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Abstract. Many decision-making situations involve multiple planners 
with different, and sometimes conflicting, objective functions. One type 
of model that has been suggested to represent such situations is the 
linear multilevel programming problem. However, it appears that theo- 
retical and algorithmic results for linear multilevel programming have 
been limited, to date, to the bounded case or the case of when only two 
levels exist, tn this paper, we investigate the structure and properties 
of a linear multilevel programming problem that may be unbounded. 
We study the geometry of the problem and its feasible region. We also 
give necessary" and sufficient conditions for the problem to be 
unbounded, and we show how the problem is related to a certain 
parametric concave minimization problem. The algorithmic implications 
of the results are also discussed. 

Key Words. Multilevel programming, multistage optimization, linear 
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1. Introduction 

Many decision-making situations involve multiple planners with 
different, and sometimes conflicting, objective functions. In some of  these 
problems, each planner independently controls a subset of the decision 
variables. A hierarchy may exist wherein the planners sequentially choose 
values for the decision variables. The first planner, in an attempt to optimize 
his objective function, chooses values for the variables that he controls. 
These values may partially determine the value of the objective function of 
the second planner. Furthermore, they may help to restrict the values that 
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the second planner can choose for the variables that he controls. Given the 
values chosen by the first planner for the variables that he controls, the 
second planner, also in an attempt to optimize his objective function, chooses 
values for the variables that he controls. His choices, along with those of 
the first planner, can partially determine the objective function value and 
the permissible decision variable values of the third planner. Continuing 
in this way, the third planner, and each subsequent planner, in turn, in an 
attempt to optimize his objective function, chooses permissible values for 
the decision variables that he controls. At each stage, the planner's objective 
function value and permissible values for the variables in his control may 
be partially determined by the choices made earlier by other planners. 

In recent years, several researchers have suggested models to represent 
such hierarchical decision-making problems. These models have come to 
be known as multilevel programming problems. In a problem of this type, 
when, at each level, the objective function and the functions in the con- 
straints are linear, the problem is referred to as a linear multilevel program- 
ming problem. Otherwise, it is called a nonlinear multilevel programming 
problem. 

Multilevel programming problems can apply in a variety of situations. 
For example, detailed applications have been described by Bracken, Falk, 
and Miercort (Ref. 1) to strategic weapons exchange problems; by Cassidy, 
Kirby, and Raike (Ref. 2) to the distribution of federal budgets among 
states; and by Fortuny-Amat and McCarl (Ref. 3) to the pricing and 
purchasing of fertilizers within an agricultural region. In addition, Candler 
and Townsley (Ref. 4) have suggested that multilevel programming problems 
can apply to various governmental problems involving issues such as the 
setting of penalties for illegal drug importation, the fixing of import quotas, 
and the determination of the extent to which transportation systems should 
be developed. Typically, in such problems, higher-level planners set policies, 
and lower-level planners react to these policies with certain behaviors, 
actions, or policies of their own. Thus, these problems can also be viewed 
as multilevel games (Refs. 5 and 6). 

Although several researchers, including Candler and Townsley (Ref. 
4), Bard (Ref. 5), Bard and Falk (Ref. 7), and Bialas and Karwan (Ref. 8), 
have defined the general multilevel programming problem, it appears that 
theoretical and algorithmic results have been limited, to date, to the bounded 
case or the case of when only two levels exist. In the case when two levels 
exist, the multilevel programming problem is referred to as the bilevel 
programming problem. 

Most of the research concerning the bilevel programming problem has 
dealt with the linear case. Candler and Townsley (Ref. 4), Bialas and Karwan 
(Ref. 8), and Bard (Ref. 9) have studied the geometry of the linear bilevel 
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programming problem. Bard (Refs. 9 and 10) also has stated some relation- 
ships between the linear bilevel programming problem and certain multiple- 
objective mathematical programs with two objective functions. In addition, 
Candler and Townsley (Ref. 4), Bard and Falk (Ref. 7), Bialas and Karwan 
(Ref. 8), Bard (Ref. 10), and Bialas and Karwan (Ref. 11) have proposed 
various algorithms for finding locally optimal and globally optimal solutions 
to the linear bilevel programming problem. 

In the case of nonlinear bilevel programming, Bard (Refs. 9 and t2) 
has given various necessary and sufficient conditions for a vector to be an 
optimal solution. In addition, he has proposed a one-dimensional search 
algorithm that sometimes yields a locally optimal or globally optimal sol- 
ution to the nonlinear bilevel programming problem (Ref. 12). Algorithms 
for finding globally optimal solutions to certain special cases of the nonlinear 
bilevel programming problem have been developed by Cassidy, Kirby, and 
Raike (Ref. 2), Bracken, Falk, and Miercort (Ref. 1), and Fortuny-Amat 
and McCarl (Ref. 3). 

For the case of multilevel programming with three or more planners, 
Bard (Ref. 5) has studied the geometry of, and offered an algorithm for, 
the linear case. However, he assumed that the problem is bounded. 

In this paper, the structure and properties of a linear multilevel pro- 
gramming problem that may be unbounded are investigated for the first 
time. Some of the results generalize those already given for the linear bilevel 
programming problem. Others are new not only for the multilevel case, but 
for the bilevel case as well. Throughout this paper, we show how the results 
relate to the known literature on linear multilevel programming. In addition, 
we discuss the algorithmic implications, if any, of each result. 

The organization of this paper is as follows. Basic definitions, pre- 
liminaries, and the linear multilevel programming problem (LMPP) that 
we shall investigate are presented in Section 2. In Section 3, the geometry 
of the problem (LMPP) is studied. Necessary and sufficient conditions for 
the problem to be unbounded are presented in Section 4. In Section 5, we 
explore how the linear multilevel programming problem (LMPP) is related 
to a certain parametric concave minimization problem. This relationship 
suggests that certain one-dimensional search procedures could be used to 
find an optimal solution for the problem. 

2. Basic Definitions and Preliminaries 

For any finite-dimensional vectors y and z in Euclidean space, we will 
let (y, z) denote the inner product of y and z. To help to define the linear 
multilevel programming problem that we shall consider, let n I> 2 be an 
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integer, and let kl, k 2 , . . . ,  k, be positive integers. In the linear multilevel 
program that we will define, n planners will exist. For each i 6 {1, 2, . . . ,  n}, 
planner i will have control over the vector of  variables x ~  R m~, where 
m~, m 2 , . . . ,  mn are positive integers whose sum equals ~. 

In the linear multilevel programming problem, the first planner chooses 
values for the variables x l~  R ml in an attempt to maximize his objective 
function, which is given by 

(a 11, x l )+  (a ~2, x2)+ • • -+ ( a  TM, x"), 

where a~:~R  ''1, j = l , 2 , . . . , n ,  and x2, x 3 , . . . , x  ~ are to be chosen by 
planners 2, 3 . . . .  , n, respectively. He must choose values for x ~ so that 
x = ( x  l , x 2 , . . . , x  n) lies in 

X l = { x ~  RnlBnx l<~  bl}, 

where B ~ is a kl x ml matrix and b le  R k,. 
Given x x, the second planner chooses values for the variables x 2 ~ R m-' 

that maximize his objective function over X 2. The second planner's objective 
function is given by (a 22, x2), where a22~ R m-', and 

X 2 = {x  (~ R'qt  B 2 1 x  1 --1- n 2 2 x  2 ~-~ b2}, 

where B 21 is a k2 x ml matrix, B 22 is a k2 x m2 matrix, and b 2 E R ~. Then, 
in a similar manner, given x ~ and x 2, the third planner chooses values for 
the variables x3¢ R m3 that maximize his objective function over X 3. The 
third planner's objective function is given by (a 33, x3), where a 33 ~ R"3, and 

2 3 -~ {X E R n [ B 3 1 x  I + B32x2 + B33x  3 "< b3}, 

w h e r e  B 31 i s  a k3 × tn l  matrix, B 32 is  a k 3 × m 2 matrix, B 33 is  a k 3 × m 3 matrix, 
and b3c R '~. Continuing in this way, each subsequent planner i, in turn, 
chooses values for the variables x ~ c R m' that maximize his objective func- 
tion, which is given by (a", x~), where a ~ ~ R m,, over the set 

X i ----{XE R n ] B i l x 1 . . 4 - B i 2 x 2 +  • • . + B U x i < - b i } ,  

where, for each j = 1, 2 , . . . ,  i, B ° is a k~ × rnj matrix, and b ~ c R k,. 
Mathematically, this linear multilevel programming problem, which 

we shall refer to as problem (LMPP), seeks to find the value of ~b such that 

6 = max( an ,  X l ) + (  a12, X2) + "  " " +(  a l ' ,  x"), 
x~X 1 

where, given x ~, x 2 solves 

max(a 22, x2), 
xEX'- 
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where, given x ~ and x 2, x 3 solves 

max(a 33, x3), 
xEX 3 

357 

1 "~ n - ' ~  x n - 1  X n where, given x ,  x - , . . . ,  x -, and solves 

max(a "~, x ' ) ,  
x E X  ~ 

where, for each i = 1, 2 , . . . ,  n, 

X i={x6  R~]B~lx 1+ B~2x2+ . • . + B " x  i~  b~}. 

For each i =  1 , 2 , . . . ,  n, we will refer to the problem of planner i as 
problem (i). 

Notice that, for each planning level i ~ {2, 3 , . . . ,  n}, the values for the 
variables x ~, x 2 , . . . ,  x i-1 are given. Therefore, for each i c {2, 3 , . . . ,  n}, if 
a~J6R "~' for each j = l , 2 , . . . , i - 1 ,  a problem equivalent to problem 

i i , (LMPP) is obtained f ~j=~ (a ° x ~) is substituted for (a", xi}. In fact, then, 
our results wilt apply to a problem slightly more general than problem 
(LMPP). For simplicity, however, we will deal with problem (LMPP) 
directly. 

Let X = X ~ X ' - c ~ . . . c ~ X  ~. A vector x is said to be a permissible 
solution for problem (LMPP) when x ~ X. A vector x is a feasible solution 
for problem (LMPP) when x E X  and, for each i = 2 , 3 , . . . ,  n, given 
x 1, x 2 , . . . ,  x ~-l, x ~ maximizes (a", x ~) subject to x ~ X ~. The set ofat l  feasible 
solutions for problem (LMPP), denoted F, is called the feasible solution 
set for the problem. An optimal solution for problem (LMPP) is a feasible 
solution that maximizes (a ~1, xl) + (a ~-~, x 2) +.  • • + (a 1,, x .) over F. 

To illustrate these concepts, assume that n = 3 planners exist, and that, 
for each i = 1, 2, 3, planner i has control over the vector x~ = xi ~ R 1. Consider 
the linear multilevel programming problem of finding 4, such that 

~b = max Xl - X2"Jc'X3, 
x ~ X  1 

where, given xl, x2 solves 

max x2, 
x ~ X  2 

where, given x~ and x2, x3 solves 

m a x  x 3 , 
x ~ x  3 
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where x = (xl,  x2, x3) and 

Xl={xcR3lxl'<-6, -X l -<  0}, 

X 2 ={x~  R312xl+x2-< 10, -xl--< 0, -x2-< 0}, 

X 3 = {x ~ e 312xl + x2 + x3 -< 18, - x  1 -< 0, - -X  2 -< 0 ,  - -X  3 ~ 0}.  

Here, the set X = Xlc~ X2c~ X 3 of permissible solutions is given by 

X = { x E  R3JXl-<6, 2Xl + x2-< 10, 2X 1 

+ x2 + x3-< 18, x, ->0, x2->0, x3-> 0}. 

The vector ~- - (0 ,  0, 18) is a permissible solution. However, 2 is not a 
feasible solution since, given xl = 0, x2 = 10 (rather than xz = 0) maximizes 
xe over X 2. The vector )7 = (4, 2, 8) is both permissible and feasible, since 

e X and, for i = 2 and i = 3, given x i = )~j, j -< i - 1, )7i maximizes x~ subject 
to x c X i. It is not difficult to show that the feasible solution set F for this 
problem is given by 

F =  {x ~ R3 ix  = A(0, 10, 8)+(1 - I ) ( 5 ,  0, 8), 

for some A such that 0-< k -< 1}. 

Notice that F is a face (indeed, an edge) of  X. Given F, it is easy to see 
that the extreme point x* = (5, 0, 8) of  X is the unique optimal solution for 
this problem and that ~h = 13. In contrast, the simple maximum of xl - x2 + x3 
over X is equal to 18 and is achieved at ~--= (0, 0, 18), which is also an 
extreme point of X, but does not lie in F. Notice that, from our earlier 
comments, for any real numbers azl, a3l, a32, a problem equivalent to this 
multilevel problem is obtained whenever the objective function x2 of planner 
two is replaced by a21x~ + x2 and the objective function x3 of planner three 
is replaced by a31x 1 + a32x2  + x3  . 

We will assume that at least one permissible solution for problem 
(LMPP) exists. Notice in problem (LMPP) that, once the first planner has 
chosen values 971 for x ' ,  there may or may not exist values for x 2, x 3, . . . ,  x"  
such that x = ( f l ,  x 2, . . . ,  x ~) is a permissible solution. If such values exist, 
however, then, barring multiple optimal solutions, unattained suprema, and 
unboundedness in problems (2)-(n),  exactly one feasible solution x exists 
for problem (LMPP) with x ~= ff~. In fact, we will assume, for each i =  
2, 3 , . . . ,  n, given x 1, x 2 , . . . ,  x ~-~, if problem (i) is feasible, that optimal 
solution values for x ~ in problem (i) exist and are unique. In this way, 
planner one, once he has chosen values for the variables x 1, does not need 
to make any other choices. 

When n = 2, problem (LMPP) reduces to the linear bilevel programming 
problem studied by Candler and Townsley (Ref. 4), Bard and Falk (Ref. 
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7), and Bard (Refs. 9 and 10), and to one of  the two versions of the linear 
bilevel programming problem studied by Bialas and Karwan (Refs. 8 
and 11). 

Since we have not assumed that the sets X L, X 2 , . . . ,  X"  are bounded, 
it is possible, in problem (LMPP), that, for any given positive number M, 
a feasible solution x exists for the problem such that Y~7=~ ( au, x J) exceeds 
M. When this is the case, we say that problem (LMPP) is unbounded. If  
problem (LMPP) is not unbounded,  then, as we shall see in the next section, 
an optimal solution will exist. Therefore, we have defined ¢ as a maximum 
rather than a supremum. 

If at least one of  the sets X ~, X 2 , . . . ,  X"  is bounded, then problem 
(LMPP) is a special case of the problem studied by Bard in Ref. 5. 

To conclude this section, we present the following lemma. We will 
need to refer to this lemma and its proof in the proofs of some of our main 
results. 

Lemma 2.1. The vector x = (x ~, X 2 , .  • . ,  X n )  is a feasible solution for 
problem (LMPP) if and only if there exists a vector u = (u 2, u 3 , . . . ,  u" ) ,  
where u ~cR k,, i = 2 , 3 , . . . , n ,  such that ( x , u ) = ( x  1 , x 2 , . . . , x ' , u  2, 
u 3 , . . . ,  u") satisfies the conditions 

(U,)TB,, , i , , ~ -  = t a  ) ,  i = 2 , 3 , . . . ,  n, 

i--1 

(u ~, b ~ - ~ B ° x  j)  " = ( a  , x ) ,  i = 2 , 3 , . . . ,  n, 
j = l  

U2~ U3~ . . . , U n ~ 0 ~  

x ~ c X  ~, i =  1 , 2 , . . . ,  n. 

Proof. A vector x = (x ~, x 2 , . . . ,  x ") is a feasible solution for problem 
(LMPP) if and only if it is a permissible solution for problem (LMPP) and, 
for each i = 2, 3 , . . . ,  n, given x ~, x 2 , . . . ,  x i-a, x ~ is an optimal solution for 
the linear programming problem (P~) given by 

ii i 
m a x  ( a ,  X ) ,  

s.t. 
i--1 

Biixi <_ b i _ ~, BUx j. 
j = l  

By duality theory of  linear programming (Ref. 13), for each i = 2, 3 , . . . ,  n, 
• .  i - 1  X i given x ~, x 2, . ,  x , e X i is an optimal solution for problem (Pi) if and 

only if there exists a feasible solution u ~ for the linear programming dual 
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(D i) of  problem (pi) given by 

b i min u i, - ~ B ° x  j 
j = l  

s.t. ( u i ) rB  ii= (a" )  ~, 

ui >~ o, 

such that 

( ) ' ~ -  b i (a", x i) u i, BiJx j 
. =  

The lemma follows by combining these two statements. [] 

3. Geometric Properties 

In this section, we will develop some geometric properties of  problem 
(LMPP). We will show, among other things, that the feasible solution set 
F for problem (LMPP) is a union of faces of  X = X 1 n X 2 c~.. .  c~ X"  and 
is connected. We will also show that, if problem (LMPP) has an optimal 
solution, then it has an optimal solution that is an extreme point of  X. 
Throughout this section, for any convex set Y in a finite-dimensional 
Euclidean space, (ri Y) will denote the relative interior of  Y.. In addition, 
for any set Z in a finite-dimensional Euclidean space, (cl Z )  will denote 
the closure of Z. 

The following lemma will assist in deriving some of our main geometric 
results. 

Lemma 3.1. Let )2, 9~ ~ X, with )2 ~ F. Then, none of the points on tile 
line segment 

[~, ~) = {x ~ R~lx  = o~ + (1 - , ~ ) L  for some a such that 0 <  a -< 1} 

belongs to F. 

Proof. Since )2 ~ X, but )2 ~ F, the set 

I = { i 6  {2, 3 , . . . ,  n}]given ffl,)22,.. . ,)2i-1, 

ffi does not maximize (a", x i) subject to x c X ~} 

is nonempty. Let i b e  the smallest element in I ;  and, given )21, ~ 2 , . . . ,  ~r-1, 
choose any point 

y = ()21,)22,..., )2 r-l, y r , . .  -, y , )  ~ X r 
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which satisfies 

(a rr, yr) > (a ri, )Tr}. 

Let a be any real number  such that  0 <  oe _< 1, and let 

x = oz)7 + (1 - oe)~. 

Let 

• -r-1 T ~ = c ~ ( ~ l , : ~ 2 , . . , x  , y , . . . , y ~ ) + ( 1 - a )  

• = ~ - - I  = 7  X ()~1, ~ 2 , .  - ,  X , X , . . . ,  ~ n ) .  

Then,  since X r is a convex set, ~ e X r 
Given xl,  x 2 , . . . , x  r-l ,  consider  the problem (pr)  of  maximizing 

(a Fr, x r) over 

X r =  {x E R~l Brlx '  + Br2x~ +. . .+ Br, r-lxr-l + Brrxr <_ b r}. 

Since x = ~)7+ (1 - a ) 2 ,  

(arr ,  x r ) =  a ( a  rr, )7 r) + (t - a ) ( a  ii ' ~ ) .  

Also, since a > 0 and (arr ,  ~r) < (a ~-r, tY r[), 

a(a *' y~') < o4a'i ,  y % 

From the last two sentences,  we see that  

(aii, x') < a(a ~, y r)+ (1 - a)(a'*, ~'). 

By definition o f  ~, this means that  

(a rr, x "} < (a r~-, ~,3. 

Since ~ e X  r, this implies that, given x ~,x 2 . . . .  , x  r-~,x r is not  
an optimal  solution for  problem (pr).  Therefore ,  x ~  F, and the p roo f  is 
complete.  [] 

Using Lemma 3.1, we obtain the following theorem concerning F. 

Theorem 3.1. Let K be any nonempty  closed, convex subset of  X. 
Suppose that  x ~ (ri K )  and x e F. Then,  K c_ F. 

Proof.  Let  )7 ~ K. Since K _ X, :7 E X. Suppose  that  :7 ~ F. From 
Rockafel lar  (Ref. 14, Theorem 6.4), since x ~ (ri K )  and K is a nonempty  
convex set, we can pick a h > 1 such that 

x ~ = (1 -A) )7+hx  ~ K. 
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Since K ___ X, x ~ e X .  From Lemma 3.1, since 2, x ~ ~ X  and ~ F, none of  
the points on the line segment [2, x ~) lies in F. I f  we set a = (A - 1)/A, then 
0 < a < l  and 

x =  on7 + (1 -o~)x ~. 

Therefore, x ~ [~, x ~), so that x ¢ F. But this contradicts the hypothesis of  
the theorem that x~F. Therefore, our assumption that 2 ~ F  is 
untenable. Since ff was an arbitrarily chosen element of  K, the p roof  is 
complete. [] 

Theorem 3.1 is new not only for the multilevel case, but for the bilevet 
case as well. For the bilevel case, Bialas and Karwan (Ref. 8, Theorem 3.1) 
have presented a result related to Theorem 3.1, but their result is a special 
case of  Theorem 3.1 as applied to the bilevel problem. 

Recall that a face Y' of  a convex set Y is a convex subset of  Y such 
that every closed line segment in Y with a relative interior point in Y' has 
both endpoints in Y'. From Theorem 3.1, we have the following key result. 

Corollary 3.1. Let X '  be a nonempty face of  X. I f  x ~ (ri X ' )  and 
x~F, then X ' _ E  

Proof. Since X is a polyhedral set, its faces are also polyhedral (Ref. 
14) and are therefore closed. Hence, the corollary is an immediate con- 
sequence of Theorem 3.1. [] 

Since X is a polyhedral set, it has a finite number  of  faces (Ref. 14). 
Using Corollary 3.1, we can now show that F is a union of  some or all of  
these faces. 

Theorem 3.2. Let X(1) ,  X ( 2 ) , . . . ,  X(w) be the nonempty faces of  X. 
I f  F ~ Q, then 

F =  U X( i ) ,  
i¢W 

where if '  is some subset of  W = { 1 , 2 , . . . ,  w}. 

ProoL Let x ~ F .  Then, since FCX, from Rockafellar (Ref. 14), 
xE[riX(i)], for some i~ W. From Corollary 3.1, since x~F, X(i)CF. 
Therefore, 

F c  U x(i), 

for some set I,~'C W such that X( i )CF for all i~ W. 
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Choose any such set if'. Since 

F_Z U x ( i ) ,  

the proof  is complete. [] 

In the bilevel case, Bard (Ref. 9) and Bialas and Karwan (Ref. 11) 
have stated that F consists of  faces of  X. Theorem 3.2 shows that this result 
holds for our multilevel case as well. Notice that Theorem 3.2 applies even 
if X is an unbounded set. I f  X is bounded, Theorem 3.2 would follow from 
Bard (Ref. 5). Also, the set if" in Theorem 3.2 need not be unique. 

Theorem 3.2 implies that the feasible solution set F for problem (LMPP) 
may be a nonconvex set. This implies that problem (LMPP) may have 
locally optimal solutions that are not globally optimal. Therefore, any 
potential algorithm for finding an optimal solution for problem (LMPP) 
must have the capability of distinguishing between locally optimal solutions 
and globally optimal solutions. 

As another consequence of Theorem 3.2, we have the following result. 
The proof of  this result is a simple exercise and is therefore omitted. 

Corollary 3.2. Suppose that 05 in problem (LMPP) is finite. Then, 
there exists a point x* ~ F such that 

05 =(a", x*'~+(a'2, x.2)+... +(a ~°, x*"). 
Corollary 3.2 justifies our definition of  05 in Section 2 as a maximum, 

rather than a supremum. In previous studies, researchers have simply defined 
linear bilevel and multilevel programming problems as maximization prob- 
lems, rather than as problems of  finding a supremum. Corollary 3.2 justifies 
this definition for the first time not only for the multilevel case considered 
here, but also for the bilevel case studied in Refs. 8-11, even if X is 
unbounded. 

Recall that a connected set Z is one that cannot be written as Z = A u B, 
where A and B are nonempty, open sets such that 

A n ( c l B ) = Q  and ( c l A ) ~ B = Q .  

Since the feasible solution set F for problem (LMPP) may be a nonconvex 
set, there is the possibility, at least in theory, that F is not connected. 
However, by the next result, F is in fact a connected set. 

Theorem 3.3. F is a connected set. 

Proof. F r o m L e m m a 2 . 1 , x = ( x ~ , x Z , . . . , x " ) e F i f a n d o n l y i f x i  ~ X  i, 
i =  1, 2 . . . .  , n, and there exist vectors u 2, u 3 , . . . ,  u"->0 that satisfy 

(u i )rB ii= (aii) T, i = 2, 3 , . . . ,  n, 
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such that 

i--1 

(ui, b i -  ~ BiJxJ)- (a" ,x~)=O,  i = 2 , 3 , . . . , n .  
j = l  

Therefore, if  we let 

U = {(u 2, u S , . . . ,  u")>-0 t (u i )rB ii= (ail) r, i=  2, 3 , . . . ,  n}, 

and, for any u ~ U, if we let 

M ( u )  = { (x ~, x 2 , . . . ,  x" ) Ix i  c X i, i = 1, 2 , . . . ,  n, and 

b i - "" . u ~, ~, BUx J - ( a " , x i ) = O , i = 2 , 3 , . . . , n  , 
j = !  

then 

F = M ( U ) ,  where M ( U ) = { M ( u ) ] u ~  U}. 

From Hogan (Ref. 15, Theorem 10), M (considered as a point-to-set 
mapping from U into R n) is closed at each u c U .  (See Ref. 15 for a 
definition of when a point-to-set mapping is closed at a point in its domain. 
A point-to-set mapping that is closed at a point is also sometimes called 
upper  semicontinu0us at the point.) In addition, U and M(u ) ,  for each 
u ~ U, are convex sets. Therefore, they are connected sets. From Naccache 
(Ref. 16), this implies that M ( U )  = F is also a connected set. [] 

It is well known that, if an optimal solution exists for a linear program- 
ming problem (P) whose feasible solution set contains no lines, then an 
optimal solution exists for (P) that is an extreme point of  its feasible solution 
set. This property also holds for certain other problems, such as problems 
involving the minimization of  a concave function over a polyhedron (Ref. 
17). To close this section, we show that this extreme point property holds 
for problem (LMPP) as well. 

Theorem 3.4. Suppose that X contains no lines, and that problem 
(LMPP) has an optimal solution. Then, problem (LMPP) has an optimal 
solution that is an extreme point of X. 

Proof. Let x = ( x  ~, x 2 , . . . ,  x n) be an optimal solution for problem 
(LMPP) that is not an extreme point of  X. From Theorem 3.2, x e X(1) ,  
where X(1)  is some nonempty face of  X and X ( 1 ) C F .  Since X(1)  is a 
face of  the polyhedral set X, X(1)  is itself polyhedral (Ref. 14). Also, since 
X contains no lines, X(1)  contains no lines. Therefore, from Ref. 14, there 
exist positive integers t and u, with 1 -< t ~  u, extreme points xl ,  x 2 , . . . ,  x~ 
of  X(1) ,  and directions x~+~, x~+2, •. •, x,  such that x(1) ~ X(1)  if and only 
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if x(1) = ~=1 A,x, for some nonnegative numbers AI, A2 . . . .  , &, satisfying 
~,=~ A, = 1. If we let a = ( a ' ,  a12,. . . ,  a~n), then, for any nonnegative num- 
bers h~, A~,. . . ,  Au satisfying ~'~=~ A, = 1, 

( a , ,= l  ~ A,x~}= s=l ~ h~(a,x,)+~=~+l ~ h,(a,x,). 

Since X ( 1 ) C F  and problem (LMPP) is not unbounded, the last two 
statements imply that 

(a,x,)<-O, f o r e a c h s = t + l , t + 2 , . . . , u .  

Also, since x ~ X(1), there exist nonnegative numbers A*, A*, . . . ,  A* with 
~'~=1 A* = t such that 

s = l  S = t + l  

Since 

h~(a,x~)<-O, 
s = t + l  

this implies that 

(a,x) < -- ~ A*(a,x,). 

From this inequality and the fact that x is an optimal solution for problem 
(LMPP), it is easy to see that 

{a,x)=(a,x~), for each s ~ { t , 2  . . . .  , t} such that A*>0. 

Since X(1) is a face of 3;7, each extreme point of X(1) is also an extreme 
point of X, so that the proof is complete. 

Notice that both Theorems 3.3 and 3.4 hold even if X is unbounded. 
I f X  is bounded, they would follow from Bard (Ref. 5). Theorem 3.4 suggests 
that one approach for finding an optimal solution for problem (LMPP) 
might be to search among the extreme points of X. Indeed, approaches of 
this sort have been suggested for the bilevel case (Refs. 4, 10, and 11). 

4. Unbounded Case 

As explained in Section 2, since we have not assumed that the sets 
X ~, X 2 . . . .  , X" are bounded, it is possible for problem (LMPP) to be 
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unbounded. In this section, we present some necessary and sufficient condi- 
tions for problem (LMPP) to be unbounded. Since the unbounded case has 
not been explored even for the linear bilevel programming problem, all of  
the results in this section are new for both the linear bilevel and the linear 
multilevel programming problems. Throughout this section, to indicate that 
a maximization problem is unbounded,  we may write sometimes that its 
optimal objective function value equals +o0. 

Our first result gives a simple necessary condition for problem (LMPP) 
to be unbounded. This result is immediate; therefore, its proof  is omitted. 

Theorem 4.1, If  ~b = + ~ ,  then 
n 

+oo =max  Y~ (a lj, X J), 
j = l  

s.t. x : 6 X  j, j = l , 2 , . . . , n .  

The necessary condition given in Theorem 4.1 for problem (LMPP) to 
be unbounded is not a sufficient one, even in the bilevel case. Simple 
examples can be constructed to illustrate this. In the next result, however, 
we present a sufficient condition for problem (LMPP) to be unbounded. 

Theorem 4.2. Suppose that 

+oo = max(a" ,  xl), 

s.t. x = ( x ' , x Z , . ' , x " )  ~ x ,  

and that, for each j = 2, 3 , . . . ,  n, the optimal objective function value of  
the problem 

min(a'~, x:),  

s .c  x=(x~,x2,...,x")eX, 
is finite. Then, ¢ = +o0. 

Proof. From Epelman (Ref. 18), since the problem of  maximizing 
(a 11, x ~) over X is unbounded,  there exists d = (d 1, d 2 , . . . ,  d")  e R ~ such 
that 

B i l d l + B i 2 d 2 +  . .  .+Bi idi<-o,  i =  1 , 2 , . . . ,  n, 

(aU, d l ) > 0 .  

Let x ~ X and, for any t >- 0, let xt = x + td. Then xt ~ X, for all t >- 0. 
For each t ~ 0, given x ' =  x~, let if2 maximize (a 22, x 2) over X 2. For each 
t -> 0, given x '  = xl and x ~ = ~2, let ~ maximize (a 33, x J) over X 3. Continuing 
in this manner, we can construct, for each t ~ 0, a feasible solution ~, = 
(x~, x,,-2 x,,-3..., ~ ' )  for problem (LMPP). 

Let M be any positive number. For each j = 2, 3 . . . . .  n, and for any 
t ~ 0, since the problem of  minimizing (a 1:, x:)  over X has a finite optimal 
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objective function value, there exists a real number a~ such that (a l j, ff~) > %. 
Choose t to be any positive number that satisfies 

j=2 

Let 

Then, 

a = (a I1, a l Z , . . . ,  a TM) ~ R n. 

(a, ; , ) - - (a  1~, xlt)+ ~ (a ~j, 2~) 
j=2 

= ( a  11, x~)+t(a H, dl)+ ~ (a':, x~) 
j=2 

>(a11, x~)+t(a 11, dl)+ ~ % 
j=2 

>M, 
so that problem (LMPP) is unbounded. [] 

Notice that, to test the sufficient condition for problem (LMPP) to be 
unbounded given in Theorem 4.2, only linear programming problems need 
to be solved. It can be shown that this condition, although sufficient, is not 
necessary for problem (LMPP) to be unbounded. 

It appears that any condition that is both necessary and sufficient for 
problem (LMPP) to be unbounded will not be as simple to state or to test 
as the two conditions given in Theorems 4.1 and 4.2. For instance, the 
necessary and sufficient condition given in the next result is not as simple 
to test as either of these two conditions. However, this condition gives a 
complete characterization of the unbounded case. 

Theorem 4.3. Let 

U = { ( u  2, u3 , . . . ,  u")>-Ol(u')'rBii=(all) T, i = 2 , 3 , . . . ,  n}. 

Then, q5 = +co if and only if, for some u = ( u  2, u 3, . . . ,  u " ) c  U, the linear 
programming problem (LP) given by 

max(a H , x~) + (a 12, x2)+ -. • + (a  TM, x"), 

i - I  
s.t. Z ((ul)rBiJ, xJ)+(aii, xi)=(ui, b~), i = 2 , 3 , . . . , n ,  

j=l 

x~ ~ X ~, i = l , 2 , . . . , n ,  

is unbounded. 
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Proof. To prove the " i f "  por t ion of  the theorem,  let u ~ U be a point  
such that  p rob lem (LP) is unbounded .  Then,  for  any positive integer M, 
there exists a vector  x -- (x 1, x 2, . . . ,  x ") such that  x satisfies the constraints  
o f  p rob lem (LP) and 

(alJ, xJ )>  M. 
j = l  

From L e m m a  2.1, this implies  that  p rob lem (LMPP)  is unbounded .  
To prove  the "on ly  i f "  por t ion of  the theorem,  let ~b = +co, and let 

{ ,}t=a be a strictly increasing sequence o f  posit ive real numbers  with 
lim,_,~ M, = +c~. Then,  for  each t, there exists a point  x ( t )  ~ F such that  

~. (alJ, x ( t ) J ) >  Mt. 
j = l  

x 2 , . . . ,  x" )  ~ R ~ and any i = 2, 3 . . . . .  n, define a funct ion 

( i 1) 
b i qi(x) = min u i, B°x  j 

.= 

s.t. (ui )TB " =  (aii) r, 

l, t i  ~ o .  

Also, for  each i = 2, 3 , . . . ,  n, let 

Ui = {u '>- O](ui)TB ii = (a U)T}. 

Then,  for  each t, since x ( t )  ~ F, using reasoning similar to that  used in the 
p r o o f  of  L e m m a  2.1, it can be shown that  x ( t )  c X and 

qi (x ( t ) )=(a i i ,  x( t ) i ) ,  for each i = 2 , 3 , . . . ,  n. 

For  each i = 2, 3 , . . . ,  n, by definition of  qi, this implies that,  for  each t, 
there exists an extreme point  u( t )  ~ of  U~ such that  

( 1 ) 
u( t )  i, b i -  ~, B°x ( t )  j = ( a " ,  x(t) i ) .  

j = l  

Since the n u m b e r  of  points  in {x ( t)},~l is infinite and,  for  each i = 2, 3 , . . . ,  n, 
the n u m b e r  of  extreme points  in U~ is finite, there exists a subsequence  
{x(t)},c,  o f { x ( t  o~ )},=1 and extreme points  ti ~ of  U;, i = 2, 3 , . . . ,  n, such that, 
for  each t ~ I and each i = 2, 3 , . . . ,  n, 

~i, b i_  y~ BiJx(t)/ = (a", x( t) i ) .  
j = l  

For  any x = (X 1, 

qi : R n ~ R by 
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Therefore, with u = f~ ~ U, x ( t )  is a feasible solution for problem (LP) for 
each t ~ L Since 

(a lj, x(/)J) > Mr, 
j = l  

this completes the proof. 

Remark 4.1. Notice, from the "only i f"  portion of the proof  of 
Theorem 4.3, that, if problem (LMPP) is unbounded,  then there exists a 
point g ~ U that is actually an extreme point of U such that, with u = ~, 
the linear program (LP) is unbounded. 

5. Relationship to a Parametric Concave Minimization Problem 

In the bilevel case, various researchers have explored how problem 
(LMPP) is related to various other mathematical programming problems, 
including multiple-objective (Ref. 10) and nonconvex (Ref. 7) programming 
problems. In this section, we will show how problem (LMPP) is related to 
a certain parametric concave minimization problem. To do so, for the 
purposes of  this section only, we will assume that X is a compact set. 

To define this parametric problem, let 

U -~- {(/ . /2,  U3, . . . , u n )  ~ 0 [  ( u i ) T B i i  =(aii)  r, i = 2, 3, . . . ,  n}; 

and, for any x = (x 1, x 2 , . . . ,  x") ~ R ~, let q ( x )  be given by 

b i - "" . q ( x )  = min u;, ~, B'Jx j . 
ucU i=2 j = l  

From Rockafellar (Ref. 14), q: R e a R  is a concave, and therefore con- 
tinuous, function on R e. Let t ~ R be a parameter, and define the parametric 
concave minimization problem (Ct) as the problem that seeks to find 4~t, 
where 

~b t=min-  ~ ( a " , x ~ ) + q ( x ) ,  
i=2 

s.t. ~ (a ° , x  j)  >-t, 
j = l  

x ~ X .  

The essentials of the relationship between problem (LMPP) and problem 
(C,) are summarized in the following theorem. 
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Theorem 5.1. Assume that X is a compact set and that problem 
(LMPP) has an optimal solution. Let t* denote the largest value of  t in 
problem (C,) for which 05, equals zero. Then, these results hold: 

(a) 05= t*. 
(b) x* is an optimal solution for problem (LMPP) if and only if x* 

is an optimal solution for problem (C~.). 

Proof. To show part (a), we will first show that, if  t-< 05, then ~h~ = 0. 
Choose t so that t--- 05. Let x* be an optimal solution for problem (LMPP). 
Then, 

05= ~ (alJ, x*J)>-t. 
j = l  

Furthermore, using reasoning similar to that used in the proof  of Lemma 
2.1, since x* e F, 

x * e X  and - ~ (aii, x*i)+q(x*)=O. 
i=2 

Therefore, x* is a feasible solution for problem (C~) with an objective 
function value of  zero. But for any x e X, from the weak duality theorem 
of linear programming, 

- ~ (aii, xi)+q(x)>-O. 
i=2 

Therefore, x* is an optimal solution for problem (Ct) and 05t = 0. 
To complete the proof  of  part (a), we will show that, if t > qS, then 

05, = + ~  or 05, > 0. To show this, choose t so t > & If  no x e X exists for which 

(alJ, xJ)>-t, 
j = l  

then problem (C,) has no feasible solution, so that 05t =+co. Otherwise, 
since t > 05, any x e X that satisfies 

(a lj, xJ) >- t 
j=l 

must not belong to F. From the previous paragraph, for any x ~ X that does 
not belong to F, 

- ~ (ai~,x')+q(x)>O. 
i=2 

Taken together, the last two statements imply that 05t > 0, so that the proof  
of part (a) is complete. 
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From the first part of the proof of part (a), for any t-< ~h, if x* is an 
optimal solution for problem (LMPP), then x* is an optimal solution for 
problem (C,). Since, by part (a), ~b = t*, this proves the "only if" portion 
of part (b). 

Finally, to prove the "if"  portion of part (b), let x* be an optimal 
solution for problem (C,,). This implies that 

~ (a Ij, x*J)~ t*, 
j=l 

that x*~ X, and, from part (a), that 

- ~ (aii, x*i)+q(x*)=O. 
i=1 

Using reasoning similar to that used in the proof of Lemma 2.1, since x* ~ X 
and 

- ~ (a",x*i)+q(x *)=0, 
i=2 

then x* ~ F. Therefore, x* is a feasible solution for problem (LMPP) with 

j=t 

Since, by part (a), t*= 4', this implies that x* is an optimal solution for 
problem (LMPP), and the proof is complete. 

Theorem 5.1 is a new result not only for the multilevel case, but for 
the bilevel case as well. 

Let X be a compact set, and suppose that problem (LMPP) has at 
least one optimal solution. Theorem 5.1 then suggests that, to find an optimal 
solution for problem (LMPP), a one-dimensional search can be undertaken 
for the largest value t* of t for which 4'~=0 in problem (Ct). Various 
schemes for one-dimensional search procedures could be employed in such 
a procedure. To implement many of these schemes, it would be necessary 
to be able to find an optimal solution for problem (Ct) for various values 
of t. For each value of t, problem (C,) involves the minimization of a 
continuous, nonseparable concave function over a polyhedral set. Various 
algorithms for minimizing a nonseparable concave function over a poly- 
hedron have been proposed, including the algorithms of Benson (Ref. 19), 
Cabot (Ref. 20), Carrillo (Ref. 21), Falk and Hoffman (Ref, 22), Majthay 
and Whinston (Ref. 23), Thoai and Tuy (Ref. 24), and Zwart (Ref. 25). See 
Ref. 19 for a brief survey of algorithms for minimizing a concave function 
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over a polyhedron. Several of  these algorithms, for any given value of t, 
could be applied to problem (C,). 
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