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Dynamic Programming and Parallel Computers 1 

J. CASTIfi M .  RICHARDSON, a AND R.  LARSON 4 

Communicated by R. E. Kalaba 

Abstract.  The computational theory of dynamic programming 
is examined from the viewpoint of parallel computation. A discussion 
of various forms of parallelism, the corresponding parallel algorithms, 
the applicability of the algorithms to different types of optimization 
problems, and their advantages over serial computation is presented. 
In addition, parallel aspects of various dimension'~ity reduction 
techniques such as state increment dynamic programming, successive 
approximations, and shift vectors are also given. 

I.  I n t r o d u c t i o n  

It is well known that dynamic programming is a powerful technique 
for solving large classes of optimization problems under very general 
conditions. However, from a computational point of view, the method is 
somewhat limited by the large computational requirements of the 
algorithm used on present-day serial machines. 

The  parallel processing computer, which is presently under develop- 
ment in this country (Ref. 1), could greatly reduce the computer time 
and memory required for solving large-scale optimization problems by 
dynamic programming, since there are a number of parallel operations 
that occur in the evaluation of the dynamic programming recursive 
formula. 

A discussion of various forms of parallelism, the corresponding 
parallel algorithms, the algorithms' applicability to different types of 
problems, and their advantages over serial methods is given in this paper. 
In addition, discussions of parallelism for state increment dynamic 
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programming (Ref. 2), for the shift vector method (Ref. 3), and for a 
successive approximations method (Ref. 4) are also given. 

We are interested in solving the following N-stage decision problem 
whose constituents are: (a) an interval over which the decisions are to 
be made, each decision at stage i; ( b ) a  state variable x~ character- 
izing the system at any stage of the decision process; (c) a transition 
function f / re la t ing  a state and decision u i at a stage to a state at a future 
stage, usually the succeeding one, i.e., xi+ 1 = f i ( x i ,  ui); (d) a criterion 
function giving the cost of making a particular decision at a given state 
and stage, gi (x i ,  u¢), along with a rule for computing overall cost, e.g., 

N 
Y~i=lgi(x~, u~); and (e) possible constraints upon states and/or decisions 
at different stages. 

The  optimization problem that  we wish to solve can be stated as 
follows: F ind  a policy (u 1 ,..., UN) and corresponding trajectory (x 1 ,..., xN) 
which minimize 

N 

Z (1-1) 
i=1  

subject to the constraints 

xi+~ = fz(x~, u~), i = 1,..., N -- 1, (1-2) 

xi ~ X i ,  u i E L~, fi: X i  × Ui --* X~+I, g~: X i × ~ -+ R, (1-3) 

where at stage i, X~ is the allowable state set, U~ is the set of admissible 
decisions, and R is the real line. 

Large classes of deterministic and stochastic problems, in such areas 
as nonlinear programming, optimal control, network flow, and com- 
binatorial theory can be formulated in the above framework. 

The  dynamic programming algorithm is a simple computational 
process which, in general, involves the following two computational 
steps. 

(a) Evaluation of an optimal value function V at a suitable number  
of state values at each stage. The  function V i is defined to be 

Vi(xi) = min ~ g~(xj, uj , x i e X i ,  i = 1,... N, (2-1) 
U i ' ' " ' U N - - 1  d=l  

VN+a(xN+~) .... 0, i = N, N -  t,..., 1. (2-2) 

The  principle of  optimality (Ref. 5) allows us to evaluate the optimal value 
function reeursively by the relation 

V~(x~) == min [gi(x~ u~) + V~+~(f~(x~ u~))], i = 1, 2,..., N. (3) 
u i E g  i ~ 
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The optimal feedback decision ,~ti(x~) is the argument which minimizes 
the r.h.s, of the above formula. 

(b) Trace back recovery of an optimal solution starting at optimal 
initial state 41, where ~1 is determined as 

Starting with the optimal decision z/1(~1), the optimal policy and trajectory 
are then recursively determined, using the equation xi+l =: f i (xi ,  ui(~i)) - 

Oftentimes, especially in control problems, a feedback solution is 
desired, which simply means that, given any state of the process, an 
optimum decision is desired which minimizes the objective of the problem 
at that point. This is obtained via dynamic programming by performing 
computational step (a) alone. 

For computational purposes, the sets Xi ,  Ui are assumed to be 
finite; in cases where they are infinite, the state and decision variables 
are quantized to a finite number of values. Consequently, if the state is a 
vector and each component has the same number of quantized values 
(QS), then the total number of quantized states at a given stage is (OS) n, 
where n is the dimension of the vector. Likewise for decisions, assuming 
equal quantization of all components, the total number of quantized 
decisions at a state is (OD) m, where O D is the number of quantized 
values of each component and m is the dimension of the decision 
vector. 

The solution of Eq. (3), referred to as Belhnan's equation or the 
dynamic programming formula, is by far the most time-consuming 
part of the dynamic programming computations. The approximate 
computation time r is 

N 
7 = 2 (At)(QDiy'(9S') ~% 

i = l  

where At is the time to solve Eq. (3) once (at one state using one decision 
choice), rn i is the number of components in decision vector at stage i, 
n~ is the number of components in state vector at stage i, QD, is the 
number of quantized decision choices per component at stage i, and 
OSi is the number of quantized state values per component at stage i. 

Note the exponential growth of the computing time with both the 
number of states and number of decisions. Growth due to either or both 
of these factors can be reduced or eliminated by the parallel computation 
schemes to be discussed in the next section. 

8o9]I2/4-7 
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2. Cha rac t e r i s t i c s  of  a Pa ra l l e l  C o m p u t e r  

Before turning to the algorithms, let us briefly describe what we 
mean by a parallel computer. For our purposes, a machine with the 
following characteristics is needed. 

It is capable of processing many data streams simultaneously-, using 
the same instruction stream. We assume that is is made up of a set of 
processing elements (PEs), each having the capability of executing 
logical and arithmetic instructions. The PEs are controlled by the 
central processing unit (CPU) which broadcasts the same sequence of 
instructions to all PEs. 

Each PE is connected to its own rapid access memory and also to at 
least two of its nearest neighbors with which it is able to communicate. 
Figure 1 illustrates this overall desired architecture. 

The ILLIAC IV machine at the NASA Ames Research Center 
(Ref. 1) has the above characteristics, with 64 PEs. However, since it is 
being designed as a general purpose machine, it is a great deal more 
complex than is necessary for execution of the algorithms to be described 
here. 

3. Pa ra l l e l  S ta tes ,  Decisions, and Stages Algorithms 

Evaluation of the optimal value function at all states and stages 
generally involves three nested interative loops, as follows: (a) iterate 
over all stages; (b) iterate over all stages at a stage; (c) iterate over all 

! 

Fig. 1. Parallel computer architecture. 
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Fig. 2. Schematic diagram of parallel states algorithm. 

decisions; evaluate r.h.s, of iterative formula (3) using one decision, 5 
compare answer with previous value, and save minimum. 

The following algorithms each eliminate one of the above loops. 

3.1. Para l le l  Sta tes .  If the number of processing elements in a 
parallel machine is equal to or greater than (QSi)  ~ for each i, then each 
PE can do the computations for one quantized state value. Hence, all the 
computations at one stage are done in parallel by the following procedure. 

(i) Compute r.h.s, of Eq. (3) using Vi+ 1 stored in PE, and save. 

(ii) Route Vi+ 1 to neighboring PE as shown in Fig. 2. 

(iii) Compute second value of r.h.s, of Eq. (3) using new Vi+ ~ and 
compare answer with result of Step (i), saving the minimum. 

(iv) Return to Step (ii) and repeat procedure for all admissible 
quantized values of the decision variable. 

5 r.h.s, refers to the quantity in backers on the right-hand side of the recursive formuIa. 
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Note that Vi(xi) is evaluated in parallel at all states x / during L 
evaluations, comparisons, and storage of minimum r.h.s, of the recursive 
formula, with L routes of stored values Vi+l(Xi+l) in between. 

Depending on the form of the state transition function [Eq. (1)], if 
a given quantized state x i and decision u~ does not yield a quantized 
next state xl+ 1 , then one of the following schemes can be used, depending 
on the problem being solved: (a) interpolation between two surrounding 
values of Vi+l(Xi+l) to obtain the proper Vi+l(Xi+l); (b) interpolation 
between successive decision values to obtain proper quantized next 
state x~+l; and (c) round off to the next higher or lower quantized state 
value. 

3.2. Pa ra l l e l  Decisions.  If the number of processing elements 
in a parallel machine is equal to or greater than (QD,) ~, for each i, then 
the optimum decision at each quantized state can be found efficiently by 
the following parallel scheme. 

(i) Each PE computes r.h.s, of Eq. (3) for one value of the decision 
variable, all at the same state value, as shown in Fig. 3. 

(ii) The optimum decision for that state is then found by the 
binary route and comparison routine depicted in Fig. 4. Each PE performs 
routes of -+-1, +2 ,  - /4 , . .  PEs with a comparison and storage of the 
minimum performance after each routing. When m routes and compari- 
sons have been made, each PE has the optimum performance Vi(xi) 
and corresponding decision stored in it. 

V±(x±) 

Vi+l(X(N)) 
e 
e 
e • • 

PE #i 

o~.~,~• ~ *O Vi+llX(3)) 
" ~. vi+l(~(2)) 

e ~ 4 ~  Vi+l(X(1)) 
e 

Fig. 3. 

k+l 
STAGES ~- 

Parallel decisions algorithm. 
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PE# 1 2 3 4 5 6 7 8 

No. of comparisons = m, L _ (2) m 

Routes of i, 2, 4, 8,...(2) m-I PEs 

Fig. 4. Binary  min imiza t ion  procedure .  

~- MIN 

(iii) The computation iterates over all states and stages using 
Steps (i) and (ii). 

3.3. C o m p a r i s o n  wi th  the Ser ia l  A l g o r i t h m .  It is very easy 
to make comparisons between the previous two algorithms and straight- 
forward serial computation, since in one case the state loop was 
eliminated, and in the other the decision loop was eliminated. Figures 5-6 
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Fig. 5. Parallel states t ime  savings.  
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Fig. 6. Parallel decisions time savings. 

illustrate the time savings of the parallel schemes over serial computation. 
In both cases, the actual position of the curves is governed by the amount 
of time necessary to route information between PEs. In the case of 
parallel states, this amount of overhead simply grows linearly with the 
number of states. In the parallel decisions scheme, the overhead 
computation is a function of log2 (number of decisions) and, hence, 
diminishes the efficiency of the parallel algorithm more for a small 
number of decisions than for a large number. 

4. Pa ra l l e l  Stages a n d  Sta tes  

Replacement of the stage loop in the evaluation of the recursive 
formula is not as straightforward as the state and decisions loops. 
However, in certain special cases, the following parallel stages and states 
algorithm may quickly converge to an optimal solution. The required 
number of PEs is equal to the product of the number of states at a stage 
times the number of stages. Figure 7 shows the layout of PEs, each PE 
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Fig. 7. Parallel stages and states. 

corresponding to one quantized state at a stage. Each PE is connected 
to its neighbors to which possible state transitions might take place. 
The algorithm executes the following steps. 

(i) Each PE is given a nominal optimal value function Vi(xi) to 
start computations. 

(ii) Each PE computes the index of one of its neighbors using a 
quantized decision choice. 

(iii) Each PE retrieves the nominal Vi(xi) from the proper neighbor 
chosen in Step (ii). 

(iv) Each PE computes an updated value of its own nominal Vi(xi) 
using the r.h.s, of Eq. (3), compares the answer with the previously 
stored value, and retains the minimum value. 

(v) Return to Step (ii), at least until all decisions are used once, 
and until the difference between successive stored values of Vi(xi) is 
small. 

Convergence of the above algorithm to an optimum at all states and 
stages is guaranteed in at most N cycles through the decision choices. In 
that time, the optimum answers will have passed from stage N down to 
stage 1. With well-chosen starting values, convergence may be expected 
to occur much sooner (Ref. 2). 

An example of another approach to the parallel stages algorithm is 
given in Ref. 6, where a multistage allocation problem is treated. 
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5. Paral le l i sm with Shift  Vectors 

Any process with scalar input that can be represented by the 
following nth-order difference equation (discretized nth-order differential 
equation): 

Xi+ n = f i ( X i + n _  1 . . . .  , X i + I ,  X i ,  g i ) ,  

may also be written in the equivalent shift vector form (Ref. 3) 

1 Xi+ 1 : Xi2~ 

2 
Xi+ 1 .... Xi8 

X n 
i + I  .... f / ( x i l ,  " ' ' ,  Xi n, Ui), 

where the entire shift vector is x i = col(xil,..., xin) .  

The advantage of using shift vectors with dynamic programming is 
that the usual n-dimensional problem is reduced to a number  of parallel 
one-dimensional problems. Figure 8 illustrates this for a two-dimensional 
state. T h  shift vector equations are 

X 1 i+1 z X i 2  

x 2 u/), i = 1, 2,..., n. i+1 ~ f i ( x i  1, Xi ~, 

Thus ,  for any fixed value of xt 2, the value of xi+ 11  is fixed and consequently 
all transitions from the line xi 2 = C lie along the line xi+11 = C, C a 
constant. Therefore, to solve Eq. (3) along any line at stage i, only the 
stored data along its corresponding line at stage i + 1 is needed in high 
speed memory. Furthermore, all parallel lines at stage i, corresponding 

x 2 x 2 

t I 
STAGE i 

F i g .  8. 

~ x I 

STAGE i+l 

A d m i s s i b l e  s t a t e  t r a n s i t i o n s ,  t w o - d i m e n s i o n a l  c a s e .  

1 
- - q n , - -  x 
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Fig .  9. P a r a l l e l  t w o - d i m e n s i o n a I  case .  
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I 
xl+ 1 

to all quantized values of xi ~, can be processed simultaneously. Figure 9 
depicts this scheme. The  same is true for the n-dimensional case except 
that a PE is needed for each value of the quantized vector (xi2,..., xi~), 
as shown in Fig. 10. 

Hence, given a parallel processor with (QS) ~-1 PEs, the computation 
time necessary to solve an n-dimensional problem using shift vectors is 

x +i 

FIXED i Xi+l x3 i 

n - 1  n 
xi+ 1 x i 

VARIABLE 

Fig .  10. 

FIXED FOR EACH PE 

Xi+l l l' xi''''' i' i ) 

VARIABLE IN EVERY PE 

R e q u i r e d  P E s  = ( Q S )  *~-1 f o r  p a r a l l e l  s o l u t i o n  in 

n - d i m e n s i o n a l  case .  
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the same as the time for solving a scalar state problem with the same 
quantization, plus the slight additional time needed to transpose the 
stored answers between stages. 

6. S ta te  I n c r e m e n t  D y n a m i c  P r o g r a m m i n g  in Para l le l  

The state increment dynamic programming method developed 
by Larson (Ref. 2) applies to continuous time systems which are 
discretized in time. The system dynamics are assumed to be described by 
the difference equation 

x(t + ~t) = x(t) + f ( x ,  u, t) ~t, 

where 3t is the time interval over which the decision variable u(t) is held 
constant. We wish to minimize a performance integral over a fixed time 
interval (to, tl) , that is, 6 

J:i' minimize g(x, u, t) dt. 

The dynamic programming recursive formula for obtaining the 
feedback solution is (Ref. 2) 

V(x, t) ~- m~n[g(x, u, t) ~t + V(x + f (x ,  u, t) 3t, t + 3t)], (4) 

with starting condition V(x, tt) =~ O, where the optimal value function V 
is defined as 

~f 
V(x, t) --: min ( g(x, u, t) dr. 

U J, 

The state increment procedure is similar to the previously described 
finite-dimensional methods in that Eq. (4) is solved at a finite number 
of quantized state values and also at specific stages, determined by 
choosing a fixed time increment At and quantizing the time axis. Using 
the state increment method, however, the optimal value function g(x ,  t) 
at a point is evaluated by considering just its nearest neighbors, as shown 
in Fig. t l .  The neighbors are defined as those which are one state 
increment away (plus or minus) from the state value in question. 

In order to solve Eq. (4), the time increment 8t is allowed to vary 
until either one increment of change takes place in one of the components 

6 W i t h  the  discret izat ion in t ime,  this  integral  is equiva lent  to a finite s u m  of  cons tan t  
pe r fo rmance  values over all t ime  intervals.  
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~--- 6t (i) ~I 
x + A x  o-  

x , ~  'ii 

x - Ax • 1 

t t+gt 
l~'ig. 11. Computation at a state using its nearest neighbors. 

of the state, using a particular quantized decision value, or until 3t = At. 
This is signified by the formula 

3t(j) = min [1Ax ~ I f~(x, u(j), t)], At]. (5) 
i=l,..,,n 

Hence, all candidate r.h.s.'s of Eq. (4) can be evaluated by interpolating 
between values of V(x, t) stored at the nearest neighbors. 

The state increment method can be used within the parallel stages 
and states algorithm, which was previously described. The advantage of 
using the state increment method is that far fewer connections and data 
transfers between PEa are necessary. The necessary communication is 
illustrated in Fig. 12. 

7. Successive Approximat ion 

Larson and Korsak have developed an iterative technique, originally 
described in Ref. 7, which greatly alleviates storage problems caused by 

PE(j+I) 

STAGES PE (j) 

® P~ (j+ra+l) 

Fig. 12. 

~ • PE(j+m) 

PE(j-I) I ~ " ~ ~  e PE(j+m~I) 

i i+l 
STAGES -- ~- 

Communication links for state increment dynamic 
programming in parallel. 
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(QSi) n~, that is, the dimensionality and quantization of the state vector. 
This method works best when the state equations are decoupled to some 
degree, but this requirement is not necessary. The algorithm successively 
solves lower-dimensional problems and, thus, improves the value of the 
performance by optimizing with respect to one or a small number of 
decision variables at a time. This procedure can be carried out in parallel 
by allowing each PE to optimize with respect to one decision variable or 
group of decision variables (U1,..., Urn). Figure 13 shows the overall 
computational process. 

The lower-dimensional subproblem which is solved by PEj. is 
defined as 

N 
min ~ hi(xi j, uiJ), 
{u j} i=~ 

where 

J = f . J ( X  .1 o " " 

X 1 = C,  x i  j ~ X ~, ui j c U j. 

t 
PE #I OPT. 
PROGRAM FOR 
GROUP U 1 

INITIAL NOMINAL 
TRAJECTORY 

¢ 
STORAGE OF ] 

COMPLETE TRAJECTORY 

1 
PROGRAM FOR • • • 
GROUP U 2 

t 
PE #m OPT. 

PROGRAM FOR 
GROUP U TM 

i OPT. PERFORMANCE 
WITH NEW NOMINAL 

YES NO 

Fig. 13. Flowchart for successive approximations in parallel. 
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Here, the sequences {xi k, i = 1, 2,..., N, k =~ j} are fixed, which imposes 
n -- 1 constraints on the sequence {ui l~, k =/= j}, that is, 

-? = ~ i ( { x ? } ) ,  

k -- r krx 1 uil~), k 4= j. Xi+l - -  J i k i ~ ' " ~  )~i'rt~ 

Also, the functions {hi} are determined from the original functions {gi} 
by fixing the sequences {xi k, k ~/~ j}. 

8. Discuss ion  

A number of alternatives for the use of parallel processors to solve 
dynamic programming problems have been presented. It may seem that 
some of the algorithms proposed require a number of PEs well in excess 
of any machine currently being developed or even being considered for 
development. However, this objection is resolved when we consider that 
the types of computational processes under consideration do not require 
the flexibility of a general purpose computer. A machine such as 
ILLIAC IV has very powerful PEs from a computational viewpoint, but 
it would be of limited value in this application because it has only 64 PEs. 
However, it is certainly feasible, and welt within the realm of current 
electronic technology, to consider constructing special-purpose com~ 
puters with thousands or even millions of primitive PEs whose only 
purpose would be to deal with important subclasses of the problems 
presented above. 

In closing, we remark that, when faced with a specific problem, the 
proper choice of algorithm is generally not at all clear. Whether to use 
parallel states, decisions, stages, or a combination of these methods is 
highly dependent upon the problem and the computational resources 
available. It is unreasonable to expect a uniform rule for algorithm 
selection which would apply to all cases, although experience will 
undoubtedly supply several rules-of-thumb. The determination of these 
rules, as well as the investigation of related areas such as quasilineariza- 
tion, invariant imbedding, etc., will be reported in subsequent papers. 
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