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Partitionable Variational Inequalities with 
Applications to Network and Economic Equilibria 

S. C.  D A F E R M O S  1 A N D  S. C .  M C K E L V E ¥  2 

Communicated by F. A, Potra 

Abstract. In this paper, we describe a useful class of finite-dimensional 
variational inequalities which we call partitionable. These variational 
inequalities are characterized by state functions which can be thought 
of as nonlinear separable functions added to antisymmetric linear func- 
tions. In the case of partitionable variational inequalities, questions of 
the monotonicity and coercivity of the state function can be addressed 
by considering the monotonicity and coercivity of a series of lower- 
dimensional functions. These functions are generally simpler to investi- 
gate than the state function. In the applications, these lower-dimensional 
functions are usually the natural functions to consider. To demonstrate, 
we conclude the paper by reviewing several models in the recent 
literature which give rise to partitionable variational inequalities. 

Key Words. Variational inequalities, network equilibrium, existence, 
uniqueness, sensitivity analysis, economic equilibrium. 

I. Introduction 

The concept  of  equilibrium is central to many  disciplines, economics, 
regional science, transportation science, game theory, and operations 
research for example.  Despite the differing contexts in which they arise, 
equilibrium problems share many  common characteristics, namely a number  
of  competing entities each trying to optimize its personal utility within an 
environment affected by the actions of  itself and its competitors.  Mathemati-  
cally, the equilibrium state, if  one exists, resulting from such a situation is 
characterized by a set of  mathematical  conditions. These equilibrium condi- 
tions vary considerably from one model to the next, and yet many may be 
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studied in a mathematically unified manner through the theory of variational 
inequalities. Specifically, the equilibrium conditions may be cast in the form 
of the variational inequality problem VI(F, K); namely, find an element g 
in K so that 

F(:~)'r(x-:~)>-O, V x ~ K ,  

where F is a function defined on a closed convex set K ___ R ~ which takes 
values in R" [see, e.g., Kinderlehrer and Stampacchia (Ref. 1)]. 

In this paper, we introduce a class of variational inequalities, called 
partitionable variational inequalities, the members of which capture the 
underlying structure of many equilibrium problems, including the traffic 
equilibrium problem [see Dafermos and Nagurney (Ref. 2)], the spatial 
price equilibrium problem [see Florian and Los (Ref. 3), Freisz et al. (Ref. 4), 
Tobin (Ref. 5)], and the general equilibrium problem in economics [Zhao 
(Ref. 6)]. While partitionable variational inequalities have appeared in the 
literature, they have not been characterized as such. In this paper, we 
characterize this class of variational inequalities and carefully examine the 
properties of its members. 

Formulating equilibrium problems as partitionable variational 
inequalities allows us to address the questions of the existence and unique- 
ness of equilibria by considering, independently, members of a set of 
functions each of which is far simpler than the state function F of the 
variational inequality. We also obtain detailed sensitivity analysis results 
through the partitionable variational inequality formulation. 

We begin this paper by offering a definition of partitionable functions. 
If a function F is partitionable, then the definition also defines a set of 
functions called the partitions of F. These partitions are functions defined 
on domains of lower dimension than the function F. The partitions of F 
play a key role in the remainder of the paper. 

Following the definition of partitionable functions, a structure theorem 
is proved giving necessary and sut~cient conditions for a function F to be 
partitionable. Essentially, we show that F is partitionable if and only if F 
is the sum of linear and nonlinear parts, where the linear parts possess a 
certain antisymmetry. 

The properties of partitionable functions are investigated in the remain- 
ing sections of the paper. For general variational inequalities, questions 
concerning the existence and uniqueness of equilibria, as well as sensitivity 
analysis, are often answered by referring to the state function F of a 
variational inequality and asking if F is coercive or monotonic. The question 
of convergence of algorithms for variational inequalities also often involves 
monotonicity and coercivity. In Section 3 of this paper, we see that the 
questions of monotonicity, strict monotonicity, strong monotonicity, or 
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coercivity can be answered by analyzing the partitions o f /7  We show that, 
for each of these four properties, the state function F possesses the property 
if and only if all of the partitions possess the same property. Thus, the 
analysis can shift away from the state function F to the lower-dimensional, 
and presumably simpler, partitions of F. 

Once we have shown how the coercivity and monotonicity of the 
function F is related to the coercivity and monotonicity of the partitions, 
we address the issues of existence and uniqueness of solutions to variational 
inequalities in which F is partitionabte. These results are straightforward 
applications of standard existence and uniqueness results to the special 
case of partitionable functions. See Kinderlehrer and Stampacchia (Refo 1) 
for a concise discussion of existence and uniqueness in variational 
inequalities. 

Next, we consider the important question of sensitivity analysis. We 
approach this topic from two distinct perspectives. In the first case, following 
the approach of Dafermos and Nagurney (Ref. 2), we consider global 
perturbations in the state function F. The necessary conditions for perform- 
ing this analysis are quite easily satisfied. We require the continuity and 
strict monotonicity of the partitions of F before the perturbation and the 
continuity of the state function after the perturbation. Of course, in both 
instances, we assume the existence of at least one solution to the variational 
inequality. 

Our second consideration in the realm of sensitivity analysis is the case 
of local or parametric sensitivity analysis. In this case, we impose only local 
conditions on the partitions and are rewarded with very detailed information 
for small perturbations. Our work here follows the approach of Dafermos 
(Ref. 7). 

We end the paper with three examples of equilibrium problems from 
the recent literature which have been formulated using partitionabte vari- 
ational inequalities. These examples show the breadth of application for 
partitionable variational inequalities. 

2. Partitionable Functions and Partitionable Variational Inequalities 

Many equilibrium problems found in the social sciences share a com- 
mon structure. As we shall see in Section 6, examples include the traffic 
equilibrium problem [Daferrnos and Nagurney (Ref. 8)], the spatial price 
equilibrium problem [Freisz et al. (Ref. 4), Tobin (Ref. 5)], and the market 
equilibrium problem [Dafermos and McKelvey (Ref. 9)]. In this section, 
we introduce a class of variational inequalities, called partitionable vari- 
ational inequalities, which captures this common structure. 
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Definition 2.1. Let F :  K ~_ ~" -~ R" be continuous, where K is a convex 
set. The function F is said to be partitionable of  order rn over K if 

[F (x )  - F(y)]r(x--y) = ~ [ f ( x , ) - - f ( y , ) l r ( x , - - y , ) ,  (1) 
i=l 

for some continuous functions 

f : K~ _ R "' --> R"', i = 1 , . . . ,  m, (2) 

with convex domains K~ _ R",, each of  which contains an open neighborhood 
of  R",, such that 

fi K i=K 
i=1 

and for any x~, y~, i 

X "~- 

kxm_! 

c_R ~, (3) 

= 1 , . . . ,  m, where we let 

Y2 y-~- 

The functions f are the partitions of F. 
The condition that each K~ contains an open neighborhood may seem 

a bit restrictive. However, it is easy to see that this is really no restriction 
at all. Suppose that some K~ fails to contain an open ball in [~"'; then, the 
convexity of  K~ implies that Ki lies in a hyperplane of  R", with dimension 
strictly less than n~. If  we let n~ be the dimension of  the smallest hyperplane 
which contains Ki, then there exists an invertible linear change of  variables 
which places the image of K~ into R "~. This image does contain an open 
neighborhood of  R ~;, and the conditions of the definition are met. 

In applications, we seldom need to invoke this transformation. As we 
shall see, all the applications developed in this paper lead naturally to 
formulations with suitably large Ks. 

The partitions of  a partitionable function are not, in general, unique. 
From the definition of  partitionable function, it is clear that, if  f~(x~) is a 
partition o f / 7  then any function which differs from f~(x~) by a constant 
vector is also a partition of F. 

It is also possible that the feasible set K can be written as a Cartesian 
product  in many ways. In this case, the domains of the partitions will differ, 
so the partitions are not identical. For example, let K = K1 x K2 x K3 ~ R n, 
and let F be partitionable into three partitions, 

fl: K~ ~_~"I~R~, f2: K2~ Rn2"-~n2, f3 :K3  C-Rna-~Rn3. 
Then, it is easy to see that F can be partitioned into two partitions, namely, 

g l =  f~ : K l x  K2~_R"~+~N~ +~, g2=f3 : K 3 ~ I ~ % ~ N  ~3. 
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We see from this example that if a function F is partitionable of order m, 
then it is also partitionable of any order less than m. In particular, any 
function defined on a convex set is partitionable of order one, where the 
function's partition is itself. Of course the interesting cases are those where 
the order of partitionability is greater than one. 

Partitionable functions and separable functions over Cartesian products 
share many important properties. In fact, it is clear from the definition that 
separable functions defined over Cartesian products are a subclass of the 
class of partitionable functions. However, the class ofpartitionable functions 
is much larger than the class of separable functions. 

There is, nonetheless, a strong relationship between all partitionable 
functions and functions which are separable and defined over Cartesian 
products. Our first theorem shows that partitionable functions can be con- 
sidered separable functions plus linear terms, where the linear terms have 
a special form. 

Theorem 2.1. A function 

i = l  
| 

is partitionable of order m if and only if there exist constant real matrices 
Mij, j = i+  1 , . . . ,  rn, i = 1 , . . . ,  m - 1, of dimension nl x nj such that 

F~(x) = f (x i )  + 2 Muxj- 2 Mrxj, i = i , . . . ,  m. (4) 
j > i  j < i  

Furthermore, the f(x~) of Eq. (4) are partitions of F(x). Partitions which 
satisfy Eq. (4) are called principal partitions of F. 

Proof. We begin with the proof of  sufficiency. Suppose that F(x) has 
the form (4). Then, 

[ F ( x ) -  F(y)]r (x -y )  

= ~ [F~(x)-Fi(y)]r(xi-yi) 
i=l 

7- r = (x , ) - f (y , )+ E M~x j -E  Mj, x j - E  ~'4oyj E Mjiyj (x,-yi) 
i~ l  j > i  j < i  j > i  j < i  

= ~ [ f (x , ) - f (y , ) ]r (x , -y i )  
i = 1  

+ Mo(xj-Yj) -  E Mj,(xj-yj) (x , -y , ) .  (5) 
i = 1  j i j'<i 
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After a simple yet tedious computat ion,  it can be shown that the second 
term of  (5) is zero. Therefore, we have shown that 

I F ( x )  - F ( y ) ] r ( x - y )  = ~ [ f ( x , ) - f ( y , ) ] r ( x , - Y i ) ,  
i ~ l  

and we see that  F(x) is parti t ionable of  order m. 
We continue with the proof  of  necessity. We induct on m, the order 

of  partitionability. It is clear that necessity holds when m = 1. Simply note 
that  condition (4) becomes 

F(x) = f ( x ) .  

Fix m > 1, and assume that all parti t ionable functions of  order less than m 
are of  the form (4). F(x) is then also parti t ionable of  order two, where the 
first partition f l ( x )  is itself partit ionable of  order m - 1. The second partition 
is denoted fz(x). 

Given these functions, we have 

[ F ( x ) - F ( y ) ] r ( x - y )  

= [fl(x~) -fl(yl)]r(x~ -YO + [f2(x2) -f2(Y2)]r(x2-y2), (6) 

for every x, y ~ K1 x K2. Letting 

r 11 [y] 
x =  , y =  , 

kX2_l x2 

we see that 

[F (x )  - F(y)]r(x - y )  = [F , (x)  - F,(y)IT(x~ --y,) 

= If ,  ( x0  - f l  (Y,)] r( x, - YO, 

for all x2 e / (2  and all x~, Yl e K~. This in turn implies that Fl(x) is separable 
into two components .  

To see this, note that the equation above implies that the difference 
F~(x) - F~(y) is a function of  only x~ and y~ and does not depend on the 
choice of  x2. We can therefore define the function 

13(xa, Yl) = Ft(x) - Fl(y). 

Recalling the definitions of  the vectors x and y, we can rewrite the definition 
o f / 3  as 

F~(x~, x2) = ff:(xl, Yl) + Fl(yl, x2), Vyt e Kl. 

Since this equation holds for any choice of  Yb we are free to fix y~ and we 
see F~(x~, x2) is written as the sum of a function of xl alone and a function 



JOTA: VOL. 73, NO. 2, MAY 1992 249 

of  x2 alone. Hence,  we can write F1 as 

Fl (x )  = f l l ( x l )  +f12(x2). 

By symmetry, we k n o w  that F2(x) is separable, and we write 

F2(x) =f22(x2) +f2 , (x l ) .  

We will see that the functions fH and f22 are partitions o f  the function/7.  
For now,  we seek to show that f12 and fzl are a n n e .  Using the separability 
just established, we see that 

[ F ( x ) - F ( y ) ] r ( x - y )  

= [ F~(x) - F , (y ) ]  T ( X  1 - -  y,)  + [ F2(x) - F2(y) ] r(x2 - Y2) 

= [fH (xl)  - f H  (Yl)] T (Xl -- Yl) + [f22(X2) --f22(Y2)] 7-(X2 -- Y2) 

+ [fx2(X2) --f12(y2)] r (X, -- y,)  + [f2,(X,) -- f2,(y,)]T(x2 --Y2) 

= [ f l (x l )  - f l (Y l ) ]  r (  x, - Y , )  + [fz(x2) --f2(Y2)]r(x2 --Y2), 

the last equality coming from (6). By setting x~ = Yl and letting x 2 and Y2 
be arbitrary, we  see that 

[f2(x2) -f2(Y2)] r(x2 - Y2) = [f22(x2) -f2z(Y2)] T (X2 -- Y2). 

Similarly, we have 

[ f , (xa)  - f l ( y , ) ] r ( x l - y , )  = [ f , l ( x , )  --fll(Yl)lr(X1 --Yl), 

for all x~, y~. These equations give us 

[f12(x2) - f12(y2)]r (x l  -Y l )  = - [ f21(x l )  - f 2 1 ( Y , ) ] r ( x 2 - y 2 ) .  (7) 

This expression implies that f12 and f2~ are affine in their arguments. To see 
this, rewrite (7) as 

f ,2(x2) r (xl - y ,)  = [f,2(Y2) T (x,  -- yl)  + [f2a(X,) -- f2 , (y l )  ]-Cy2] 

- [f21 (xt) - f 2 1 ( y 0  ] rx2. 

If  we hold xb  y~,y2 constant, we see that f12(x2) has been written as a 
constant vector plus the product o f  a constant vector and x2. This implies 
that f~2 is affine. The same argument implies that f2~ is also affine. We write 

f ,2(x2) = Mx2 + C,, f2a(xl) = Nxl  + C2, 

for appropriate matrices M and N and constant vectors C1 and C2. 
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and 
respectively. 

Letting 

f12(xz) = Mx2, 

we see that 

We note that we can assume without loss of  generality that Ct = 0 
C2 = 0. If  not, we simply modify fl1 and f22 to include C~ and Cz, 

f21(Xl) = Nxl,  

[M(x2 - Y2)] r (xl - Yl) = - [  N ( x l  - y~)] r (x2 - Y2), 

which implies that 

N = - M  T. 

Therefore,  

El (x)  = f~ (x,) + Mx2, (8a) 

F2(x) = f2(x2) - M rx 1. (8b) 

Using the proof  of  sufficiency, we see that (8) implies that f~ and f2 are 
principal partitions of/7. 

Recalling that f~ is itself partitionable of  order m - 1, rewriting the 
matrix M as 

M r = [Ml,mlM2,mt"" IMm-,,~], 
and relabelling the vectors x and F appropriately, Eq. (8) can be 
rewritten as 

F,(x)  = f ( x i ) +  Z M o x j -  Z M~xj ,  
j> i  j< i  

and the theorem is shown. [] 

Having defined the notion of  a partitionable function, we are ready to 
define partitionable variational inequalities. 

Definition 2.2. Let F :  K _ R" -~ W' be continuous on the closed convex 
set K. I f  F is partitionable of  order m over K, then the variational inequality 
VI(F, K) ,  i.e., find ~ K such that 

F(~)T(x-~)>--O,  for all x c  K, 

is a partitionable variational inequality of  order m. 
It should be noted that all partitionable variational inequalities are 

defined over product sets. Iterative schemes for solving variational 
inequalities defined over product  sets and applications of such variational 
inequalities are discussed in Pang (Ref. 10). 
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Partitionability will enable us to establish existence, uniqueness, and 
sensitivity analysis results for variational inequalities by imposing conditions 
only on the partitions. As we shall see in the examples, the partitions tend 
to be the interesting functions in those problems amenable to analysis 
through partitionable variational inequalities. 

3. Properties of Partitionable Functions and Partitionable Variational 
Inequalities 

Coercivity and monotonicity are central properties in the study of the 
existence and uniqueness of solutions to variational inequalities. Monoton- 
icity is also often required to show the convergence of  iterative schemes 
for the solution of  variational inequalities. In this section, we show that a 
partitionable function F(x) possesses one of these important properties if 
and only if each of the partitions of F(x)  possesses the same property. The 
implication of these results is that partitionable functions can be studied 
through the examination of each partition separately, rather than the typi- 
cally more complicated partitionable function F(x). A more detailed dis- 
cussion of the importance of monotonicity and coercivity can be found in 
the excellent survey of variational inequality problems by Harker and Pang 
(PelF. 11). 

Definition 3.1. Let K be a closed convex subset of R ~, and let F :  K c_ 
R n -> g~ be a function defined on K. We say that: 

(i) F is monotone if 

[F(x)-F(y)]T(x-y)>-O, Vx, y ~ n ;  

(ii) F is strictly monotone if 

[F(x) -F(y )]r (x -y )>O,  V distinct x, y e K ;  

(iii) F is strongly monotone if there exists an a > 0 so that 

[F(x)-F(y)]T(x-y)>a[tx-y[I  2, Vx, y 6 K ;  

(iv) F is coercive if there exists an x0 ~ K so that, for any unbounded 
sequence in K, we have 

lira [F(x)  - F(xo)] r(x - xo)/Ilx - Xoll = +oo. 

The next theorem relates the presence of these properties in the function 
F to the presence of  these properties in the partitions f of F. 
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Theorem 3.1. Let F :  K _ c ~ " ~ R  ~ be part i t ionable with parti t ions 
f~ : K~ _c R n, ~ R ' ,  i = 1 , . . . ,  m. The  funct ion F is m o n o t o n e  if  and only if  
all the f~ are mono tone .  

Proof.  Suppose  that  F is mono tone .  Let xl and  Yl be arbitrary elements 
o f  K b  and  let xi be an arbitrary element  o f  K~ for  i = 1 , . . . ,  m. To show 
that  f l  is mono tone ,  let x and y denote  the vectors [Y i]x 

X---- , y---- . 

L Xm.I 

Then,  note  that  

If ,  (x,) - f ,  (yl)] T (x, - yl)  

---- [ f l ( X l )  - - f l ( Y l ) ] T ( x 1  - -  Yl) + ~ [fi(x/) - f i ( x , ) ] r ( x i  - x,) 
i = 2  

= [ F ( x )  - F(y)]r(x-y)  >- O. 

Therefore,  f l  is mono tone .  By symmetry ,  the same p r o o f  implies that  all 
the f~, i = 1, 2 , . . . ,  m, are mono tone .  

To show the converse,  assume that  f~, i = 1, 2 , . . . ,  m, are monotone ,  
and  pick x and  y arbitrarily f rom K. The  componen t s  o f x  and  y can each 
be par t i t ioned into two vectors so that  

x =  , y =  . , 

xm .1 ym J 

where xi, y~ e K~. To show that  F is mono tone ,  we note  that  

[ F ( x )  - F(y)]T(x - -y)  = ~. [ f ( x , )  --f(y,)]r(x, --y,) 
i = 1  

- > ~  0 = 0 .  
i = 1  

Therefore ,  F is mono tone .  []  

Similar a rguments  lead to the fol lowing theorem. 
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Theorem 3.2. Let F :  K G R " - ~ R  ~ be partitionable with partitions 
f :  K~ c_ R", ~ R",, i= 1 , . . . ,  m. The function F is strictly or strongly 
monotone if and only if all the f are strictly or strongly monotone, 
respectively• 

We now turn to the coercivity of  F, which can also be determined by 
the coercivity of  the partitions f .  

Theorem 3.3. Let F : K c _ R ~ R  ~ be partitionable with partitions 
f : K~ _~ R"' -~ R"', i = 1 . . . .  , m. The function F is coercive if and only if all 
the f are coercive. 

Proof. We prove this theorem by induction on m, the number of 
partitions. I f  m = 1, the theorem follows trivially. If m = 2, suppose that F 
is coercive. Choose y ~ K so that 

lim [ F ( x ) - F ( y ) ] r ( x - y ) / l l x - y l l , = + ~ ,  x ~ K ,  

where II" H, is the standard Euclidean norm in R n. Partition this y into 
Yl ~ K1 and Y2 ~ K2 so that 

Y= Y2 

For any element x~ of  K~, let 

Ix] X ~ • 

Y2 

Since Y2 is fixed, we have the following two conditions: 

(i) IIxlll.,-~ oo, if and only if IIxl]n ~ oo; 
(ii) IIxl-yll l~l= I [x-y l l . .  

To show that f~ is coercive, we consider 

lim [ f l (x l ) - f l (yO]r(x~-Y~) / l lx~-Y~II , , ,  x~ ~ K~, 
IIx~lt.~-.oo 

= lim {[ f~(xO-f l (yO]r(x~-y l )  

+ [f2(y2) -f2(yz)]r(y2-y2)}/]lx~-Y~II~,, x~ ~ g~, 

= lim [ F ( x ) - F ( y ) ] r ( x - y ) / l l x - y l t ~ = + m .  
Ilxtl.--.~ 

Therefore, f~ is coercive• Symmetry shows that f2 is also coercive. 
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To show the converse, we assume ft  and f2 are coercive. Let Yl ~ K1 
and Y2 e/ (2  be fixed points which satisfy the definition of coercivity for f l  
and f2, respectively. Let 

x ' =  ~x!]  
kx;J  

be any unbounded sequence in K, each element of which is partitioned 
into xil e KI and x~ e K2. By the coercivity of f l  and f2, there is a bound 
B > 0 so that 

-B<-[f~(x~)-f~(yO]r(x~-yO/llx~-Y~lln,, for all i, (9) 

-B<-[A(x~)-f~(y2)]T(x~.-y2)/tlx'~-y2l].2, for all i. (10) 

Pick the positive number M to be arbitrarily large. Given M, choose M'  
large enough to ensure the following four conditions: 

(i) IIx~lln~> M' 

~[f~(xi~)-f~(yl)]r(x~-yl)/llx~-y, ll,>2vr2M+2B; (11) 

(ii) i M '  Ilx211n2> 

~[f2(x~)-f2(y2)]r(x~-y2)/tlx~-yzlI, > 2~-2M + 2B; (12) 

(iii) I I x ~ l l n , > M ' a n d  ~ ' tlxlllo~- 

I lxg-  YEll ~ <- 211x'~ - Y~ll ~ ; (13) 

(iv) ' M '  ' > IIx,ll~, IIx=llo2> and IIx=lln~- 

IIx~ - y l l l ~  ~ 211xg- y211 ~.  (14) 

We will be done with the proof if we can show the existence of an N such 
that 

i> N ~ [ f ( x ' ) -  F(y)]r(x ' -y)/Hx i-yll .  -> M. (15) 

We claim that an N which suffices is any N with the property that 

i> N~IIx'II~>,/2M'. (16) 

Such an N exists by the fact that 

IIx'tlo-~ ~c, as i ~ m .  

To prove our claim, we note that (16) implies 

i M '  i > M' .  llxtft,~ > or Ilx2ll~2 

By the symmetry of  x~ and x~, we can assume without loss of generality that 

> M ' .  IIx~ll.~, IIx',llo, IIx~llo~--- ' (17) 
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Consider now the inner product 

[ F ( x ' )  - F ( y ) ] r ( x  ~ - y ) / I l x '  - y [I. 

= [fl(x~) - f l ( ya )]r (x i l  - Y l ) +  [f2(x~) - f 2 ( y 2 ) ] r ( x ~ - y 2 ) / [ l x ' - Y I [ n  

-> [f,(x~) - j~  (q)] r(x~ --Yl) 

+ [ f z ( x ~ ) - f 2 ( y z ) ] r ( x ~  i , - y 2 ) / v ~  max{llxl -Yl  I]., Itx~- y211.2}. 

Assumption (17) prevents us from using symmetry here, so we must consider 
separately each of  two possible cases. 

e a s e l .  ] l x l  - y l t l . ,  > - ' tlx2-y211.2. In this case, we have 

[ F (x ' )  - F ( y ) ] r ( x  i - y ) / l l x  i - Y l I .  

-> [fl(x~) -f~ (yt)] r(xl  - Y l ) / ' / 2 l l x ~ - Y I t t . ,  
i T i i + [A(x2)-A(y2)]  (x=-y=)/~tlx,-y~tt.~. (t8) 

From (11), we have 

[f~ (xl) - f~(yl)] r (x~ -Yl ) / ] lx~  -Yl  ]f., > 2.d2M + 2B. (19) 

We can also minorize the second half of  the right-hand side of (18) by 
noting that, if 

i T i [f2(x2) -/2(Y;)] (x2-y2)  ----- 0, (20) 

then clearly 

[f2(x~) - f 2 ( y z ) ] r ( x~  -Y2)/IIx~ -Y,  ]l., -> -B .  (21) 

On the other hand, if the left-hand side of  (20) is negative, then we can 
use the case assumption that 

fix{ -Y,  II., >- Ilx~ - y211.2 

to show that 

[A(x;)  ~ '  ' -A(Y2)] ( x a - Y 2 ) / t l x l - Y ~ f l . ,  
i T i i 

[f2(x2) -f2(Y2)] (x2 - Y2)/I1 x = -  y= It °=--> - B, (22) 

and (21) once again holds. Inequality (18), taken together with (19) and 
(21), implies that 

[F (x ' )  - F ( y )  ]r  (x  ' - y ) / I t x '  - y [I. 

>- ( t / v~)[2v / -JM + 2B - B ]  >-- M. (23) 

From (23), it is clear that (15) holds for this case. 
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Case 2. l lx~-y,  ll., <- llx~-y2ll.~. Then, we have 

[F(x ' )  - f ( y ) ] r (x  ' - y)/IIx' - y II. 
- ( 1 / v ~ ) { [ A ( x b - f 6 y 0 ]  r (x '~-yO/l lx~-  y2ll.~ 

+[f2(x~2)-f2(Y2)]r(xi2-y2)/ i llx2-Y211.) 

>- (I/x/2){[f~(x~) -f~ (ya)] r (x~ -YO/llxg - y = l l  o= - B} 
i T i i >- (1/x/2){[A(x~)-A(y~)] (x~-yO/2llxl-ydl.,- B} 

(1/x/2){(2x/-2M + 2 B ) / 2 -  B} = M. 

Thus, (15) holds in the second case as well, so F is coercive. 
Now fix m > 2, and suppose that the theorem has been shown for 

functions partitionable into fewer than m partitions. Let F be partitionable 
with partitions fl(x~),. . .  ,f~(x~). Then, F can be partitioned into two 
partitions, namely, 

fl(Xl) 
m--I n m-I n 

g 6 X , ) =  : [ I  K~c-a ~'°' ' - - 'a  z'=' ', X~= , 
r m _ l ( X m _ l )  i=,  L x m - '  d 

g2(X2)=fm(xm): Km~_R"-..q,R"% X2=x~. 

We have shown that F is coercive if and only if g~ and g2 are coercive. 
Using the induction hypothesis, we see that F is coercive if and only if all 
the f~ are coercive, and the theorem is proved. [] 

4. Existence and Uniqueness of Solutions to Partitionable Variational 
Inequalities 

Here, we use the properties ofpartitionable functions to derive sufficient 
conditions for the existence and uniqueness of solutions to partitionable 
variational inequalities, and we perform a sensitivity analysis. The results 
have conditions stated in terms of the partitions, rather than the entire state 
function F. 

It is well known that the coercivity of  the state function F is sufficient 
to guarantee the existence of a solution to any variational inequality with 
a convex (not necessarily compact) feasible set and state function F. Recall- 
ing Theorem 3.3, we immediately find the following theorem. 

Theorem 4.1. Let F :  K _ R" ~ R ~ be continuous and partitionable 
with partitions f~: Ki ~ R"' ~R",,  i = 1 , . . . ,  m, where each set Ki is dosed. 
If  each partition f~ is coercive, then VI(F, K)  has at least one solution. 
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The coercivity of F is by no means necessary to show existence, tt is 
a rather strong condition to place on a function, and in many applications 
it is unrealistic to impose such a condition. In many cases, however, the 
special structure of  the problem under study wilt allow us to prove the 
existence of  solutions to partitionable variational inequalities under much 
weaker conditions. See, for example, McKelvey (Ref. 12). 

To guarantee the uniqueness of a solution to a variational inequality, 
the standard condition to place on the state function F is to require it to 
be strictly monotone. In the case of  partitionable variational inequalities, 
this result becomes the following theorem. 

Theorem 4.2. Let F :  K _ ~n __> Rn be continuous and partitionable 
with partitions f : K~ ~_ R "~-> R ~,, i = 1 , . . . ,  m, where each set Ki is closed. 
If  each partition f is strictly monotone, then VI(F, K)  has at most one 
solution. 

Using the well-known fact that strong monotonicity implies coercivity 
and strict monotonicity, we see that the following corollary holds. 

Corollary 4.1. Let F :  K__ Rn--> R n be continuous and partitionable 
with partitions f : Ki ~ R n* --> ~n', i = 1 , . . . ,  m, where each set Ki is closed. 
If  each partition f is strongly monotone, then VI(F, K)  has at least one 
solution. 

5. Sensitivity Analysis 

In problems which lead to variational inequalities, it is often important 
to know how the perturbations in the state function F are reflected in the 
solution of a variational inequality. Two approaches are commonly used 
to address this issue. The first, nonparametric or global sensitivity analysis, 
allows for a very general perturbation in the state function F. This approach 
is discussed for general variational inequalities in Dafermos and Nagurney 
(Ref. 2). The second approach, local or parametric sensitivity analysis, is 
useful when the perturbation in F is governed by a parameter. Under certain 
conditions, for small enough changes in the parameter, the continuity or 
differentiability of the solution of a variational inequality as a function of 
the parameter can be established. In the case of differentiability, it is possible 
to establish an analytical expression for the gradient. This parametric 
sensitivity analysis is undertaken for general variational inequalities by 
Dafermos (Ref. 7) and, under slightly more restrictive conditions, Kyparisis 
(Ref. 13) and Tobin (Ref. 14). A second approach to parametric sensitivity 
analysis for general variational inequalities is given in Harker and Pang 



258 JOTA: VOL. 73, NO. 2, MAY 1992 

(ReE 11). A comparison of all these approaches can be found in Kyparisis 
(Ref. 15). 

We begin with a discussion of nonparametric sensitivity analysis in the 
case of partitionable variational inequalities. Specifically, we consider the 
case where the state function 

F: ~I K~c_R"--->R" 
i=1 

is partitionable of order m and can be written as 

Fi(x) =f~(x,)+ Z Mox j -  Z T M~xj, i = 1, 2 , . . . ,  m, 
j > i  j<Zi 

(24) 

for appropriate matrices Mij. Given the perturbations f * (xl) of the partitions 
f~(xi), we define the perturbed state function F*(x) by 

i=  1 , 2 , . . . ,  m. (25) F*(x) =f*i(xi)+ E MUxj- E r M ji xj, 
j > i  j < i  

The key to our nonparametric sensitivity analysis is the following result 
due to Dafermos and Nagurney (Ref. 2). 

Theorem 5.1. Let F :  K _  R"-,  R" be any continuous, strictly mono- 
tone function over the convex set K. Let F*: K c_R" ~ "  be any other 
continuous (although not necessarily monotone) function on K. Assume 
furthermore that x and x* are solutions to VI(F, K) and VI(F*, K), respec- 
tively. If x ~ x*, we have 

[ F * ( x * )  - F ( x * ) ] T ( x  * - x )  < O. 

It is important to note that there are no restrictions on the size or nature 
of the perturbations introduced to create F* from F. The only assumption 
is the existence of at least one solution to VI(F*, K). 

Important consequences follow when this result is applied to the special 
case of partitionable variational inequalities. 

Theorem 5.2. Let F:  K _  R " + ~ "  be partitionable of order m with 
strictly monotone principal partitions ~(xi). Define the matrices M o by 
Eq. (24). Consider perturbations f*(xi)  of the partitions fi(xl) and define 
F*(x) by Eq. (25). If x is a solution to VI(F, K), x* is a solution to 
VI(F*, K), and x ~ x*, then, 

[f*(x*) - f / (x*)]r  (x * - x,) < O. 
i=1 
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Proof. 

X ~ ~ 

x~J 

The first step of the proof  is to note that, for any two elements 

Y= Y.2 

Y~.I 

in the feasible set K, we have the equality 

[F*(x)  - F ( x ) ] r ( x  - y )  = ~ [ f*(x i )  - f ( x i ) ] r ( x i - Y i ) .  
i = l  

This relationship can be verified in a tedious but straightforward manner 
using Eqs. (24) and (25). Using this observation, we see that 

[F*(x*)  - F(X*) ]T (x * -- X) 

= ~ [ f* ( x* ) - - f ( x* ) ]T (x* - -X i ) .  (26) 
i = 1  

The strict monotonicity of the partitions f implies the strict monotonicity 
of  the state function F(x) .  Theorem 5.1 gives us 

[F*(x*)  - F ( x * ) ] r ( x  * - x) < 0. (27) 

Combining (26) with (27), we see that 

[ f i* (x*) - - f (x*) ]T(x*- -Xi )  <0.  [] 
i = 1  

Theorem 5.2 permits the isolation of a perturbation effect on the solution 
of  a partitionable variational inequality. To illustrate this, suppose that only 
the first partition is perturbed; then, the theorem guarantees that 

[ f * ( x * )  -- f I(  x*) ]T (X * -- X,) < O. 

Since fi  and f *  are both evaluated at the same point, knowledge of the 
perturbation directly yields information on the shift in the vector xl. 

In addition to changing the value of  the solution of a variational 
inequality, perturbing the state function F also changes the values of  the 
partitions at the new solution. Since, in practice, the partitions are themselves 
of  importance, it is interesting to examine how their values shift as a result 
of  a perturbation. 

Dafermos and Nagurney also consider this question in the realm of  
general variational inequalities; see Ineq. (3.5) in Ref. 2. Their result is the 
following theorem. 
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Theorem 5.3. Let F : K ~ R" ~ R ~ be any strictly monotone function 
over the convex set K. Let F*: K ~ R" -~ R" be any other continuous function 
on K. Assume furthermore that x and x* are solutions to VI(F, K )  and 
VI(F*,  K) ,  respectively. Then, 

[ F * ( x * ) -  F ( x ) ] r ( x  * -  x)  <- O. 

In the case of  partitionable variational inequalities, this result becomes 
the following theorem. 

Theorem 5.4. Let F :  K G R" ~ R" be partitionable of  order m with 
strictly monotonic  principal partitions f~(x~). Define the matrices M U by 
Eq. (24)• Consider the perturbations f*(x~) of  the partitions f~(x~), and 
define F*(x)  by Eq. (25). If  x is a solution of  VI(F, K) ,  x* is a solution of  
VI(F*,  K) ,  and x # x * ,  then 

[ f  i* (x/*) - f / (x / ) ]  r (X/* --Xi) --< 0. 
i = 1  

Proof. 

X ~ ~ 

k x~ J 

The first step of the proof  is to note that, for any two elements 

Y ~  . ' 

LYmJ 

in the feasible set K, we have the equality 

[F*(y )  - F ( x ) ] r ( y - x )  = ~ [f*(Yi) --fi(xi)]T(yi--Xi). 
i = 1  

This relationship can be verified in a tedious but straightforward manner 
using Eqs. (24) and (25). Letting x and x* play the roles of  x and y above, 
we have 

[F*(x*)  - F ( x ) ] r ( x  * - x) = ~ [ f * ( x * )  - f / (x i ) ]T(x  * - xi). 
i = 1  

From this statement, Theorem 5.3 tells us 

[f*(Yi)  -- f~(xi) l r  (y, -- xi) <-- O. [] 
i = 1  

This theorem demonstrates how the values of  the decision variables 
shift with respect to the changes in the values of the partitions. As an 
example, if some partition fj(xj) were a scalar function of  the scalar xj, then 
any perturbation in fj designed to increase the value at the solution offj(xj)  
cannot simultaneously increase the value at the solution of  x~. 
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Next, we consider parametric perturbations of the partitions of a 
partitionable function F. In particular, we consider parameters A E P ~ R k, 
where P is an open set o f  parameter values. We are interested in the case 
where the function F is partitionable o f  order m and the dependence  o f  F 
on the parameter A is found only in the partitions, i.e., 

F,(x; A) ] 

F(x; A) = 
Fro(x; A) 

where 

F~(x;A)=f(x~;A)+ ~ Mqxj- ~ Mfixj, i = l , 2 , . . . , m ,  (28) 
j::>i j < i  

for appropriate matrices M u. 
Given a partitionable function of the form (28), we are interested in 

the following problem: Suppose that, for some A~P, the variational 
inequality 

F(~; A)r(x-:~)>--O, Vx~ K, 

has a solution £ We want to determine how the solution changes, given 
small changes in the parameter A. 

Dafermos (Ref. 7) considers the very general case where the state 
function F need not be partitionable and the feasible set K = K(A) is itself 
a function of the parameter A. Most of the equilibrium problems which are 
amenable to partitionable variational inequality formulations have fixed 
feasible sets, so we consider here the special case where the feasible set is 
fixed. 

In the case of fixed feasible sets, Dafermos' result is the following 
theorem. 

Theorem 5.5. Consider the parametric variational inequality 

F()7; X ) r ( x -  £)___ 0, Vx~K, (29) 

where F(x; Z): K x P ~ R" x R k ~ R n. Further, suppose that VI(F, K) admits 
a solution £ for some A c P. If the function F satisfies 

[F(x;  A)-  F(y; x)] r (x- -y)  

->-alfx-yIj 2, VAeP, x, y c X n K ,  (30) 

for some a > 0, and 

IIF(x;,~)-F(y;X)ll<-tllx-yl[, VxcP, x ,y~XnK,  (31) 



262 JOTA: VOL. 73, NO. 2, MAY 1992 

for some L > 0, where X is some open neighborhood about ~, and if F(x; A) 
is Lipschitz continuous with respect to A, then there exists a neighborhood 
F of ~ such that VI(F, K)  admits a unique solution x(A) in X n K, x(~) = ; ,  
and x(;t) is Lipschitz continuous at ;t = ~. 

In the case where the state function F is partitionable, we are able to 
state all the conditions needed to demonstrate the Lipschitz continuity of 
x(A) in terms of  the partitions. 

Theorem 5.6. Consider the parametric variational inequality (29), and 
suppose that it admits a solution ~ for some ~ c P. I f  F is partitionable of 
order m with partitions f~(x~ ; A) which satisfy 

[f~(x, ; A) - f i (y ,  ; A)]r(x,-Yi) 

-> ~ , l l x , - y ,  II 2 , V A ~ P , x , , y ,  e X i n g i ,  (32) 

for some o~i > 0, and 

Ill,( x, ; 3,) - f , (y ,  ; A)II 

<-L, IIx,-Y, II, V A ~ P , x , , y , ~ X ,  n K , ,  (33) 

for some L~ > 0, where X~_ R"' is an open neighborhood about ~,  and if 
f~(x~ ; A) is Lipschitz continuous with respect to A, then there exists an open 
neighborhood F of ~ such that variational inequality (29) admits a unique 

rrl  

solution x(h) in X n K, where X =I]~= l X~, x(~) = ~, and x(h) is Lipschitz 
continuous at h = ~. 

Proof. From Theorem 3.2, we see that (32) implies (30). From the 
form of the state function F given by (28), it is clear that (31) is implied 
from (33) and the Lipschitz continuity of  F with respect to h is equivalent 
to the Lipschitz continuity of the partitions f~. Thus, the conditions of 
Theorem 5.5 are satisfied, and Theorem 5.6 is proved. [] 

Next, we move to the study of diilerentiable dependence on the param- 
eter A. We begin this study with a result for general variational inequalities 
due to Dafermos (Ref. 7). We consider again the parametric variational 
inequality (29), and we assume that the variational inequality has a solution 

when ,~ = ~. 
For this analysis, the feasible set K is defined locally by means of 

equality-inequality constraints of the form 

K n X = {x c Xllg,(x)  = o, i = 1 , . . . ,  s, g,(x) ->0, i = s +  1 . . . .  ,1}, 

where the g~ are twice continuously differentiable functions defined on X, 
a neighborhood of ~, and satisfy 

g,( ; )  =0,  i =  1 , . . . , / .  
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To ensure that K c~ X is locally convex, we add the condition that the 
gi(x) are locally affine about Y for i = 1 , . . . ,  s and the gi(x) are locally 
concave about Y for i = s , . . . , / .  Furthermore, we assume that the l vectors 

{Vxrg~(~),..., V~gt(~)} (34) 

are linearly independent. We also assume that the state function F(x; A) is 
continuously differentiable on X x F, where F is a neighborhood of A. 

The vector F(£ ;  A) is orthogonal to K at Y and is directed toward the 
interior of K, so it lies inside the positive cone spanned by the vectors of 
(34); i.e., there exist nonnegative constants ai such that 

F ( ; ;  A)= Z a,V~rgi(£). 
i = 1  

For future reference, we define the matrices 

1 - V x g l ( 5 )  
A= E a, VxVSg,(:x), G= 

i=1 Vxgl(.x) I . 

( 3 5 )  

The rows of G span an/-dimensional  subspace H which is orthogonal to 
the boundary of K at ~. We let Q denote the orthogonal projection onto H. 

We are now ready to state Dafermos' result for general variational 
inequalities. See Dafermos (Ref. 7). 

Theorem 5.7. Consider the l-subspaces of dimension l - 1 ,  denoted 
by H a , . . . , / / 1 ,  where Hk is spanned by 

{ V S g , ( ; ) ,  ~ " ~ " . . . ,  Vx gk-l(X), Vx gk+,(X),..., V 5gl(.~)}. 

If  

F(~; A)~ Hs+lu""  " u H t ,  

and if the linear transformation 

( I -  Q)(A-VxF(:~; A)) : H-~ + H-' 

is nonsingular, then the parametric variational inequality (29) admits a 
locally unique solution x(A) which is continuously differentiable on some 
neighborhood A of A, and Vax(Yt) is given by 

VAx(A) = -pD~l( I - Q )V aF, (36) 

where p is a sufficiently small positive number and Dp is the nonsingular 
matrix 

Dp = Q - p ( I  - Q)(A - VxF). 
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In the case of partitionable variational inequalities, this result simplifies 
somewhat. As is the case with most results arising from partitionable 
variational inequalities, we can state the necessary conditions on the state 
function F using only the partitions f~ of t7 In particular, we assume that 
each of the partitions of F satisfy the local strong monotonicity condition 
(32) and the local Lipschitz condition (33). We also assume that each 
partition f is continuously differentiable in both its argument x~ and the 
parameter h. Theorem 3.2 along with (28) make it clear that these conditions 
on the partitions imply the differentiability, local strong monotonicity, and 
the local Lipschitz continuity required by Theorem 5.7. 

The final simplification occurs in the expression for VAF. It is clear 
from (28) that, in the case of partitionable functions, 

F V;~FI(X, ~t) ] Vxfl(~; ~) ] 
V~F= / : = • 

LVaFmi;; X) VAfm(;; X).] 

Under these conditions, Theorem 5.7 can be restated for partitionable 
variational inequalities. 

Theorem 5.8. Consider the l subspaces of dimension l - 1 ,  denoted 
by H1, . . . ,  Hi, where Hk is spanned by 

{Vrg~(;), r - r - . . . ,  Vx gk-~(X), Vx g k + l ( X ) , . . . ,  Vfg,(;)}- 

If 

F0~: ),) ~ H,+I u - ' '  Hi, 

then the parametric variational inequality (29) admits a locally unique 
solution x(,~) which is continuously differentiable on some neighborhood 
A of ~ and V~x(~) is given by 

v.f~ x, x) 
Vax(~) = - p D ; l (  I - Q) , (37) 

v~f~(;; X) ] 

where p is a sufficiently small positive number and D o is the nonsingular 
matrix 

Dp = Q - p ( I  - Q ) ( A  - VxF). 

One advantage of this formulation is that the effects of a perturbation 
in any of the partitions can be easily isolated in the case where VxF is 
independent of h. 
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6. Examples of Partitionable Variational Inequalities in the Current 
Literature 

While partitionable variational inequalities have only been identified 
recently [see McKelvey (Ref. 12)], examples have appeared in the literature 
as far back as 1984. In this section, we present several of these formula- 
tions to demonstrate the broad applicability of partitionable variational 
inequalities. As we shall see, in applications the partition functions turn 
out to be the most interesting and important functions in the problem at 
hand. Thus, being able to state existence, uniqueness, and sensitivity analysis 
results in terms of these functions is very natural. 

The first example of partitionable variational inequalities comes from 
the literature of general network equilibria. Dafermos and Nagurney (Ref. 8) 
consider a congested multimodal transportation network with a set of 
origin/destination pairs w, and a set P of paths broken down into subsets 
Pw containing all the paths connecting origin/destination pair w. The flow 
on path p using mode i is given by F~. The flows on all paths for all modes 
are gathered together in the vector F. The cost of travel on path p using 
mode i is given by the function C~(F). The equilibrium cost of traveling 
between origin/destination pair w using mode i is given by i V w. As with 
the flow vector, the equilibrium costs for mode i are gathered together into 
a vector which is given by v i. These, in turn, are gathered together to form 
the vector v of all equilibrium costs. The number of users traveling between 
origin/destination pair w using mode i is denoted d~= d~(v). These 
demands are gathered together, by mode, to form the vectors di. 

In this context, a flow is said to be in equilibrium if, for each mode i 
and origin/destination pair w, there is a number v~ so that all paths with 
positive flow between w have cost v~, while unused paths have costs 
exceeding vw. It is also required, of course, that the flows on paths serving 
an origin/destination pair meet the travel demand for that origin/destination 
pair. 

Dafermos and Nagurney (Ref. 8) formulate this equilibrium problem 
as a variational inequality which turns out to be partitionable. Their vari- 
ational inequality is 

Z E I:C;,(F')-~i,,,,][F;-F';,] 
i, w p ~ P w  

-vw] V(F, v) K, (38a) . I V  w E 
F p -  i ~ i - i  

r, W p w 

K ={(F, v)lF---0, v-0}. (38b) 

It is easily verified that this variational inequality is partitionable. The 
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partitions turn out to be the two most important functions in the problem, 
namely C(F), the vector of path costs, and -d(v), the negative of the 
vector of origin/destination pair travel demands. 

The study of equilibria in large-scale market activities has generated 
several formulations involving partitionable variational inequalities. The 
earliest is found in Freisz et al. (Ref. 4) in a study of the spatial price 
equilibrium problem with one commodity. The partitionable variational 
inequality is derived while transformating a nonlinear complementarity 
problem into a variational inequality for the limited purpose of developing 
numerical methods for the problem's solution. In a follow-up paper by 
Tobin (Ref. 5), the variational inequality formulation plays a key role in 
the analysis of the spatial price equilibrium model. 

Freisz and Tobin consider the case of several markets l, each of which 
has a supply function St(w) and a demand function Dl(Tr), where ~" is a 
vector consisting of the prices of the commodity at every market. The price 
at a particular market, say market l, is denoted 7ft. 

In addition to the markets, there is an underlying transportation 
network with arc-node incidence matrix A. For each arc in this network, 
there is an arc flow fa and an arc cost function ca(f) which depends on 
the flows along all the arcs in the network. 

An equilibrium, in this context, consists of nonnegative arc flows and 
nonnegative prices such that the markets are exactly cleared and there is 
no incentive for a unilateral shift in the trading pattern. Freisz and Tobin 
show that, under certain reasonable technical conditions, this equilibrium 
problem can be cast as the variational inequality 

[c(3 7) + a~r]r( f  - f )  + [S(~) - D(~) - A ? ] T ( T r  -- ~r) ~ O, 

for all f > 0  and 7r>-0. 
This variational inequality is partitionable with partitions c(f) and 

S( I r ) -  D(~r). As was the case in the traffic equilibrium problem, the parti- 
tions are the central functions in the study of the problem. In this case, 
c(f) represents the transportation cost, and S(~r)- D(~r) is the net supply 
function for each market. 

In their remarks on this variational inequality, Freisz and Tobin noted 
that the Jacobian of the state function is not symmetric, regardless of the 
form of c(f), S(¢r), and D(~r). This fact holds for almost all partitionable 
variational inequalities for reasons developed earlier in this paper. The only 
exceptions are those cases where all the matrices M 0 of Theorem 2.1 are 
zero matrices and the state function F is separable. 

While the formulations suggested by Dafermos and Nagurney as well 
as the work by Freisz and Tobin result in partitionable variational 
inequalities, the authors of these papers did not identify the general structure 
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common to the entire class of partitionable variational inequalities. The 
first work to use the more general characteristics of partitionable variational 
inequalities was that of Dafermos and McKelvey (Ref. 9). 

Dafermos and McKelvey consider a general multicommodity market 
equilibrium problem. Each market is designated as a supply market, denoted 
a, or a demand market, denoted/3. For commodity i, each supply market 
has a corresponding supply function S~(vr), where ~r is the vector of prices 
for all commodities at all supply markets. Each demand market has an 
associated demand function for commodity i, denoted Do(p), where p is 
the vector of prices for all commodities at all demand markets. 

In addition to supplies and demands, the market allows transactions 
between supply and demand markets. If we let Q~o denote the quantity of 
commodity i purchased from supply market a by demand market/3, then 
we can define the unit transaction cost function t~o(Q), which we note 
depends on the entire transaction pattern Q. 

In this context, an equilibrium exists if no supplier or consumer has 
an incentive to unilaterally change their trading partners or the level of 
transaction with those partners. In addition, we require in the face of strictly 
positive prices that all markets clear exactly. 

Dafermos and McKelvey do not require market clearing in the case of 
zero prices. If a given commodity at a supply market has zero price, we 
allow the possibility of excess production over exports. If a given commodity 
has zero price at a demand market, we allow the possibility of excess imports 
over consumption. 

With this notion of equilibrium, Dafermos and McKelvey show that a 
combination of transaction pattern (~ and prices ~ and ~ form an equili- 
brium if and only if they satisfy the following variational inequality: 

i,a,,8 

~ i  i ~ i ~i  ) +Y'i,~ Q~-D~(p) (p~-p~ ->0, for all ->0. 

This variational inequality is partitionable of order three. The partitions 
are the three key functions in the problem, namely, the vector of transaction 
costs t(Q), the vector of supplies S(¢r), and the negative of the vector of 
demands, -D(p). Thus, statements concerning existence, uniqueness, and 
sensitivity analysis can be made in terms of these three key quantities. 
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