n. 

Let us introduce the following notations and operations: 

Hxl.(u) ] 
Hx(u) [ Hx~(u),,. ' S=ox/ou, 

where H x i ( u ) ,  i = 1 , . . . ,  n, are k x  k Hessian matrices, 

y r = (Yl,  . . . , Y , )  ~ R" ,  w T = ( W l ,  • • . , Wk) U. R k, w] 
y y,m,(.), w'm(.)w L w--(u)w .xo J 

A w r H x ( u ) w  = w r A H x ( u ) w ,  A c R. 

Theorem 3.2. H x f  + J ( J r J ) - l V x f N H X ( u ) ( J r J ) - l J r  : T M  x T M - ~  R is 
a second-order symmetrical tensor field on A, where H j  denotes the 
Hessian matrix o f f ( x )  by x. 

Proof. 

Since 

we have 

First, the following identity will be proved: 

v r ( H x f  + J ( J r J ) - l V x f N H x ( u ) ( j T j ) - l J r ) v  

= w r H ~ f w ,  v ~  TM,  w ~ R  k. 

Jw = V, W C R k, v ~ TM,  

vT(Hxf + J(JTj)-IVxfNHx(u)(jTj)- ' jT)v 

= vTHxfv+ v g ( S 9 ) - ' V x f N H x ( u ) ( J g ) - 9 ~ ) v  

= wTjTH~fJw+ WTjTj(jTj)-1V~fNHX(u)(JTJ)-IJTJw 

= wr(jrH~fJ+VxfNHx(u))w. 

(~6) 

(18) 
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But 

j T H x f J =  HfTM and IVfNIBvfN=VxfNHx(u); 

so, the identity is true. Consider a nonlinear coordinate transformation 
u(z),  det(Ou/Oz) ~ 0 of R k. Then, 

Hgzf = (Ou T /Oz)JTHxfJ(Ou/Oz) + V.fNHzx(U(Z))  

= (ouT/oz)JTHxfJ(Ou/dz)  + V~fN(OU T/Oz)H.x(u)(OU/OZ) 

= (OuT/Oz)(aTH~fJ+V~fNHx(u))(Ou/Oz) 

= (ouT/Oz)H~f(Ou/Oz),  (19) 

which justifies the statement. [] 

Remark 3.1. We observe that 

H , f  = J r HxfJ + V :,fHx( u ) 

does not determine a tensor field on A. 

4. Optimality Conditions and g-Convexity 

We consider the problem 

m i n f ( x ) ,  x e A C M ,  (20) 

where f e  C 2, M C R n is a Riemannian C 2 k-manifold, and A is a subset 
of  M. In order to characterize the local optimality, it is sufficient to investigate 
the manifold in a neighborhood, so that instead of (20) we are faced with 
the following problem: 

m i n f ( x ) ,  (21a) 

s.t. x = x ( u ) ~ R " ,  (21b) 

u ~ U C R  k, (21c) 

where f ( x ) ,  xi(u) E C 2, i = 1 , . . . ,  n, and U is an open set. The optimality 
conditions are obtained by direct computation,  elaborated in detail in 
Ref. 22. 

Theorem 4.1. I f  Uo is a local minimum of (20), then 

V fN(x (  uo) ) = V f (x (uo)  ) (22) 
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and 

Hg~f(x(uo)) is positive semidefinite. (23) 

If (22) holds at uo and 

H~f(x(Uo)) is positive definite, (24) 

then uo is a strict local minimum of (20). 

Corollary 4.1. It follows from Theorem 4.1 and Example 2.3 that the 
function f (x)  is g-convex in a neighborhood of Uo, if (22) and (24) hold 
at Uo. 

The optimality conditions (22), (23), and (24) as well as the relation 
between the nonlinear optimization problems and (20) were investigated 
in Refs. 22-24. 

5. g-Convexity in Nonlinear Optimization 

Next, we deal with the problem 

min f(x),  (25a) 

s.t. hi(x) =0, j =  1 , . . . ,  n - k ,  (25b) 

x 6 R", (25c) 

where f hj~ C 2 , j =  1 , . . . ,  n - k .  Let 

M={xthj(x ) =0, j =  1 , . . . ,  n - k } .  (26) 

If Vhj(x), j =  1 , . . . ,  n - k ,  x c M ,  are linearly independent, then M is a 
Riemannian C ~ k-manifold, where the Riemannian metric is induced by 
the Euclidean metric. Assume that M is connected. 

It is convenient to introduce the Lagrangian associated with (25), 
defined as 

t~ -k  

L(x, tx(x)) = f ( x ) -  Z /x~(x)h:(x), (27) 
j=l 

where 

/x(x) T =Vf(x)Vh(x)r[Vh(x)Vh(x)r] -', 

V h ( x )  = 

Vh, .k(X) 

(28) 

(29) 
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It is emphasized that the multiplier ~(x)  depends on x and is no longer a 
constant term. 

[,emma 5.1. If  Vhj(x), j = 1 , . . . ,  n -  k, x ~ M, are linearly indepen- 
dent, then 

- txj(x)Hhj(x) x e M. (30) 
L j = I  [TM' 

Proof. Since 

Vhj(x) ~0 ,  j = l , . . . ,  n - k ,  x ~ M ,  (31) 

the level surfaces hi(x) = 0, j = 1 , . . . ,  n - k, can be given in a small neigh- 
borhood of  every point as elementary surfaces of  (n - 1)-dimensions yj(z), 
z ~ Z C R n l .  We can assume that the (n - 1)-dimensional parameter set Z 
is the same for all level surfaces and that U c Z is a coordinate domain of 
M. These assumptions do not mean loss of  generality, for this is always 
obtainable with linear transformations. 

Thus, in an arbitrary coordinate domain U of M given in the form 
x(u),  u E U is contained in every level surface; that is, 

y~(u)=x(u) ,  j = l , . . . , n - k ,  u c  U C R  k. (32) 

It turns out that 

hi(x(u))=O, j = l , . . . ,  n - k ;  (33) 

and differentiating (33) twice w.r.t, u, we have 

Vxhj(x(u))Hx(u) = -JrHxhj(x(u))J,  j =  1 , . . . ,  n - k .  (34) 

Multiplying both sides of Eqs. (34), respectively, by /~ l (x ) , . . . , / z ,_k (x )  
and adding term by term leads to an equation equivalent to (30). [] 

T h e o r e m  5.1. Let 

M = { x t h j ( x ) = O , j = l  . . . . .  n - k ,  x ~ R  n} 

be connected; let f :  M-*  R be a twice continuously differentiable function; 
and let Vh;(x), j = 1 , . . . ,  n - k, x e M, be linearly independent. Then, f is 
g-convex on M if and only if the matrix HgL(x,/~(X))IrM is positive 
semidefinite at every point x ~ M. 

Proof. Because of  the assumptions, M is a complete Riemannian 
manifold. From the Hopf-Rinow theorem (Ref. 19), it turns out that any 
two points in M can be joined by a geodesic segment, i.e., M is g-convex. 
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Since 

H~L(x,  k~(x))lrM = Hxf (x )  - Y. ~j(x)H,~hj(x) x ~ M, (35) 
j = l  ITM' 

the thesis follows from Lemma 5.1 and Theorem 3.1. 

Corollary 5.1. Let 

M = { x ] h j ( x )  =0,  j =  1 , . . . ,  n - k ,  x 6  R"} 

be connected; let f :  M-~ R be a twice continuously differentiable function; 
and let Vhj(x), j = 1 , . . . ,  n - k, x ~ M, be linearly independent. If  Hf(x) ,  
- i~j(x)Hhj(x) ,  j = 1 , . . . ,  n - k, x ~ M, are positive semidefinite, then f ( x )  
is g-convex on M. 

Example 5.1. Let 

x(u)  T = Ix1 = u,,  x2 = u2, x3 = (1 - x  2 - x2 )  '/2] E R 3, (36) 

U = {(ut, u2) f -1  < u, < t, - !  < u2 < 1} C R 2, (37) 

e 0 oiFx, l 
f(x)=[x,,x~,x~] o I o|[x2[=ex~+lx~+qx~. (38) 

I l l  
0 0 q lLx3l 

Then, we can compute the Hessian matrix of the composition function 
f ( x (u ) ) ,  u e U, 

H " f  = [  e-qO l O q ]  ' (39) 

and the geodesic Hessian matrix o f f ( x ( u ) ) ,  u e U, 
+ 2 2 , 2,F 1 XI/X3 

H ~ f =  ((e - q )x i+ (1-  q)x2)[ x ,x2/x  2 

Fe+qx~/x~ qx~x~/x~ ] 
+ 2 qxlxf fx3 l+qx~/x23J" 

XlX2/ 1 

(40) 

If e >  q, t >  q, q >  0, then f ( x (u ) ) ,  u ~ U, is convex and f is g-convex on 
x(u) ,  u c  U. If O < e < q < l ,  then f ( x (u ) ) ,  u c  U, is not convex, but is 
g-convex on x(u) ,  

u c u • {(ul,  u~)fu2> [ ( q -  e)/(l- q)]'/2Ul}; (41) 

that is, a local optimum is also a global optimum. 

Remark 5.1. The matrix H~L(x,  I.~(x))IrM formulated in (35) and (28), 
(29) can be given explicitly at every point via the gradient vector and the 
Hessian matrix. After this, the computational work to check the g-convexity 
consists of  the study of  the positive semidefiniteness of  H~L(x,  ~(x))lT ~ 
similarly to the convex case. 
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The determination of  the matrix H~L(x,/~(x))lrM is presented in the 
quadratic case. 

Example 5.2. Consider the problem 

min[(1/2)x-rCx + prx], (42a) 

s.t. (1/2)x 'rCjx+pfx=O, j = l  . . . .  , n - k ,  (42b) 

x ~ R". (42c) 

Let 

M =  {xt(1/2)xT-Cjx + p f  x=O, j = 1 , . . . ,  n - k ,  x ~ R"} 

be connected; and let the vectors Cjx + pj,j  = 1 , . . . ,  n - k, x E M, be linearly 
independent. Then, by Theorem 5.1, the necessary and sufficient condition 
of the g-convexity of the objective function on M is the positive semidefinite- 
hess of  H~L(x,/X(X))ITM at every point x ~ M, where 

H~L(x, ~(x))lrM = C -  2 ~j(x) , (43) 

~(x)  r = (Cx +p)rVh(x)r[vh(x)Vh(x)r]  -1, (44) 

Vh(x) = - . (45) 

L(C. kx+p°-k)TJ 
The restriction of  the matrix H~L(x, tz(x)) to the tangent space TM is 
obtained via the projection matrix (Ref. 18) 

P = I-Vh(x)r[Vh(x)Vh(x)-C]-IVh(x) ,  (46) 

so that 

] H~L(x, ~(X))IrM = p r  C - F. ~j(x)Cj P. (47) 
j = l  

If  the matrices - C ,  Cj, j = 1 . . . . .  n -  k, are negative semidefinite and if 
~(x)-> O, x e M, ~(x)  given by (44), then the function (1/2)xrCx+prx is 
g-convex on M by Corollary 5.1. 

6. g-Convex Optimization Problem 

Introduce the g-convex programming problem as follows: 

m i n f ( x ) ,  (48a) 

s.t. gi(x)<-O, i = l , . . . , l ,  (48b) 

x ~ A C M C R~, (48c) 
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where M is a Riemannian manifold, A is a g-convex set, and f, gi, i = 1, . . . ,  l, 
are g-convex functions on A. The constraint set of (48) is g-convex, and 
the problem (48) contains the so-called convex programming problem as a 
special case. 

7. Concluding Remarks 

In this paper, the g-convexity (geodesic convexity) of  functions is 
developed and characterized in nonlinear optimization. It is likely that this 
is the appropriate generalization of  the classical convexity notion for the 
case of  nonlinear constraints defining a subset of  a Riemannian manifold. 
This characterization can be useful for solving nonconvex problems. 

After checking the g-convexity property of  a problem, it is possible to 
use any algorithm to find the global optimum point, because in this case 
every stationary point is a global optimum point. In order to check the 
g-convexity property of  a function on the feasible domain, it is necessary 
and sufficient to state the positive semidefiniteness of  the geodesic Hessian 
matrix in this domain, where this matrix is given by the gradient vector and 
by the Hessian matrix. To show the positive semidefiniteness of a matrix, 
there are efficient computer  codes (e.g., to state the nonnegativity of the 
smallest eigenvalue). 

By using the property of  the g-convexity, it is possible to obtain sufficient 
conditions for the connectedness of the feasible region of  complementarity 
systems (Ref. 25). In case of  a linear complementarity system (Ref. 25), 
these conditions can be formulated in explicit form. 

Consider the linear complementarity problem as follows: 

xTMx+qTx=O, Mx+q>-O, x>--O, x, q c R ' ,  (49) 

where M is a symmetrical n x n matrix. Assume that 2Mx + q ¢ 0 and n -> 2. 
The equality in (49) determines a Riemannian manifold, so the g-convexity 
of  the feasible region is a consequence of  the g-convexity of  the linear 
functions appearing in the inequalities of  (49). 

The necessary and sufficient conditions of  the g-convexity of  the func- 
tions -x~, i = t . . . . .  n, and - ( m i x +  qi), J = t , . . . ,  n, are the positive semi- 
definiteness of  the following matrices at every point satisfying the equality 
in (49): 

Hgxi = (2Mx + q)~PMP, i =  1, . . . ,  n, (50a) 

Hg(mjx+qj)  = mj(2Mx+q)PMP, j = 1 , . . . ,  m. (50b) 

Here, (2Mx + q ) ,  i = 1, . ,  , ,  n, is the ith component of the vector 2Mx + q; 
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raj, j = 1 , . . . ,  n, is the j th  row vector of the matrix M;  and 

P = I - (2Mx + q) (2Mx + q ) T / ( 2 M x  + q)2 (51) 

The following example indicates that the class of  complementarity 
systems which satisfies the g-convexity property is not empty. 

Example 7.1. Let 

[1°  i10 0 [!] 
M =  -1  0 -1  q = " 

- 1  0 - 1  

(52) 

Then the complementarity region determined by (49) and (52) is equal to 
the g-convex set 

{X 1 "~ X 3 + X 4 = 1, x2 = 0, xl,  x3, X4 ~ 0}. 

In this domain, the conditions (50) hold because x r p M P x  = O. 

Some questions are open, for example: How wide is the class of 
complementarity systems which satisfies the g-convexity property? Is it 
possible to generalize the concept of epigraph to the g-convex functions? 
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