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A Relaxed Version of Bregman's Method 
for Convex Programming 
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Abstract. A new type of relaxation for Bregman's method, an iterative 
primal-dual algorithm for linearly constrained convex programming, is 
presented. It is shown that the new relaxation procedure generalizes 
the usual concept of relaxation and preserves the convergence properties 
of Bregman's algorithm for a suitable choice of the relaxation para- 
meters. For convergence, Bregman's method requires that the objective 
function satisfy certain conditions. A sufficient and easily checkable 
condition for these requirements to hold is also given. 
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I. Introduction 

We consider the following linearly constrained convex programming 
problem: 

min f (x ) ,  (la) 

s.t. A x  <-- b, (lb) 

where f :  A C ~" ~ R is a continuously differentiable function, A is an m × 
n-matrix, and b is an m-vector. Our relaxed version of Bregman's method 
is an algorithm for solving (1) when f belongs to a family B (Definition 
2.1 below) which includes the Euclidean norm ttxll as well as the x In x 
entropy function. Problem (1) with f in B arises in various fields of 
applications, like transport planning (Ref. 1) and image reconstruction from 
projections (Refs. 2 and 3). Generally, the matrices associated with such 
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applications are very large and sparse with no detectable structure pattern. 
In such a case, row-action methods (Ref. 4) have been shown to be successful 
even for matrices with dimensions exceeding 100,000 (Ref. 2). 

Bregman's method (Refs. 5 and 6) as well as Hildreth's method (Ref. 
8), of which it is a generalization, are row-action methods. Hildreth's 
algorithm solves (1) for the casef(x)  = Ilxll, and can be described as follows: 
If x k is the current iterate and Hk is the hyperplane associated with one of 
the constraints of (1) (i.e., the set of points which satisfy such constraint 
with equality), then x k÷l is the orthogonal projection of x k on Hk if x k 

does not satisfy that constraint, and the orthogonal projection of x k on Hg, 
a hyperplane parallel to I lk  lying between x k and I l k ,  otherwise. The location 
of Hk is determined by the current value of z k, a sequence of dual variables 
generated simultaneously with the primal sequence x k. T h e  constraints are 
used in a cyclic way. Bregman's method extends Hildreth's method to the 
minimization of any function f belonging to B (which is called the set of 
Bregman functions). The only difference with respect to the previous descrip- 
tion is that orthogonal projections are substituted by so-called Bregman 
projections (Definition 2.2) which are related to the function f. 

The usual concept of relaxation, applicable to a wide class of iterative 
algorithms, can be summarized in the following way: If the original (un- 
relaxed) algorithm generates a sequence 

x k+l = f k ( X k ) ,  

then the relaxed algorithm is defined as 

x k + l  = ( 1  - c , k ) x  k + o~Jk(Xk) ,  

where ~k is a sequence of real numbers called relaxation parameters. Usually 
it is required that the relaxation parameters lie in the interval (0, 2). The 
algorithm is said to be overrelaxed when ak is constrained to belong to 
(1, 2) and underrelaxed if it has to belong to (0, 1). The option of using 
relaxation parameters has been shown to be a very important tool in practical 
implementation of row-action methods (see the discussions in Section 6 of 
Ref. 3, Section 6.2 of Ref. 6, and the results in Ref. 7). A relaxed version 
of Hildreth's algorithm has been shown to converge in Ref. 8, with the 
relaxation parameters belonging to a compact subset of (0, 2), but no 
relaxation strategy retaining convergence properties has been proposed up 
to now for Bregman's algorithm. 

The idea behind our relaxation strategy is the following: relax the 
constraints before computing the Bregman projection. More precisely, if at 
iteration k the ith constraint: (a i, x)_< bi is to be used, we substitute it by 
the relaxed constraint 

( a i, x)<- akbi + (1 -- a~)(  a i, xk ) ,  
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and then we apply Bregman's procedure, where ak is the relaxation param- 
eter. When f is the Euclidean norm, this approach generates the same 
sequence as the usual relaxation scheme described above, and so it becomes 
the relaxed Hildreth's algorithm studied in Ref. 8. We prove convergence 
of the algorithm for any Bregman function when the sequence {ak} is 
included in a compact subset of the interval (0, 1] (underrelaxation). If  the 
func t ion f  satisfies an additional condition [see (29) below], our convergence 
proof  holds for {ak} included in a compact subset of (0, 2). Since quadratic 
positive-definite functions satisfy this condition, the convergence proof  of 
Ref. 8 is a particular case of  our results. 

In Refs. 8 and 6, Hildreth's and Bregman's methods, respectively, are 
studied under almost cyclical control. This means that the m constraints 
are not used cyclically, but there exists a number r - m  such that all 
constrains are used in any block of r consecutive iterations. This extension 
becomes useful to prove convergence of  special versions of the algorithms 
adapted to the interval problem (k.e., when the constraints are of  the form 
c <_ A x  <- d) .  Our proofs are given under almost cyclical control, although 
we have not been able to find a satisfactory convergent relaxation scheme 
for these special versions. 

Finally, we give a sufficient and easily checkable condition for a 
function defined on all R" to belong to the set B of Bregman functions. 

In Section 2, Bregman functions and projections are introduced with 
some important properties. The relaxed algorithm is presented in Section 
3, and its convergence is established in Section 4. Section 5 discusses the 
sufficient condition for Bregman functions, and Section 6 consists of some 
final remarks. 

Here and below N" stands for the Euclidean n-space and R~ is the 
orthant of  nonnegative vectors. Vectors are assumed to be column vectors, 
and T denotes transpose. ,q is the closure of  the set S, ( ,  } is the usual inner 
product in R", and [[. 11 is the Euclidean norm. 

2. Bregman Functions and Projections 

In this section, we follow closely Censor and Lent (Ref. 6). Let A be 
a subset of  ~", and let f :  A ~ R. Let S be a nonempty, convex set such that 

C A. Assume that f ( x )  has continuous first partial derivatives at any x c S, 
and denote by Vf(x)  its gradient at x. 

From f construct the function D: S x S C ~2n -~ R by 

D(x ,  y)  = f ( x )  - f ( y )  - (Vf(y),  x - y). (2) 

Consider the partial level sets of D, for a c ~, 
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L~(y, a) = {x ~ F,: D(x, y) <- at ,  (3a) 

L2(x, ce) = {y ~ S: D(x, y) -< a}. (3b) 

Definition 2.1. A f u n c t i o n f : A _ c ~ " ~ R  is called a Bregman function 
if there exists a nonempty, open convex set S, such that S c_ A and 

(i) f(x) is continuously differentiable at every x c S; 
(ii) f(x) is strictly convex on S; 
(iii) f(x) is continuous on S; 
(iv) for every a ~ R, the partial level sets L1(y, a) and L2(x, a) are 

bounded for every y ~ S, and every x ~ S, respectively; 
(v) if yk ~ y .  ~ ~, then D(y*, yk) ~ 0; 

k-~oo 

(vi) if  D(x  k, yk) ~ O, yk ~ y ,  C S, and {x k} is bounded, then 

x k ...... ~ y*. 
k--~oz 

We denote the family of  Bregman functions by B and refer to the set 
S as the zone of the function f 

Proposition 2.1. Foreveryf6B, D(x,y)>_OandD(x,y)=O, ittx=y. 

Proof. See Ref. 6, Lemma 2.1. 

Let us now define Bregman projections. 

[] 

Definition 2.2. Given a closed convex set C C R n such that C ~ S ~ ~ ,  
let P c : S - ~ "  be defined as 

Pc(Y) = arg mi_n D(x, y). (4) 
x E C c ~ S  

We call Pc(Y) the Bergman projection o fy  on C (with respect to f ) .  Existence 
and uniqueness of  Bregman projections when f is a Bregman function are 
guaranteed by Lemma 2.2 of  Ref. 6. 

A key role in Bregman's method is played by Bregman projections on 
hyperplanes. We take a closer look at such projections now. 

Definition 2.3. (i) A function f ~  B with zone S is said to be zone 
consistent with respect to the hyperptane H, if PH(y) c S for every y ~ S. 

(ii) A function f c  B with zone S is strongly zone consistent with 
respect to the hyperplane H and the point y ~ S, if it is zone consistent with 
respect to H as well as every hyperplane H '  parallel to H which lies between 
y and H. 
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I f  H is given by 

H = {x ~ R", (a, x) = b} 

a n d f  is zone consistent with respect to H, then PH (y) is the unique solution 
of 

Vf(x) = Vf(y) + ha, (5a) 

{a, x) = b, (5b) 

where t is a real number  uniquely determined when a and b are fixed, i.e., 
is the unique real number  for which (5) has a solution. This statement is 
proved in Lemma 3.1 of  Ref. 6. We will write 

X = n ,~(y)  (6) 

and call A the Bregman parameter  associated with the Bregman projection 
of y on H (for the representation of H given by a and b). 

Proposition 2.2. Let 

H = { x c N " :  ( a , x ) =  b}. 

I f  f is a Bregman function zone consistent with respect to H, then, for a 
and b fixed, 

IIn(y)(b-(a,y))>O, i f(a,y)#b. 

Proof. See Lemma 3.2 in Ref. 6. [] 

3. Relaxed Bregman's Method 

In this section, we describe the relaxed Bregman's method for solving 
problem (1). Let 

A c R  ''x~, b~R", C = { x ~ " :  Ax<-b}, 

and let f :  AC_R" ~ R  be a Bregman function with zone S. Let a i be rows 
i of  A, a i # 0; and let e i be the vector with components  ej = 6~ (Kronecker 's  

delta). Assume that f is strongly zone consistent with respect to the hyper- 
planes 

Hi={xcl~":(ai, x)=bi}, l<_i<_m. 

Let ~ > 0 and ~ a {ak}k=0 be sequence of real numbefs such that e-< ak-< 1, 
which will be called the relaxation parameters.  
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Consider an almost cyclical control sequence i ( k ) ,  i.e., a sequence 
i ( k ) c { 1 , 2 , . . . , m }  such that there is a constant r so that, for all j ~  
{1, 2 , . . . ,  m} and all positive integer k, there exists 16 { 1 , . . . ,  r} with j = 
i ( k + l ) .  

Given an arbitrary z ° M ~ ÷ ,  define a sequence {(x ~, zk )}cR  "+" by 

Vf(x ° ) = - -ATz  °, 

V T ( x  k+l) ~" ~ f ( x  k) "~ cka i(k), 

Z k + l  = Z k __ Cke i(k), 

where 

Ck = min{z~k), Elk}, 

tk = lqmk)(Xk), 
H ( k )  = {x  ~ g~': (a ,(k), X) = akbi(k)+ (1 -- ak ) (a  i(k), xk)}.  

(7) 

(8) 
(9) 

(lO) 
(11) 

(12) 

From now on, the preceding notation will be used with reference to 
the algorithm defined by (7)-(12). For further simplification, let 

~<k > = akbi( k ) + (1 --O~k)(a i<k >, xk) .  

Note that, when Ck = fig, then 

x k+l = Pu(k ) ( xk ) .  

When ck ¢ l k ,  X k+l is also well defined, since Eq. (8) has a unique solution 
x k+~ for any value of  Ck when f is a Bregman function, as can be easily 
checked. Also, by strong zone consistency, x k+~ c S when Ck = t k ,  because 
H ( k )  is parallel to Hi(k) and lies between Hi(k) and x k, since 0 -  < ak <- 1. 
When Ck ~ t k ,  X k÷i also belongs to S, since it will be shown later (Proposition 
4.4) that, in that case, x k+l is the Bregman projection of x k on a hyperplane 
parallel to H ( k )  hence to H~(0k), lying between x k and H(k ) ,  and strong 
zone consistence applies again. 

4. Convergence Results 

We give now a complete proof  of convergence of  the relaxed Bregman's 
method under almost cyclical control. We follow the convergence proof  of 
Censor and Lent (Ref. 6), which is a streamlined version (with the addtion 
of  almost cyclical control) of  Bregman's original convergence proof  (Ref. 
5). Steps 1, 3, 4 of Censor and Lent are kept virtually untouched and appear 
as Proposition 4.2, Proposition 4.7, and Corollary 4.3 in our proof. The 
remaining steps of Censor and Lent's proof  are not applicable to the relaxed 
case. Our Proposition 4.10 substitutes for Proposition 4.1 and Lemmas 7.1, 
7.2, 7.3 in Ref. 6. 
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Proposition 4.1. Assume that 

H i = { x ~ R " : ( a , x ) = b i } ,  i = 1 , 2 ,  

are two parallel hyperplanes in ~". Then, i fy  c S a n d f ~  B is zone consistent 
with respect to both hyperplanes, we have 

[IHI(Y) < [IH2(Y)(=~ bl < b2. (13) 

Proof. See Lemma 3.4 in Ref. 6, observing that I In l (y )=  IIH2(y) iff 
bl = b2.  [] 

The following propositions describe the behavior of the sequence 
defined by the algorithm and lead to our main convergence result. 

Proposition 4.2. Vf(x  k) = - A T z  k, for all k. 

Proof. It proceeds by induction. The result is true for k = 0, by (7). 
Assume that it is true for any k. Using (8) and (9), 

V f ( x  k+l) = Vf(x k) + cka i(k) 

= - -AT(z  k _ ckai(k))= --ATz k+l. [] 

Proposition 4.3. zk-- > 0, for all k. 

Proof. It proceeds again by induction. The result is true for k = 0, by 
definition of z °. Assume that it is true for any k. Then, 

z/k+ 1 ~zki~o,  i f i # i ( k ) ,  
=[zk--ck>--O, i f i = i ( k ) ,  

because of (10). [] 

Proposition 4.4. The following results hold: 

(i) x k+l = P~(k)(Xk), Ck = II~(k)(Xk), where 

IZI ( k ) = {x ~ R" : ( a i(k), x) = ykbi(k) + (1 -- yk)( a i(k), xk)}, 

for some Yk such that 0 -  < y k -  < ak; 
(ii) if ck = ilk, then 7k = ak a n d / 4 ( k )  = H(k) ;  
(iii) if ck¢/3k, then yk < ak and (a i~ ,  xk+l)</~i(k~; 
(iv) i f y k = 0 ,  t h e n x  k+ l=x  k. 

Proof. Note that x k+l is the Bregman projection of x k on the hyper- 
plane 

IY-I(k ) = {x ~ R": (a '(k~, x) = (a i(k~, xk+'}}, 
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because X k ÷ l  belongs to H(k)  and together with (8), this has the form 
prescribed by (5). So, 

ck = II~(k)(Xk). 

It remains to be seen that the right-hand side in the definition o f /4 (k ) ,  i.e., 
(a  ~(k), xk+l),  has the desired form. 

It is clear that, if  Ck = t k ,  then /4(k)  = H ( k ) ,  and we may take Yk = ak,  
proving at the same time part (ii). On the other hand, if Ck ~ Elk, by (10) 
and Proposition 4.3, 

O ~  zki(k)'~ C k <Elk" (14) 

Now, 

0 <_ D ( x  k+l, x k ) + D ( x  k, X k+l  ) 

= ( V f ( x  k+l) - Vf(xg), x k+l __ X k )  

= Ck(a i(k), X k+l -- x k ) .  (15) 

If  ck = 0, then x k+l = x k by (15) and Proposition 2.1, and we may take 7k = 0. 
From (14), the only remaining case is 0 < ck </3k, i.e., 

0 < l-Imk)(x k) < IImk)(Xk). 

By Proposition 4.1, 

(a i(k), x k) < (a '(k), x k+l) </~(k), 

and there is a yk s (0, ak) satisfying the lemma. This establishes parts (i) 
and (iii). For part (iv), observe that Yk = 0 implies 

( a  i(k), X k+l - - x  k) = O. 

From (15) and Proposition 2.1, get x k+l= x k. [] 

Let us now define the Lagrangian of problem (1), 

L(x ,  z )  = f ( x )  + (z, A x  - b), 

and 

dk = L ( x  k÷l, z k+l) - L ( x  k, z k). (16) 

Proposition 4.5. We have 

D ( x  k+l , x/') + (1 - y k ) D ( x  k, x k+l) = yl, dk. 
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ProoL Observe that  

7kdk = Yk[ ( A  r (z  k+~ - zk) ,  x k+~) - (z  ~+~ - z ~, b) + D ( x  ~+~, xk)] 

= yg [ (V/(x  ~) - V/ (xk+ ' ) ,  X g+~) - (z  k+' - z ~, b) + D ( x  ~+', xk)] 

= yk[Ck(b i (~- - (a  '(~, Xk+l))+D(x k+l, Xk)]. 
By Proposi t ion 4.4, 

x~+~ = Po(~(x~) ,  

SO 

(17) 

(a i(k), x k+l) = 7kb~(k~ + (1 -- 7k)(a *(k), X k ) ~ T k ( a  *(k~, X k+l ) 

= ~,~b~(k)+ (1 - ~,k)(a ~(k~, x k _ x k + l ) ~  "/k (b~(k) - ( a  ~(k3, xk+l ) )  

= (1 - ~,k)(a ~k~, x k+l - x k ) .  (18) 

Substituting (18) into (17), we have 

ykdk = (1 -- 7k)ek(a '(k), X k+l -- Xk )+  y k D ( x  k+l, X k) 

= (1 -- y k ) ( V f ( x  k+' ) - - V f ( x k ) ,  X k + l -  Xk )+  T k D ( x  k+l, X k) 

= (1 - y k ) ( D ( x  k+l, X k) + D ( x  k, xk+l))  + y k D ( x  k+l , X k) 

= (1 - y k ) D ( x  k, xk+l) + D ( X  k+l, xk ) .  [] 

Corollary 4.1. dk --> O, for all k. 

Proof.  I f  Yk = 0 ,  f rom Proposi t ion 4.4(iv) x k+l = x  k, so ck = 0  and 
Z k + l  = Z k. So~ 

dk =- L ( x  k+l, z k+l) - L ( x  k, z k) = O. 

Otherwise, f rom Proposi t ion 4.4(i), 0 < 7k -< ak-< 1, and the result follows 
f rom Proposi t ions 4.5 and  2.1. []  

We prove now that  L ( x  k, z k) is a b o u n d e d  sequence. 

Proposition 4.6. We have 

L ( x  k, z k) <- f ( z )  - D ( z ,  x k) <- f ( z ) ,  for all z ~ C c~ S. 

Proof,  Take z c C c~ S. Since A z  <- b and z k >- O, 

( a r z  k, z - x k ) = (z k, a z )  - ( z  k, a x  k ) <- (z  k, b - a x k ) .  (19) 

On the o ther  hand,  

D ( z ,  x k) = / ( z ) - f ( x  k) - - (V  f ( x k ) ,  Z - -X  k ) = f ( z ) - - f ( x k ) + ( a r z  k, z -- x k ) 

-<- f (  z ) -- f (  x k ) + (z k, b - A x  k ) = f ( z )  - L(  x k, zk) ,  

produc ing  the left inequality. The right one follows f rom Proposi t ion 2.1. 
V"] 
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Corollary 4.2. The s e q u e n c e  L ( x  k, z k) converges. 

Proof. By Corollary 4.1, the sequence is increasing. By Proposition 
4.6, it is bounded above by f ( z )  for any z ~ C ~ & Then, it converges. 

[] 

Corollary 4.3. The sequence {Xk}k~°= o is bounded. 

Proof. Take any z c C c~ ~ Applying Corollary 4.1 recursively and 
Proposition 4.6, we have 

D(z,  x k) <- f (z )  - L ( x  ° z°). 

So 

x k c {x ~ ~": D(z ,  y)  ~ f ( z )  - L ( x  °, z°)}. 

Such set is bounded by Definition 2.1(iv). [] 

It follows from Corollary 4.3 that {x k} has a convergent subsequence. 
From now on, let lSXJkl~Sk=I be a convergent subsequence of {xk}. 

Proposition 4.7. limk_~ D ( x  k+~, x k) = O. 

Proof. From Propositions 2.1 and 4.5, since Yk -< Ok--< 1, we have 

O<--D(xk+l, Xk)<--Tkdk <--dk ~0, 
k -*  oo 

by Corollary 4.2. [] 

Proposition 4.8. Assume that x jk -~k~o~ x*. Fix t and take a sequence 
l oo - - * ~  { k}k=~ with /k~{1, t}. Then, x jk+tk -~k-,~ x*. 

r j + l ~ o o  Proof. Consider first the t sequences Ix ~ J~k=m, with 1--< l-< t. Since 
they are subsequences of {xk}, they are all bounded. Observe that, by 
Proposition 4.7, 

D ( x  jk+'+l, x jk+~) ~ O, for all s c { I , . . . ,  t}. 

So, applying recursively Definition 2.1(vi), we conclude that 

X jk+t > x*,  O ~  l ~  t. 
k -~ oo 

Interlace these t + 1 sequences, forming the sequence 

X j l ,  x J l +  1, . * • , X j l + t ,  X J2 X'12 + 1 ,  * • . , X 3 2 + t ,  . • • ~ x J k ~  X j ~ + l ,  . . • , X j k + t ,  . . . .  

(2o) 

This sequence converges to x*, and {x j~+l~} is a subsequence of it. [] 
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Proposit ion 4.9. I f  x j~ , x*,  then x* 6 (7. 
k ~ c o  

Proof. Take p ~ { 1 , . . . ,  m} and I g c { 1 , . . . ,  r}, such that 

i(jk + lk) = p (21) 

[r  is the constant of  almost cyclicality in the definition of  the control 
sequence i(k)]. By Proposition 4.8 (with r = t), 

xJk+lk  > X :~. 
k-> oo 

Take a subsequence {x ~} of  {x j~+t~} such that 

Ys~ ~ Y, a,~ > a - a. (22) 
g -e-o0 k - ~ o o  

By (21), we have 

(a p, x s~+1} = ys~bp + (1 - y~)(a p, xS~). 

Taking limits as k ~ oo above, we have 

( a p, x*) = ybp + (1 - y )( a p, x*)  ~ y(  ( a p, x*) - bp ) = O. 

If  y # 0 ,  

(a p, x* )=  bp. (23) 

If  7 = 0, we have y,~ # ask for big enough k, because of (22). So, 

(a p, x sk+l ) < a,~bp + (1 - as,)(a  p, xSk), (24) 

because of Proposition 4.4(iii). Taking limits in (24) as k ~ m, 

( a p, x*)  <- abp + (1 - a )( a p, x*),  

o r  

0 <- oe(bp - ( a  p, x * ) ) ~ ( a  p, x*) <- bp. (25) 

From (23) and (25), x* satisfy the pth-constraint. Since p is an arbitrary 
index, we get A x  *<  - b; so, x*~ C. [] 

For x c C, define 

L(x) = {i: (a ~, x ) <  b,}, 

I2(x) = {i: (a i, x)  = bi}. 

Jk+~+l = 0, for all p in Proposition 4.10. Assume that x jk --> x*. Then, zp 
I~(x*) (r is the constant of  almost cyclicality). 
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Proof. Let 

p = (E/S) rain { [ b p - ( a  p, x* ) ] / l laP l l }>  O. 
p~ 1 l(x*) 

By l~oposition 4.8, there exists/Co such that 

IlxJ~+'-x*ll<p, f o r a l l l c { O , . . . , r + l } a n d k > _ k o  . 

Given p ~ I~(x*) ,  define 

Ik = om_<axr{/: i ( j k  + l) = p}.  

The existence of  lk is guaranteed by almost cyclicality. Let Sk = l k+jk .  
Assume flsk = csk. Then, 

(a  p, x ~k+l ) = a~bp + (1 - o~sk )(a p, xSQ 

~ ( a  p, x sk+l - x .'i'k ) = ask( bp - ( a  p, x '~)) .  

Therefore, 

a ,k (b  p - (a  p, x*~)) < (a  p, x "k+' - x *k ) + ask(a p, x sk - x* )  

-< II a" II(llx'~+'- x'k II + - ~  IIx'~ - x*l[) 

-< Ita~ It(lix s~+~ -x* l l  + (1  +.~)11 x~k - x*ll) 

-< Ila~ll(2+ ~s~)p-< 4pllaPll, f o r k - g o .  (26) 

S o  

4p > E([bp - (a p, x*)] t  I1 a" II) -> 5p, 

a contradiction. It follows that 

~,~ ~ cs~ ~ z ~ k  = csk ~ z ~  ~+~= 0. 

By the definition of  Ik, the index p is not used in iteration jk + I for lk < 1 <-- r, 
so z~ k+~ remains unaffected. We conclude that 

Jk+r+l • O. gp 

Observe that (26) holds even when 1 - ask - 2, i.e., for the overrelaxed case. 
[] 

Proposition 4.11. IfxJk'->X * and z~k=O, f o r p ~ I i ( x * )  and all k_>O, 
then x* is a solution of  problem (1) with the additional constraint x c S. 
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Proof. Observe that 

(z~% A x  ~ - b) = ( A  rzi% x jk - x*) ,  

because 

Zip k = O, p e I i ( x * ) ,  

(a  p, x*)  = be, p e I2(x*). 

Then, 

(z  J% a x  jk - b ) =  - (Vf(xJQ,  x jk - x * )  

= - D ( x * ,  x jk ) + f ( x * )  - f ( x  jk) , O, 

using Definition 2.1(i), (iii), (v). So, by continuity o f f  and Proposition 4.6, 
for any z e C c~ S, we have 

f ( x )  >- l ira L ( x  jk, z jk) 

= lira [ f (x  ~) + (z  j*, A x  j~ - b)] = f (x*) .  
k-~co 

It follows that x* is a minimizer o f f  on S n  C. U] 

Let now problem (1') be 

minf (x ) ,  (l 'a) 

s.t. A x  <- b, (l 'b) 

x e S. (l 'c) 

We present our main convergence results as the following theorem. 

Theorem 4.1. Let the following conditions hold: 

(i) f e B ;  
(ii) f is strongly zone consistent with respect to each Hi, i e 

{1 , . . . ,  m}; 
(iii) {i(k)}~=o is an almost cyclical control sequence on {1 , . . . ,  m} 

with constant r; 
(iv) z°e  R~'; 
(v) C c ~ $ ~ 0 .  

Then, any sequence generated by (7)-(12) convergex to a point x* e 
which is the solution of  problem (1'). 
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Proof. By Corollary 4.3, there is a convergent subsequence 

X j~ ~' X * .  
k-:.oc~ 

By Proposition 4.9, x* e C c~ S. By Proposition 4.10, there is another conver- 
gent subsequence 

xSk  ) X ¢~ ' 
k -~ oo 

satisfying the hypothesis of Proposition 4.11. So, x* is a solution of  problem 
(1'). By the strict convexity of f [Definition 2.1(ii)], such a solution is 
unique. Hence, all convergent subsequences of {x k} have the same limit, 
namely x*. Ift follows that 

X k )' X * .  [ ]  
k ~ oc; 

Observation 4.1. The hypothesis that ak -< 1 is used only in the proof 
of Proposition 4.7 and Corollary 4.1. Remove the condition ak--< 1, but 
assume that, for all k: 

D ( x  k, x k+l) <- D ( x  k+l, Xk), (27) 

0 <  El--< ak~< e 2 < 2 ,  ~1, E2>0.  (28) 

By Proposition 4.5, 

ykdk = D(X k~ l, X k) - D ( x  k, x k+l ) + ( 2 -  y k ) D ( x  k, x k+l) 

--- (2 -- yg)D(x  a, x k+a) >--- ( 2 -  C~k)D(x k, x k+l) >--0, 

and Corollary 4.1 holds. As in the proof of Proposition 4.7, 

0 -  < (2 - e2)D(x k, x k+l ) 

-< (2 - ak)D(  x k, x k+l ) 

<-- 'ykdk ~ 0 
k~o~ 

~ D ( x  k, x k+l) ~ O. 
k ~oo 

So, if (27) holds, the algorithm converges with relaxation parameters crk 
subject to (28), i.e., also in the overrelaxed case (disregarding the zone 
consistency issue). 

A sufficient condition for (27) to hold, depending only on f, is that 

D(x,  y) = D(y,  x), for all x, y ~ S. (29) 

Condition (29) is true for 

f ( x ) =  x r Q x  + qTx, (30) 
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with Q ~ R  n×n symmetric, positive definite and q ~ R  ". In summary, the 
convergence of Hildreth's quadratic programming algorithm with almost 
cyclical control (Ref. 8) and relaxation parameters ak satisfying (28) is a 
particular case of our proof (in this case, the zone is all R~). 

We conjecture that (30) is the only solution of condition (29). 

5. Characterization of a Family of Bregman Functions 

Although Bregman's method (Ref. 5) was devised for solving problem 
(1) when f is a quadratic function or the maximum entropy function, it is 
important to provide easily checkable conditions guaranteeing that a func- 
tion f belongs to the set B, which allow the extension of  possible applications 
of  the algorithm. In this section, we provide such a condition, for functions 
defined on all R". 

Let f :  R" ~ R such that: 

(I) f is twice continuously differentiable and strictly convex; 
(II) l imlrx l l_ ,~[ f (x ) / l lx l []=oo.  

Theorem 5.1. I f f  satisfies (I) and (II), then f ~  B. 

The proof of Theorem 5.1 requires four lemmas. Before presenting 
them, observe that, in Definition 2.1, conditions (v) and (vi) hold trivially 
in the interior of the domain as a consequence of condition (i) and need 
to be checked only on the boundary of S. So, when considrering functions 
defined on all N", those conditions are void. Also, in this case, condition 
(ii) is a consequence of (I), which also implies conditions (i) and (iii) of 
Definition 2.1. The only trouble lies in condition (iv). 

Consider a function g : R" - {0} ~ R such that: 

(III) g is twice continuously differentiable; 
(IV) limllxll_,~ g ( x )  = oo; 
(V) the function h :R" - R defined by h ( x )  = llxllg(x), if x # 0, and 

h(0) = 0, is strictly convex. 

For x # 0 ,  define ~ x : R > o - R  as 

~p~(A ) = (x, Vf(Xx)), 

where ~>o is the set of positive real numbers. Because of (III), ~p~ is 
continuously differentiable. 

Lemma 5.1. For any x¢O,  qx(1)-<O implies q~x(/)-<O, for all h e  
(0, 1]. 
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Let 

So, 

Proof. Assume that there exists a ~o ~ (0, 1) such that 

~ ( ; to )  > 0. 

,~, = inf{,x >Xo: ~ ( x ) = 0 } .  

(31) 

~x(A)>0,  for ,~ ~ (,~o, AI). (32) 

Since ~x is continuous, A1 is well defined and 

~x(A1) =0;  (33) 

also, 

~'(A1)_<O, (34) 

because otherwise 

~x(A) < ~px(A1), for  A c ( A l - a ,  A1), 

in contradiction with (32). From (33), (34), we have 
+ 2 p 0>--2A~(A~) A~x(A~)=2A~xrVg(A~x)+ A2xrV2g(A~x)x 

= 2yrVg(y) +yrV2g(y)y, with y = AlX, (35) 

where V2g is the Hessian matrix of g. From condition (V), we have 

0 < yTV2h(y)y = 2yrVg(y) +yrVZg(y)y, 

in contradiction with (35). [] 

Lemma 5.2. For every x # 0, there exists/z > 1 such that Cx(/z) > 0. 

Proof. Otherwise, 

O>-¢x(/z)=xTVg(tzx), for a l l / z>  1. 

Then, by the mean-value theorem, 

g(/zx) <- g(x), for all/x > 1, 

in contradiction with (IV). [] 

Let 

V = {x ~ ~ -{0}: xTVg(x) --O} = {x ~ R ~ -{0}: ~p~ (1) --< 0}, 

and let 

¢7= vn{x~R": Hxll-> 1}. 
By continuity of  ~x, 1~ is closed. 
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Lemma 5.3. V is a bounded set. 

k co Proof. Suppose that there exists a sequence {x }k=l C V such that 
Ilxkll ~ .  Let x* be a cluster point of {xk/llx~ll}. Take any /x  >- 1. 
Given E > 0, take k such that 

Let 

So, 

llxk/llx~ll-x*ll<~/~ and l lxkll>~. 

, = ~/llxkll < 1. 

IIAx k -  ~x*ll < ~. (36) 

By Lemma 5.1, Ax k ~ V. Since ~ - 1, Ax k c V. Since V is closed, (36) implies 
tha t /~x*~ VC V. So, 

q~,(/z)-< 0 for all/x >- 1, 

in contradiction with Lemma 5.2. [] 

Lemma 5.4. I f f  satisfies conditions (I) and (II), then 

(i) limllxlt~,~(f(x)-aTx) =co, for all a c R n ;  
(ii) limll,:jl_,o~[(x-a)'rvf(x) - f ( x ) ]  =co, for all a ~R". 

Note. Part (i) of this lemma is proposed as an exercise in Ref. 9, p. 110. 

Proof. (i) Take M such that 

f(x)/llxtl >-211011, for Ilxtl > M, 

using (II). Then, 

Ilall Ilxll <--f(x)- Ilafl Ilxll <--f(x)-a'rx, 

and the left-hand side tends to infinity as I lxl l- ,~,  if a ~ 0 .  If a = 0 ,  (i) 
follows directly from (II). 

(ii) For any p > 0, consider the function 

f ( x )  =f (x  + a) + p. 
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Clearly, f satisfies (I) and (II). So, g(x )=f (x ) / { I x l l  satisfies (III), (IV), 
(V). From Lemma 5.3, 

V= {x ~ R" -{0}: x r V g ( x )  <- O} 

is bounded. Take M such that, for Ilyll > M, 
yTVg(y )  >-- O. 

Then, for Ilyll > M, 
O < - - y T V g ( y ) = ( 1 / l l y { l ) E y Z V f ( y ) - f ( y ) ] ~ O < y W f ( y ) - f ( y ) .  (37) 

Let x = y + a. It follows from (37) that, for [I x 1[ -> M + II a II, 
0 <- (x - a) TVf (x)  - - f ( x )  -- p ~ p <-- (x -- a) TVf (x)  - - f (x) .  

Since p is arbitrary, (ii) holds. [] 

Proof of Theorem 5.1. As noted before, only condition (iv) in 
Definition 2.1 has to be checked. We have 

L l ( y  , a ) = {x :  f ( x )  - ~ T f ( y ) T x  <-- Ot + f ( y )  - Vf(y) Ty}. 

Applying Lemma 5.4(i) with a = Vf(y), we conclude that 

f ( x ) - V f ( y ) r x  , oo. 
tlxl[-,~o 

So, LI(y, a) is bounded for all y e  R". For 

Lg(X , a ) ---- {y: (y - x) rV f(y) - f ( y )  <-- a - f (x )} ,  

apply Lemma 5.4 (ii) with a =x,  and conclude that 

( y - x ) r V f ( y ) - f ( y )  > oo. 
I[yH-~oa 

So, L2(x, a) is bounded for all x ~ R ". [] 

Condition (II) is not a necessary condition for a function to belong to 
B, even for twice continuously differentiable functions defined in all R ", as 
the following example, with n = 1, shows: 

= ~½(x2-4x+3),  if x--< 1, 
f ( x )  [ - l o g  x, if x>-- 1, 

It is straightforward to verify that f is a twice continuously differentiable 
Bregman function; however, 

lim [ f ( x ) / x ]=O.  
x~-t-oo 

6. Final Remarks 

The question of convergence of algorithm (7)-(12) in the overrelaxed 
case (i.e., with 1-< t~k-< e2<2) remains open. Observe that an a priori 
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restriction in such case is that zone consistency is required with respect to 
all hyperplanes parallel to any constraint lying between any point of S and 
its reflection on that constraint, rather than the constraint itself, just in order 
to have all the iterates within the domain of  f. Such a condition seems 
almost infeasible unless S = R n (it is not satisfied by the x In x entropy 
function, for instance). But it may be the case that the overrelaxed algorithm 
converges when f is defined on all R ~, or with an additional condition on 
f less restrictive than condition (29), which, as noted before, is conjectured 
to hold only in the quadratic case. 

Another open problem is to find easily checkable conditions for f to 
be a Bregman function, even when S ~ E~, or at least f o r f  to satisfy condition 
(iv) of  Definition 2.1 in such a case. A possible useful observation in 
connection with this issue is the fact (rather immediate) that the set of 
Bregman functions is a positive cone, i.e., that a positive linear combination 
of Bregman functions, all with the same zone S, is a Bregman function with 
zone S. 

Note that our convergence proof  can be trivially adjusted to the problem 
of equality constraints, in which case Eq. (10) is replaced by 

Ck=~k, 

and t:he dual variables [i.e., Eq. (9)] are eliminated. The sequence generated 
by this algorithm, however, is not the same as the sequence which results 
from converting each equality into two inequalities and then applying 
(7)-(12), if the relaxation parameters ak are not all equal to one. 
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