
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 12, No. 4, 1973

Dynamic Programming and Parallel Computers 1

J. CASTIfi M . RICHARDSON, a AND R. LARSON 4

Communicated by R. E. Kalaba

Abstract. The computational theory of dynamic programming
is examined from the viewpoint of parallel computation. A discussion
of various forms of parallelism, the corresponding parallel algorithms,
the applicability of the algorithms to different types of optimization
problems, and their advantages over serial computation is presented.
In addition, parallel aspects of various dimension'~ity reduction
techniques such as state increment dynamic programming, successive
approximations, and shift vectors are also given.

I. I n t r o d u c t i o n

It is well known that dynamic programming is a powerful technique
for solving large classes of optimization problems under very general
conditions. However, from a computational point of view, the method is
somewhat limited by the large computational requirements of the
algorithm used on present-day serial machines.

The parallel processing computer, which is presently under develop-
ment in this country (Ref. 1), could greatly reduce the computer time
and memory required for solving large-scale optimization problems by
dynamic programming, since there are a number of parallel operations
that occur in the evaluation of the dynamic programming recursive
formula.

A discussion of various forms of parallelism, the corresponding
parallel algorithms, the algorithms' applicability to different types of
problems, and their advantages over serial methods is given in this paper.
In addition, discussions of parallelism for state increment dynamic

1 T h i s research was suppor t ed by the Air Force Office o f Scientific Research, Con t r ac t
No. F44620-70-C-0084.

2 Senior Research Mathemat ic i an , Sys t ems Control , Palo Alto, California.
3 Research Engineer , Sys t ems Control , Pato Alto, Ca!ifornia.
4 Vice-President , Techn ica l Operat ions , Sys tems Control , Palo Alto, Ca]ifornia.

423
© 1973 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. I00I 1.

424 JOTA: VOL. 12, NO. 4, 1973

programming (Ref. 2), for the shift vector method (Ref. 3), and for a
successive approximations method (Ref. 4) are also given.

We are interested in solving the following N-stage decision problem
whose constituents are: (a) an interval over which the decisions are to
be made, each decision at stage i; (b) a state variable x~ character-
izing the system at any stage of the decision process; (c) a transition
function f / re la t ing a state and decision u i at a stage to a state at a future
stage, usually the succeeding one, i.e., xi+ 1 = f i (x i , ui); (d) a criterion
function giving the cost of making a particular decision at a given state
and stage, gi (x i , u¢), along with a rule for computing overall cost, e.g.,

N
Y~i=lgi(x~, u~); and (e) possible constraints upon states and/or decisions
at different stages.

The optimization problem that we wish to solve can be stated as
follows: F ind a policy (u 1 ,..., UN) and corresponding trajectory (x 1 ,..., xN)
which minimize

N

Z (1-1)
i=1

subject to the constraints

xi+~ = fz(x~, u~), i = 1,..., N -- 1, (1-2)

xi ~ X i , u i E L~, fi: X i × Ui --* X~+I, g~: X i × ~ -+ R, (1-3)

where at stage i, X~ is the allowable state set, U~ is the set of admissible
decisions, and R is the real line.

Large classes of deterministic and stochastic problems, in such areas
as nonlinear programming, optimal control, network flow, and com-
binatorial theory can be formulated in the above framework.

The dynamic programming algorithm is a simple computational
process which, in general, involves the following two computational
steps.

(a) Evaluation of an optimal value function V at a suitable number
of state values at each stage. The function V i is defined to be

Vi(xi) = min ~ g~(xj, uj , x i e X i , i = 1,... N, (2-1)
U i ' ' " ' U N - - 1 d=l

VN+a(xN+~) 0, i = N, N - t,..., 1. (2-2)

The principle of optimality (Ref. 5) allows us to evaluate the optimal value
function reeursively by the relation

V~(x~) == min [gi(x~ u~) + V~+~(f~(x~ u~))], i = 1, 2,..., N. (3)
u i E g i ~

JOTA: VOL. 12, NO. 4, 1973 425

The optimal feedback decision ,~ti(x~) is the argument which minimizes
the r.h.s, of the above formula.

(b) Trace back recovery of an optimal solution starting at optimal
initial state 41, where ~1 is determined as

Starting with the optimal decision z/1(~1), the optimal policy and trajectory
are then recursively determined, using the equation xi+l =: f i (xi , ui(~i)) -

Oftentimes, especially in control problems, a feedback solution is
desired, which simply means that, given any state of the process, an
optimum decision is desired which minimizes the objective of the problem
at that point. This is obtained via dynamic programming by performing
computational step (a) alone.

For computational purposes, the sets Xi , Ui are assumed to be
finite; in cases where they are infinite, the state and decision variables
are quantized to a finite number of values. Consequently, if the state is a
vector and each component has the same number of quantized values
(QS), then the total number of quantized states at a given stage is (OS) n,
where n is the dimension of the vector. Likewise for decisions, assuming
equal quantization of all components, the total number of quantized
decisions at a state is (OD) m, where O D is the number of quantized
values of each component and m is the dimension of the decision
vector.

The solution of Eq. (3), referred to as Belhnan's equation or the
dynamic programming formula, is by far the most time-consuming
part of the dynamic programming computations. The approximate
computation time r is

N
7 = 2 (At)(QDiy'(9S') ~%

i = l

where At is the time to solve Eq. (3) once (at one state using one decision
choice), rn i is the number of components in decision vector at stage i,
n~ is the number of components in state vector at stage i, QD, is the
number of quantized decision choices per component at stage i, and
OSi is the number of quantized state values per component at stage i.

Note the exponential growth of the computing time with both the
number of states and number of decisions. Growth due to either or both
of these factors can be reduced or eliminated by the parallel computation
schemes to be discussed in the next section.

8o9]I2/4-7

426 JOTA: VOL. 12, NO. 4, 1973

2. Cha rac t e r i s t i c s of a Pa ra l l e l C o m p u t e r

Before turning to the algorithms, let us briefly describe what we
mean by a parallel computer. For our purposes, a machine with the
following characteristics is needed.

It is capable of processing many data streams simultaneously-, using
the same instruction stream. We assume that is is made up of a set of
processing elements (PEs), each having the capability of executing
logical and arithmetic instructions. The PEs are controlled by the
central processing unit (CPU) which broadcasts the same sequence of
instructions to all PEs.

Each PE is connected to its own rapid access memory and also to at
least two of its nearest neighbors with which it is able to communicate.
Figure 1 illustrates this overall desired architecture.

The ILLIAC IV machine at the NASA Ames Research Center
(Ref. 1) has the above characteristics, with 64 PEs. However, since it is
being designed as a general purpose machine, it is a great deal more
complex than is necessary for execution of the algorithms to be described
here.

3. Pa ra l l e l S ta tes , Decisions, and Stages Algorithms

Evaluation of the optimal value function at all states and stages
generally involves three nested interative loops, as follows: (a) iterate
over all stages; (b) iterate over all stages at a stage; (c) iterate over all

!

Fig. 1. Parallel computer architecture.

JOTA: VOL. 12, NO. 4, 1973 427

PE ~L i
|

I

V±(x(L)),

~fii(x(L))

PE #2 [vi(x(2)),
i ~ ~i(x(2))

ira-

f PE #i j Vi(x)),_

I~ ~ ai(x(1))
[

vi+ 1 (x(L)),

ai+l(x(L))

vi+l(x(1)) ,
o o ®

at+ 1 (x(1))

STAGES

£+I

STORED ANSWERS

Fig. 2. Schematic diagram of parallel states algorithm.

decisions; evaluate r.h.s, of iterative formula (3) using one decision, 5
compare answer with previous value, and save minimum.

The following algorithms each eliminate one of the above loops.

3.1. Para l le l Sta tes . If the number of processing elements in a
parallel machine is equal to or greater than (QSi) ~ for each i, then each
PE can do the computations for one quantized state value. Hence, all the
computations at one stage are done in parallel by the following procedure.

(i) Compute r.h.s, of Eq. (3) using Vi+ 1 stored in PE, and save.

(ii) Route Vi+ 1 to neighboring PE as shown in Fig. 2.

(iii) Compute second value of r.h.s, of Eq. (3) using new Vi+ ~ and
compare answer with result of Step (i), saving the minimum.

(iv) Return to Step (ii) and repeat procedure for all admissible
quantized values of the decision variable.

5 r.h.s, refers to the quantity in backers on the right-hand side of the recursive formuIa.

428 JOTA: VOL. 12, NO. 4, 1973

Note that Vi(xi) is evaluated in parallel at all states x / during L
evaluations, comparisons, and storage of minimum r.h.s, of the recursive
formula, with L routes of stored values Vi+l(Xi+l) in between.

Depending on the form of the state transition function [Eq. (1)], if
a given quantized state x i and decision u~ does not yield a quantized
next state xl+ 1 , then one of the following schemes can be used, depending
on the problem being solved: (a) interpolation between two surrounding
values of Vi+l(Xi+l) to obtain the proper Vi+l(Xi+l); (b) interpolation
between successive decision values to obtain proper quantized next
state x~+l; and (c) round off to the next higher or lower quantized state
value.

3.2. Pa ra l l e l Decisions. If the number of processing elements
in a parallel machine is equal to or greater than (QD,) ~, for each i, then
the optimum decision at each quantized state can be found efficiently by
the following parallel scheme.

(i) Each PE computes r.h.s, of Eq. (3) for one value of the decision
variable, all at the same state value, as shown in Fig. 3.

(ii) The optimum decision for that state is then found by the
binary route and comparison routine depicted in Fig. 4. Each PE performs
routes of -+-1, +2 , - /4 , . . PEs with a comparison and storage of the
minimum performance after each routing. When m routes and compari-
sons have been made, each PE has the optimum performance Vi(xi)
and corresponding decision stored in it.

V±(x±)

Vi+l(X(N))
e
e
e • •

PE #i

o~.~,~• ~ *O Vi+llX(3))
" ~. vi+l(~(2))

e ~ 4 ~ Vi+l(X(1))
e

Fig. 3.

k+l
STAGES ~-

Parallel decisions algorithm.

JOTA: VOL. 12, NO, 4, 1973 429

PE# 1 2 3 4 5 6 7 8

No. of comparisons = m, L _ (2) m

Routes of i, 2, 4, 8,...(2) m-I PEs

Fig. 4. Binary min imiza t ion procedure .

~- MIN

(iii) The computation iterates over all states and stages using
Steps (i) and (ii).

3.3. C o m p a r i s o n wi th the Ser ia l A l g o r i t h m . It is very easy
to make comparisons between the previous two algorithms and straight-
forward serial computation, since in one case the state loop was
eliminated, and in the other the decision loop was eliminated. Figures 5-6

I00 "

80

60

40

20

N = # PEs = # States

t TSER N 2 _ /

(Time to Route) W* /
= / Time to Evaluate~ / /
~ Reeursive Formula] / /

20 40 60 80 I00

N

Fig. 5. Parallel states t ime savings.

430 JOTA: VOL. 12, NO. 4, 1973

i00

M = PEs = # Decisions

80

60-

40-

20"

TSER M

8 = Time t O ROute /
•Time to Evaluate ~ / /

1 I I 1 *
20 40 60 80 i I00

M

Fig. 6. Parallel decisions time savings.

illustrate the time savings of the parallel schemes over serial computation.
In both cases, the actual position of the curves is governed by the amount
of time necessary to route information between PEs. In the case of
parallel states, this amount of overhead simply grows linearly with the
number of states. In the parallel decisions scheme, the overhead
computation is a function of log2 (number of decisions) and, hence,
diminishes the efficiency of the parallel algorithm more for a small
number of decisions than for a large number.

4. Pa ra l l e l Stages a n d Sta tes

Replacement of the stage loop in the evaluation of the recursive
formula is not as straightforward as the state and decisions loops.
However, in certain special cases, the following parallel stages and states
algorithm may quickly converge to an optimal solution. The required
number of PEs is equal to the product of the number of states at a stage
times the number of stages. Figure 7 shows the layout of PEs, each PE

JOTA: VOL. 12, NO. 4, 1973 431

x (m)

x(2)

x(~)

• • o e o

• •

I I I - - +
1 2 e • • N-I ~ STAGES

Fig. 7. Parallel stages and states.

corresponding to one quantized state at a stage. Each PE is connected
to its neighbors to which possible state transitions might take place.
The algorithm executes the following steps.

(i) Each PE is given a nominal optimal value function Vi(xi) to
start computations.

(ii) Each PE computes the index of one of its neighbors using a
quantized decision choice.

(iii) Each PE retrieves the nominal Vi(xi) from the proper neighbor
chosen in Step (ii).

(iv) Each PE computes an updated value of its own nominal Vi(xi)
using the r.h.s, of Eq. (3), compares the answer with the previously
stored value, and retains the minimum value.

(v) Return to Step (ii), at least until all decisions are used once,
and until the difference between successive stored values of Vi(xi) is
small.

Convergence of the above algorithm to an optimum at all states and
stages is guaranteed in at most N cycles through the decision choices. In
that time, the optimum answers will have passed from stage N down to
stage 1. With well-chosen starting values, convergence may be expected
to occur much sooner (Ref. 2).

An example of another approach to the parallel stages algorithm is
given in Ref. 6, where a multistage allocation problem is treated.

432 J O T A : V O L . t 2 , N O . 4, 1973

5. Paral le l i sm with Shift Vectors

Any process with scalar input that can be represented by the
following nth-order difference equation (discretized nth-order differential
equation):

Xi+ n = f i (X i + n _ 1 , X i + I , X i , g i) ,

may also be written in the equivalent shift vector form (Ref. 3)

1 Xi+ 1 : Xi2~

2
Xi+ 1 Xi8

X n
i + I f / (x i l , " ' ' , Xi n, Ui),

where the entire shift vector is x i = col(xil,..., xin) .

The advantage of using shift vectors with dynamic programming is
that the usual n-dimensional problem is reduced to a number of parallel
one-dimensional problems. Figure 8 illustrates this for a two-dimensional
state. T h shift vector equations are

X 1 i+1 z X i 2

x 2 u/), i = 1, 2,..., n. i+1 ~ f i (x i 1, Xi ~,

Thus , for any fixed value of xt 2, the value of xi+ 11 is fixed and consequently
all transitions from the line xi 2 = C lie along the line xi+11 = C, C a
constant. Therefore, to solve Eq. (3) along any line at stage i, only the
stored data along its corresponding line at stage i + 1 is needed in high
speed memory. Furthermore, all parallel lines at stage i, corresponding

x 2 x 2

t I
STAGE i

F i g . 8.

~ x I

STAGE i+l

A d m i s s i b l e s t a t e t r a n s i t i o n s , t w o - d i m e n s i o n a l c a s e .

1
- - q n , - - x

JOTA: VOL. 12, NO. 4, 1973 433

2
x i

PE #L

PE #j

PE #i

__ %------~

F
LJ

PE #j

2 io
x i + l

i

i o

i o

I

~ / STORAGE

"1
J

Fig . 9. P a r a l l e l t w o - d i m e n s i o n a I case .

PE #L

---T-

I
xl+ 1

to all quantized values of xi ~, can be processed simultaneously. Figure 9
depicts this scheme. The same is true for the n-dimensional case except
that a PE is needed for each value of the quantized vector (xi2,..., xi~),
as shown in Fig. 10.

Hence, given a parallel processor with (QS) ~-1 PEs, the computation
time necessary to solve an n-dimensional problem using shift vectors is

x +i

FIXED i Xi+l x3 i

n - 1 n
xi+ 1 x i

VARIABLE

Fig . 10.

FIXED FOR EACH PE

Xi+l l l' xi''''' i' i)

VARIABLE IN EVERY PE

R e q u i r e d P E s = (Q S) *~-1 f o r p a r a l l e l s o l u t i o n in

n - d i m e n s i o n a l case .

434 J O T A : V O L . 12, N O . 4, 1973

the same as the time for solving a scalar state problem with the same
quantization, plus the slight additional time needed to transpose the
stored answers between stages.

6. S ta te I n c r e m e n t D y n a m i c P r o g r a m m i n g in Para l le l

The state increment dynamic programming method developed
by Larson (Ref. 2) applies to continuous time systems which are
discretized in time. The system dynamics are assumed to be described by
the difference equation

x(t + ~t) = x(t) + f (x , u, t) ~t,

where 3t is the time interval over which the decision variable u(t) is held
constant. We wish to minimize a performance integral over a fixed time
interval (to, tl) , that is, 6

J:i' minimize g(x, u, t) dt.

The dynamic programming recursive formula for obtaining the
feedback solution is (Ref. 2)

V(x, t) ~- m~n[g(x, u, t) ~t + V(x + f (x , u, t) 3t, t + 3t)], (4)

with starting condition V(x, tt) =~ O, where the optimal value function V
is defined as

~f
V(x, t) --: min (g(x, u, t) dr.

U J,

The state increment procedure is similar to the previously described
finite-dimensional methods in that Eq. (4) is solved at a finite number
of quantized state values and also at specific stages, determined by
choosing a fixed time increment At and quantizing the time axis. Using
the state increment method, however, the optimal value function g(x , t)
at a point is evaluated by considering just its nearest neighbors, as shown
in Fig. t l . The neighbors are defined as those which are one state
increment away (plus or minus) from the state value in question.

In order to solve Eq. (4), the time increment 8t is allowed to vary
until either one increment of change takes place in one of the components

6 W i t h the discret izat ion in t ime, this integral is equiva lent to a finite s u m of cons tan t
pe r fo rmance values over all t ime intervals.

JOTA: VOL. 12, NO. 4, 1973 435

~--- 6t (i) ~I
x + A x o-

x , ~ 'ii

x - Ax • 1

t t+gt
l~'ig. 11. Computation at a state using its nearest neighbors.

of the state, using a particular quantized decision value, or until 3t = At.
This is signified by the formula

3t(j) = min [1Ax ~ I f~(x, u(j), t)], At]. (5)
i=l,..,,n

Hence, all candidate r.h.s.'s of Eq. (4) can be evaluated by interpolating
between values of V(x, t) stored at the nearest neighbors.

The state increment method can be used within the parallel stages
and states algorithm, which was previously described. The advantage of
using the state increment method is that far fewer connections and data
transfers between PEa are necessary. The necessary communication is
illustrated in Fig. 12.

7. Successive Approximat ion

Larson and Korsak have developed an iterative technique, originally
described in Ref. 7, which greatly alleviates storage problems caused by

PE(j+I)

STAGES PE (j)

® P~ (j+ra+l)

Fig. 12.

~ • PE(j+m)

PE(j-I) I ~ " ~ ~ e PE(j+m~I)

i i+l
STAGES -- ~-

Communication links for state increment dynamic
programming in parallel.

436 JOTA: VOL. 12, NO. 4, 1973

(QSi) n~, that is, the dimensionality and quantization of the state vector.
This method works best when the state equations are decoupled to some
degree, but this requirement is not necessary. The algorithm successively
solves lower-dimensional problems and, thus, improves the value of the
performance by optimizing with respect to one or a small number of
decision variables at a time. This procedure can be carried out in parallel
by allowing each PE to optimize with respect to one decision variable or
group of decision variables (U1,..., Urn). Figure 13 shows the overall
computational process.

The lower-dimensional subproblem which is solved by PEj. is
defined as

N
min ~ hi(xi j, uiJ),
{u j} i=~

where

J = f . J (X .1 o " "

X 1 = C, x i j ~ X ~, ui j c U j.

t
PE #I OPT.
PROGRAM FOR
GROUP U 1

INITIAL NOMINAL
TRAJECTORY

¢
STORAGE OF]

COMPLETE TRAJECTORY

1
PROGRAM FOR • • •
GROUP U 2

t
PE #m OPT.

PROGRAM FOR
GROUP U TM

i OPT. PERFORMANCE
WITH NEW NOMINAL

YES NO

Fig. 13. Flowchart for successive approximations in parallel.

JOTA: VOL. 12, NO. 4, 1973 437

Here, the sequences {xi k, i = 1, 2,..., N, k =~ j} are fixed, which imposes
n -- 1 constraints on the sequence {ui l~, k =/= j}, that is,

-? = ~ i ({ x ? }) ,

k -- r krx 1 uil~), k 4= j. Xi+l - - J i k i ~ ' " ~)~i'rt~

Also, the functions {hi} are determined from the original functions {gi}
by fixing the sequences {xi k, k ~/~ j}.

8. Discuss ion

A number of alternatives for the use of parallel processors to solve
dynamic programming problems have been presented. It may seem that
some of the algorithms proposed require a number of PEs well in excess
of any machine currently being developed or even being considered for
development. However, this objection is resolved when we consider that
the types of computational processes under consideration do not require
the flexibility of a general purpose computer. A machine such as
ILLIAC IV has very powerful PEs from a computational viewpoint, but
it would be of limited value in this application because it has only 64 PEs.
However, it is certainly feasible, and welt within the realm of current
electronic technology, to consider constructing special-purpose com~
puters with thousands or even millions of primitive PEs whose only
purpose would be to deal with important subclasses of the problems
presented above.

In closing, we remark that, when faced with a specific problem, the
proper choice of algorithm is generally not at all clear. Whether to use
parallel states, decisions, stages, or a combination of these methods is
highly dependent upon the problem and the computational resources
available. It is unreasonable to expect a uniform rule for algorithm
selection which would apply to all cases, although experience will
undoubtedly supply several rules-of-thumb. The determination of these
rules, as well as the investigation of related areas such as quasilineariza-
tion, invariant imbedding, etc., will be reported in subsequent papers.

References

1. BARNES, G. H., et al., The ILLIAC IV Computer, IEEE Transactions on
Computers, VoI. C-17, No. 8, 1968.

2. LARSON, R. E., State Increment Dynamic Programming, American Elsevier
Publishing Company, New York, New York, t968.

438 JOTA: VOL. 12, NO. 4, 1973

3. WONO, P. J., Dynamic Programming Using Shift Vectors, Stanford University,
Center for Systems Research, Report No. 6453-1, 1967.

4. LARSON, R. E., and KORSAK, A. J., A Dynamic Programming Successive
Approximations Technique with Convergence Proofs, Automatica, Vol. 6,
1970.

5. BELLMAN, R. E., Dynamic Programming, Princeton University Press, Princeton,
New Jersey, 1957.

6. GILMORE, P. A., Structuring of Parallel Algorithms, Journal of the Association
for Computing Machinery, Vol. 15, No. 2, 1968.

7. BELLMAN, R. E., and DREYFUS, S. E., Applied Dynamic Programming,
Princeton University Press, Princeton, New Jersey, 1962.

Additional Bibliography

KARP, R., and MILLER, R., Parallel Program Schemata, Journal of Computer
and System Science, Vol. 3, 1969.
TABAK, D., Computational Improvement of Dynamic Programming by Multi-
processing Computers, IEEE Transactions on Automatic Control, Vol. AC-13,
No. 5, 1968.

Prmtedm Be~ium

