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Efficient Generalized Conjugate Gradient 
Algorithms, Part 1: Theory 

Y. L I U  1 A N D  C .  S T O R E Y  2 

Communicated by L. C. W. Dixon 

Abstract. The effect of inexact line search on conjugacy is studied in 
unconstrained optimization. A generalized conjugate gradient method 
based on this effect is proposed and shown to have global convergence 
for a twice continuously differentiable function with a bounded level set. 
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1. Introduction 

Conjugate gradient methods are some of  the most useful algorithms 
for unconstrained optimization of large problems by virtue of  their storage 
saving properties. The general routine is given below. 

Suppose that f is a twice continuously differentiable function on its 
domain containing a bounded  level set L, 

L={x~Rn:  f(x)<-f(xl)}, n>-2, (1) 

where xl is an initial point.  Then, the minimum point o f  f is to be found 
by a sequence of  line searches on directions sk, k = 1, 2 , . . . ,  

Xk+ 1 --~ X k -t- a k S k ,  (2) 

where 

ak = arg rain f(Xk + ask), 
a 

S k + l = - - g k + l + b g S k .  

(3) 

(4) 

1 Visiting Scholar, Department of Mathematical Sciences, Loughborough University of Tech- 
nology, Loughborough, Leicestershire, England. 

2 Professor, Department of Mathematical Sciences, Loughborough University of Technology, 
Loughborough, Leicestershire, England. 

129 
0022-3239/91/0400-0129506.50/0 @_) 1991 Plenum Publishing Corporation 



130 JOTA: VOL. 69, NO. 1, APRIL 1991 

In (4), gk =f ' (xk)  is the gradient o f f  at Xk, S l  = - g l  is the steepest descent 
direction, and bk is determined by the conjugacy condition 

T Sk Hk+lSk+l = 0, k = 1, 2 . . . . .  (5) 

where Hk+l =f"(Xk+l) is the Hessian o f f  at Xk+~ and s r is the transpose 
of  sk. Thus, we could have bk of the form suggested by Daniel (Ref. 1), 

bk T T = gk+lHk+lSk/Sk Hk+lSk. (6) 

But in practice, in order to avoid computation of second derivatives 
and storage of  matrices, condition (5) is changed to its difference form, 

T Sk+,(gk+, -- gk) = 0, k = 1, 2 , . . . .  (7) 

Accordingly, we have bk of the form suggested by Sorenson (Ref. 2), 

bk T T = g~+,(gk+l -- gk)/Sk (gk+l -- gk), k = 1, 2 , . . . .  (8) 

On the other hand, by (3) we have 

s~gk÷l = 0, k = 1, 2 , . . .  ; (9) 

then, (8) becomes 

bk r = --gk+~(gk÷~--gk)/S2gk, k =  1, 2 , . . . .  (10) 

We note that Sk÷~ in (4) is independent of  the length of sk when bk 
takes the form of (6), (8), or (10). This property is useful in computations. 
On the other hand, if bk takes the Polak-Ribi~re form (Ref. 3) 

bk = g~+~(gk÷~ -- gk)/g-~gk, k = 1, 2 , . . . ,  (11) 

which is obtained from (10) considering (4) and (9), this property is lost. 
We know that, i f f  is a quadratic function, then 

g~+lgk = O, k = 1, 2 , . . . ,  

and (11) takes the form suggested by Fletcher-Reeves (Ref. 4), 

bk = T T gk+tgk+l/gk gk, k = 1, 2 , . . . .  (12) 

Fletcher-Reeves'  method is the simplest of  all conjugate gradient 
methods and its convergence is proved by Powell (Ref. 5), where f is not 
restricted to being quadratic. Furthermore, A1-Baali (Ref. 6) extends this 
result to show the convergence of  Fletcher-Reeves'  method with inexact 
line search when ak satisfies the conditions 

[g~+,Skl<C~lg~Sk[, 0 < c l < l / 2 ,  (13) 

and 

f(Xk+,) <-f(xk) T +C2akgkSk, 0 < C 2 < 1 / 2 .  (14) 
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The finite termination property of conjugate gradient methods does 
not hold in general for nonquadratic f (and even for quadratic f because 
of  round-off errors), and so restart procedures are necessary. Fletcher and 
Reeves suggest restarting after every n + 1 iterations (Ref. 4), but when n 
is very large, this has little effect. Shanno (Ref. 7) gives an angle test to 
determine when conjugate gradient algorithms should be restarted with a 
steepest-descent direction. Touati-Ahmed and Storey (Ref. 8) give three 
efficient hybrid conjugate gradient methods in which (11), (12), or a restart 
is used according to certain switching criteria. 

2. Generalized Conjugate Gradient Method 

In this paper, we develop a new kind of  method which we call general- 
ized conjugate gradient method. 

In practice, exact line search is generally impossible and, in any case, 
would be very uneconomical.  When line search is inexact, conjugate direc- 
tions are not the best directions as we will see later. For this reason, we 
modify bk by considering the effect of inexact linear search. 

First, we write the Newton approximation of f (Xk+l ) ,  

F(Xk+O = F(Xk + akSk) =f(xk)  r 2 r + akgk Sg + akSk HkSk/2, k >-- 2. 

Assume that s[HkSk > 0; then, 

min(F(Xk  + akSk) - - f (Xk))  <-- - - ( g ~ £ s k ) 2 / ( 2 s [ H k s k )  = - gk/2.  (15) 
ak 

Now, we find the direction Sk on the gk--Sk-~ plane, 

Sk = --tgk + USk-1, (16) 

such that Vk takes its maximum. Clearly, we can write 

Vk = ( tg[gk - ug rsk--1)2/ ( t2 gT Hkgk --2tugTHkSg-1 + u2Sr lHkSk-1)  

T 2 T T T T 
= [(gk gk) Sk-lHkSk-1 --2gk Sk-~gk gkgk HkSk-i 

..{_ T 2 T T T 
(gk Sk-1) gk Hkgk]/[Sk- lHkSk-xgk Hkgk -- (g T Hksk-,)2] 

-- [ t (g[gkg[HkSk-~  T T - -  g k  S k - - l g k  Hkgk) 

T T T T 2 
- U(gk gkSk-lHkSk-i  -- gk Sk-lgk HkSk-O] 

2 T T / [  ( t gk Hkgk -- 2tugk HkSk-1 

.~_ 2 T T T _ 
u Sk- ,HkSk- , ) (Sk_ ,HgSk_,gkHkgk (grkHgSk-,)2)]. 
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Hence, if 

S-~-IHkSk-1>O, k - 2 ,  

D T T / T r T  \ 2 ~  = Sk-lHkSk-lgk Hkgk -- (gk I'lkSk-1) 0.~ 

then 

k - 2 ,  

(17) 

(18) 

t k = 1 ,  Uk = Vk "=" O,  Wk = gffgk ~ 0 ,  

Then, the following descent property holds: 

gTsk < O. 

If  in addition there exists Pk > 0 such that 
T 2 T 

f(Xk+,) - - f ( xk )  <- --Pk(gk Sk) /Sk Sk, 

=0. (26) 

(27) 

o r  

t2gTHkgk - 2 t u g ~ H k S k - ,  + uZsL~HkSk-,  = S[HkSk > 0, (19) 

if t • 0 or u # 0. Thus, Vk takes its maximum on a nonnull direction sk, 

T T T T 
Sk = [(gk Sk-lgk HkSk-1 -- gk gkS k-l HkSk-1)gk 

T T T T 
+ (gk gkgk HkSk-1 -- gk Sk-lgk Hkgk)Sk-1]/D, (20) 

and the descent property holds, 

gTsk T 2 T T T T = --[(gk gk) Sk-lHkSk-i  -- 2gk gkgk Sk-lgk HkSk-1 
T 2 T 

+ (gk Sk-,) gk Hkgk] /D < O, 

when g[gk  ~ O, since (19) is a positive-definite quadratic form. 
We note that (17) is satisfied if f is strictly convex on the line x = 

Xk-~ + aSk-~ at the point Xk and that (18) is satisfied if Ilk is positive definite 
and gk and Sk-~ are linearly independent. 

Before we give the new algorithms, we first establish the following 
general convergence theorem. 

Theorem 2.1. Let the line search direction be 
T T 

$'k = [ ( U k g k  S k - 1  tkgTgk)gk q- (ukgTgk ( 2 1 )  __ -- l)kg k Sk-1)Sk-1]/ Wk, 

where tk, Uk, Vk, Wk satisfy 

tk > O, Vk > 0, (22) 

1--uZ/(tkVk)>--l/(4rk),  O0> rk>0,  (23) 

(Vk/gTgk) / ( tk /STlSk--1)  <-- rk, 00> rk > 0, (24) 

W k = t k t )  k - -  bl2k, (25) 
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then if 

p k / ( l  + r2k) = ° ° ,  
k = l  

it follows that 

lira inf g r g k  = 0; 

and if 

lim inf p k / ( 1  + r~) > O, 
k ~ e o  

then we have the convergence property 

lira g [ g k  = O. 
k ~ o o  

Proof. First, by (22), (23), and (24), we can see that 

Wk > O, g [ g k  > O. 

Therefore, 

gTsk T 2 T r T 2 : = - - [ (gkgk )  tk - - 2 g k g k g k S k - l U k + ( g k & - l )  Vk]/Uk <0,  

or by (26), 

g r sk -r =" --gk gk < 0; 

thus, the descent property is proved. Secondly, since 

and 

(28) 

(29) 

(31) 

(32) 

s T s k  T t r 2 T = [(gk gk k -- gk  Sk-1Uk) gk gk 

2(g~gktk  r r T r - - gk  Sk-1Uk)(gk gkblk --  g k  Sk -1  I J k ) g k  Sk-1  

+ (g~gkUk r 2 T - - g k S k - l V k )  S k - - 1 S k - 1 ] / W  2 ,  

then comparing (30) and (31) and letting 
T T 

qk = gk Sk-1/ gk gk, 

we have 

(grsD2/srs  k 

g [ g k / [ l + ( U k  2 r r = -- Vkqk) ( S k - l S k - 1 / g k  gk -- q2k)/(tk --2Ukqk + Vkq~)2]; 

(g[Sk)2 r 2 r = [(gkgk) (gkgktk  --gkrSk-lUk) 2 
T T T T T T 

- 2gk  gkgk Sk - l (gk  gktk -- gk s k - l u k ) ( g k  gkuk -- gk Sk- lVD 

+ ( g r g k u  k r 2 r 2 2 - -gkSk - lVk )  (gkSk-1)  ] / W k ,  (30) 



134 JOTA: VOL. 69, NO. 1, APRIL 1991 

and since 

T T 
Sk- lSk -1 /gk  gk -- q~ >-- 0 

and 

(Uk -- Vkqk)2/( tk -- 2Ukqk + Vkq2k) 2 

= V2k/a(tkVk -- U2k) -- (2U 2 -- tkvk -- 2UkVkqk + V2kq2) 2 

/ [4(tkVk -- U2k)(tk -- 2Ukqk + Vkq2k) 2] 

<-- V2k/ 4(  tkVk -- U2k), (33) 

then, by (30), (31), (22), (23), and (24), we have 

T 2 T T 2 T T 2 
(gk  Sk) / Sk  Sk >--- gk  gk /[1  + VkSk- lSk- -J4gk  gk(tkVk -- Uk)] 

>- g [ g k /  (1 + rZk), (34) 

or by (26), 

(g'~'Sk)2/ s [ sk  = g T g k. (35) 

Thus, by (27) and (34) or (35), 

f ( x k + l )  -- f ( X k )  <-- - -g~gkPk/  (1 + r2k). 

By the fact that f is bounded on the bounded level set L, the series 

g~gkPk / (1  + rE) 
k = l  

is convergent. Therefore, by (28), we have 

lira inf g~gk = 0, 
k-~o~ 

and by (29), we have 

lira g r gk = O. 
k-~o~ 

This completes the proof of the theorem. [] 

3. Algorithms 

Suppose that, in the line search, 

-- -p (gg  sk) / Sk  Sk, f ( X k + t ) _ f ( X k ) <  r 2 r 

Then, the algorithms are as follows. 

p > 0 .  (36) 
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Algorithm A1. 

Step 1. Set k = 1, sl = - g l .  

Step2.  Line Search. Compute  Xk+l=Xknt 'akSk;  set k = k + l .  

Step 3. I f  gTg k < E, then stop; otherwise, go to Step 4. 

Step 4. I f  k > n > 2, go to Step 8; otherwise, go to Step 5. 

T Step 5. Let t k Sk-lHkSk-1, Vk = grHkgk,  and uk = g2HkSk-l .  

Step 6. I f  tk>0 ,  Vk>O, 1--U2k/(tkVk)>--l/(4r), and 

r t r ( v k / g k g k ) / (  k/Sk_lSk_l)<--r ,  r > 0 ,  

then go to Step 7; otherwise, go to Step 8. 

Step Z Let 

sk = [(u~glsk 1 - tkg2gk)gk + ( u~g2 gk -- v~g2Sk-~)Sk-,]/ W~, 

where Wk = tkVk -- Ugk; go to Step 2. 

Step 8. Set Xk to Xl; go to Step 1. 

Algorithm A2. Algorithm A2 is only different from Algorithm A1 in 
Step 5 in order to avoid the computat ion of  Hk and the storage of  matrices. 
Step 5 is changed as follows. 

Step 5. Let 

tk = s L l [ g k  -- f ' ( X k  -- t~Sk-1) ] /  8, 

Uk = g ff[gk - - f ' ( xk  -- 3Sk-1)]/ 6, 

Vk = gr[gk -- f ' (Xk  -- 3/gk)]/ % 

where 8 and 3' are suitably small positive numbers. 

4. Discussion on Algorithms 

First, we see that the descent property and convergence of  the two 
algorithms hold by Theorem 2.1. Secondly, the hypothesis (36) is satisfied 
if the line search is exact. When the line search is inexact, (36) holds when 
(13) with 0 <  Cl < 1 and (14) hold; for the proof,  see Ref. 5 and Ref. 8. 

Next, suppose that the Hessian -tl~/k o f f  is positive definite with condition 
number  Nk. Then, in Algorithm A1, 

( Vk/ g [ g k ) /  ( tk/ S[-lSk-1) <--- Nk, 
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by the definition of Nk, and 

1 -  u~/(t , ,vk)  >- [1 T 2 T --(gkSk-1) / (Sk-lSk-lgkgk)]/  Nk. 

If  we take r >- Nk and the angle between gk and Sk-1 > 30 °, then the conditions 
in Step 6 are satisfied. Thus, w h e n f  is a positive-definite quadratic function 
with the condition number N of the Hessian H less than r, Algorithms A1 
and A2 are equivalent to the usual conjugate gradient method with n-step 
restart when the line search is exact. 

Finally, we discuss the parameters used in the algorithms. Let r /denote 
the accuracy of the computer. That is, 77 is the smallest positive number 
such that, when 1.0+ ~7 is computed, the result is greater than 1.0. Then, 
we suggest taking 

A preliminary numerical comparison of Algorithm A2 with the Fletcher- 
Reeves method and the BFGS method indicated its relative efficiency. A 
more detailed examination of a number of different implementations of 
Algorithm A2 and comparison with other modified conjugate gradient 
methods will be reported in Part 2 of this paper (Ref. 9). 

Remark 4.1. On setting 
& _ l =  ( i _  r r gkgk/gk gk)Sk-t, (37) 

(20) simplifies to 

sk = [ ( - ~ L , H ~ _ , ) g ~  + - ~  - r (Sk-lHkgk)Sk-,]gk gk/ D, (38) 

with 
- T  - T T - 2 D = ( S k _ l H k S k _ l ) ( g g  H k g k )  -- ( g k  H k S k - l )  , ( 3 9 )  

and the numerator in (38) does not involve the term grHkgk. Consequently, 
taking 

- T  - T  - - Sk = --gk + [ (Sk-,Hkgk)/  ( Sk-,HkSk-l) ]Sk- t (40) 

saves a gradient evaluation when finite differences are used. Clearly, Sk is 
conjugate to gk-~, rather than to Sk-~. If we now let 

Hk&-, ~ [gk -- g(xk -- ~gk-,)]la = (gk -- gk)/8, (41) 

with a a suitably small number, then since gr&_l == 0, (40) becomes 

Sk = --gk -- [ ( g ~ - ( g k  - -  g k ) /  g T gk-1) ] g k - l ,  (42) 

which is a generalization of the Polak-Ribi~re formula. A disadvantage is 
that the Sk given by (40) is not now scaled to give the minimizer of the 
Newton approximation, with a steplength of 1, as is the Sk given by (20). 
A new algorithm, based on (40), has been formulated and preliminary 
numerical tests are very encouraging. We hope to report on the details later. 
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