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Differential Games of Fixed
Duration with State Constraints’

K. H. GHASSEMI®

Communicated by L. D. Berkovitz

Abstract. We consider differential games of fixed duration with phase
coordinate restrictions on the players. Results of Ref. 1 on games with
phase restrictions on only one of the players are extended. Using
Berkovitz’s definition of a game (Ref. 2), we prove the existence and
continuity (or Lipschitz continuity) of the value under appropriate
assumptions. We also note that the value can be characterized as the
viscosity solution of the associated Hamilton-Jacobi-Isaacs equation.
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1. Introduction

Let E, and E, be two given closed sets in R”. Consider a differential
game of fixed duration governed by an ordinary differential equation and
with terminal payoff in which the ith player, i=1,2, must choose his
strategies in such a way that all resulting trajectories lie in E;. Such restric-
tions can be formalized by using an extended real-valued payoff which
penalizes each player for violating his constraint.

In introducing a new notion of a game in Ref. 2 (see also Ref. 3),
Berkovitz considered a game with no state constraints, i.e., the case where
E,=E,=R" In Ref. 1, we studied the case where only one of the E;’s
equals R". Here, using Berkovitz’s definitions, we examine the questions
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of the existence of value and its regularity properties in games where both
E, and E, are allowed to be proper subsets of R". We show that, under
appropriate assumptions, such games can be viewed as a finite sequence of
games in each of which only one of the players faces the possibility of
violating his constraint. We then use an inductive argument to extend the
results of Ref. 1 to conclusions about the general case.

Games with phase coordinate restrictions as above have been con-
sidered previously by Friedman (Refs. 4 and 5), Scalzo (Ref. 6), Subbotin
(Ref. 7), and Zaremba (Refs. 8 and 9). Each author, using a particular
definition of a game, establishes the existence (Refs. 4-9) and continuity
or Lipschitz continuity (Refs. 4-6) of the value. In Refs. 4, 5, 7, games with
phase restrictions on essentially only the players are treated. In Ref. 6,
Scalzo extends the results of Friedman to games with phase restrictions on
both players. Our technique for extending the results of Ref. 1 is similar in
spirit to that of Ref. 5, but we make fewer assumptions on the data.

The paper is organized as follows. In Section 2, we state the basic
assumptions on the data of the problem and review the definitions and
notations used in the paper. Section 3 recalls, for the convenience of the
reader, the results of Refs. 1 and 2, which we will need in the later sections.
In Section 4, we state and prove the main theorem (Theorem 4.1). In Section
5, we discuss properties which characterize the value of such games, as the
unique constrained viscosity solution (see Refs. 10 and 11) of the associated
Hamilton-Jacobi-Isaacs equation.

2. Definitions, Basic Assumptions, and Notation

The following basic notation is used in the paper. The letter B stands
for the closed unit ball in R". If ECR”", then

d(x, E)=inf{{x—e|: ec E}.

If E is a domain with C*-boundary 6E and x € dE, then n(x) denotes the
unit inward normal to 8E at x. C([a, b]) denotes the space of all continuous
functions x:[a, b]- R" with the uniform topology. If F and G are subsets
of R" then int(F) denotes the interior of F, and F\G, the set {xe F: x# G}.
Finally, if F is a subset of the domain of a given function f, then we will
use f[F to denote the restriction of f to F, and supp(f) to denote the
closure of {x: f(x)# 0}.

We now briefly review the definition of a differential game according
to Berkovitz. For a more complete discussion and the relationship between
this and other definitions, the reader should consult Refs. 2 and 3.
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Let Y and Z be compact subsets of Euclidean spaces R” and RY
respectively, and f:[0, TIXR"XYXZ-»R". If J is an interval in R, let
WY(J) and Z(J) denote the set of all measurable functions from J into Y
and Z, respectively. Let 7> 0 be given. A zero-sum two-person differential
game of fixed duration (=T) is completely defined once we specify (2)
what is meant by a strategy for each of the players and (b) what payoff is
assigned to a pair of strategies. In Berkovitz’s definition, these are done as
follows:

(a) Strategies. A strategy I' of player I in a game with initial point
(5, Xo0), to€ [0, T), is a sequence {I',,T1,} where II, is a (not necessarily

uniform) partition {t,=7,<7,<7,< --- <71, =T} of the interval [1,, T]
and, for each n, T, is a collection of mappings {I',,I',..., I, } with
rnoe @([TOS Tl)),

Iﬂn,» 2 Y([1o, TN X ZE([70, 7)) > Y[ 70, Tiv1)).

A strategy A for player I1 is defined in a parallel manner. It is not required
that the players use the same partitions. The letters I" and A will, throughout
the paper, denote respectively strategies of player I and player IL

{b) Payoff. To each pair of strategies (I', A}, one associates a set of
absolutely continuous functions, called motions, as follows. First, note that,
to a pair of strategies, we can associate a sequence of pairs of control
functions {(u,, v,)} where, letting {t,=s,<s,< -+ <5, = T} be the nth
partition for A, we have

U, € Y(lr, T)),  v,€Z([7, T)),
uni["'i, Tiy) = Fni(unw’fo, i), Uni["'o, )2
v,l[8, 8i1) = Ani(vnl[%, 5:)s Ual[ 70, 51))-

Now, let x,, be a sequence converging to x,. For each n, consider the
initial-value problem

() =f(t, x(1), u,(t), v,(1)),  Vte[t, T}, (1a)
x(tO)szn- (lb)

Conditions are imposed (see below) on the dynamics to ensure that (1) has
a unique solution ¢, defined on [#,, 7] and that the sequence {¢,} is
uniformly bounded and equicontinuous on [#,, T]. Such a ¢, is called an
nth stage trajectory, and the set of all nth stage trajectories is denoted by
D(-, 1o, Xon, I, A). It follows from Ascoli’s theorem that the sequence {¢,}
has accumulation points ¢ in C([#, T]). Such limit points are called
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motions. The set of all motions corresponding to a pair (I, A) is denoted
by ®[ -, , %o, I, A]. Note that ®[ -, 15, xo, I', Al is independent of the choice
of the sequence x,,. For notational brevity, we will write ®[ -, ¢,, x,, A] for
Ur®[ -, 1o, %, T, AT and ®f -, to, x5, '] for UL P[-, 1o, %0, T, A]. We are
now ready to define the payoff Pl1,, x,, ', A] associated to a pair (I, A)
for a game with initial point (%, x,). Let g: R" > R be a given function.
Define

Plty, %0, 1", Al ={g(@[T]): o € D10, x0, T, Al}.

We assume the following concerning the data of the problem throughout
the paper.

Assumption Al. (i) The function f in (1a) is continuous on [0, T]X
R"xYxZ

(ii) The function (7, £) > f(7, & y, z) is locally Lipschitz, uniformly in
y and z, on [0, T]XR".

(iii) The function g, used to define the payoff, is continuous on R".

(iv) Isaacs’ Condition. For any (¢, x)€[0, TIX R", and s R",

max min{s, f(¢, x, y, z)) = min max(s, f(t, x, y, z)).
y Z z ¥y

Remark 2.1. For a discussion of the Isaacs’ condition, see Section 9
of Ref. 2. The Isaacs condition may be dropped by allowing relaxed controls
as admissible choices of control function for each player (see Ref. 12).

3. Review of Known Results

Let E, and E, be two given closed subsets of R". Consider the game
defined in the sense described in Section 2 with dynamics
x=f(t,x,y, z), (2)
where ye Y and ze€ Z denote the control parameters of palyers I and 11,
respectively, and the penalized payoff is defined by
P[IOS Xos F) A] = { V(‘P) e @{th Xo, rs A]},
where
g(e[TD, if o[t]le E\nE;, VYie[ty, T],
V(p)=4{—x if ¢ leaves E, first, (3)
400 if ¢ leaves E, first.

b4
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Here by “¢ leaves E, first” we mean that there exists fe[t,, T] such that;

(1) for all te[to, [], <p[l]€ElﬁE2,
(ii) there exists 8> 0 such that, for all 1 (f, f+8), o[t]e E,\E,.

Similarly for “¢ leaves E, first.” Clearly, we need to impose conditions to
ensure that V() is well-defined; see Remark 4.2 below.

For (¢, x) [0, T]x R", let us define the upper and lower values of the
game with initial point (1, x), 7€ [0, T), by

w¥(t, x)=infsup P[t, x, T, Al,
A r

w(t, x)=supinf P[, x, T, A},
rooa

respectively, and
w(T, x)=w (T, x) = g{x).

The game is said to have value if w* = w™, and the common value is denoted
by w(t, x). For a real number a, let

Cla)={(t,x): xe E,nE,,w (t, x)=a},
Cla)={(t,x):xe BynE,,w (t,x)=a}.

Suppose first that E, = E,= R". Then one can show (see Theorem 7.1
of Ref. 2) that Assumption Al implies that w" and w™ are continuous on
[0, T]x R" (locally Lipschitz if g is locally Lipschitz). It follows that the
sets C*(a) and C™(a) are closed. This allows the introduction of extremal
pointing strategies I'. and A.. We will briefly describe T, for a game with
initial point (14, x,). For more detail, see Section 10 of Ref. 2.

Let ', ={T",,M,}, where I, is a uniform partition, {t,=71,<7 <
7, <+ <m, =T}, and T, ={I', }\_. To define T, i=0, let (u,v) be a
pair of admissible control functions on [y, ;] and ¢{-) the solution of
(2) on [y, ;] with controls u and v and ¢(#,) = x,. Let w; satisfy

[w; — @(7)| = min{lw ~ o (7)|: (7, w) € CT(w (10, o))},
and set

5= w;— (7).

Define I',, (4, v) = y* with y* determined as follows. If 5; =0, let y* denote
an arbitrarily picked element of Y. If 5,50, let y*€ Y be such that, for
some z*¥eZ, (y*, z*) forms a saddle point on Y xZ for the function
(3, 2) = (s, f(7i, ©(7), ¥, 2)). The existence of (y*, z*) follows from A1(iv).
The strategy A, is defined similarly using C~(w™((1;, x,))). The importance
of these extremal strategies lies in that (cf. Lemma 10.1 of Ref. 2), if
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ec®[ty, xo,I.] (respectively, ¢e®[t,,x,,4A.]), then (1, ¢[t])e
CH(w*(ty, X))(C™(w(ty, x0))) for all te(ty, T]. It follows from this
property of the extremal strategies that (T',, A,) provides a saddle point for
the game at (fy, X,). In particular, the game has value.

Theorem 3.1. (Theorem 10.1 of Ref. 2). If E, = E,= R", then the game
above with any initial point (1, x) € [0, T) X R" has value w(z, x) and w(-, -)
is continuous on [0, T]x R” (locally Lipschitz if g is).

In the case when one of the E;’s is a proper closed subset of R”, the
upper and lower values are no longer continuous. However, one can show
(see Lemma 1.2 of Ref. 1) that, if E,= R", then w" is upper semicontinuous.
Thus, in that case, the sets C"(a) are closed. Therefore, one can define I',
as before and obtain the following lemma.

Lemma 3.1. (Lemma 1.5 of Ref. 1). Suppose that E,=R" If ¢¢
D[ 1y, X, ], then (¢, o[t]) e CT(w™ (1o, x,)) for all €[4, T].

The existence of value follows (see Theorem 1.1 of Ref. 1). Similar
results are obtained if only E, = R". We will also need the following result,
obtained in Ref. 1 (parallel statements hold for the case E; = R").

Theorem 3.2. (Theorem 3.1 of Ref. 1). Let E,=R" Suppose that E,
is the closure of a domain with C? boundary. If

max min{n(x), f(t, x, y, z)) >0, for all (1, x) [0, T}1x8E,,
¥y z

then w is continuous on [0, T]x E, {locally Lipschitz if g is).

4. Phase Restrictions on Both Players

In this section, we allow for both of the E;’s to be proper subsets of
R". We make the following assumption.

Assumption A2. (i) The phase sets E, and E, are closures of C?

domains in R".
(ii) Assumption Al holds for the data.
(iii) If m(x) denotes the inward unit normal to ¢E; at x € 8E;, then

(a) max min{n,(x), f(1, x, y, 2))>0, for all (¢, x)e[0, T]xsE;,
y z

(b) max min{n,(x), f(1, x, y, 2))>0, for all (¢, x) [0, T]X3E,.
z y
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(iv) Either EsnE,=Jor,ifxe E;nE,, thenforallte{0, T], ye Y,
and ze Z,

(n(x), f(1, x,y,2))>0,  i=12.

Remark 4.1. Assumptions A2(i), (ii}, and (iii)(a) imply by Theorem
3.2 that, if we take E,= R", then the corresponding games will have con-
tinuous value on [0, T]x E,. Similarly, by virtue of A2(iii)}(b), the games
with E;= R" have continuous value on [0, T]x E,.

Remark 4.2. Suppose that E;n E,# . For A >0, define
WE={xe E,n3E,:d(x,0E))<A}u
{xe E,naE,: d(x,8E;) <A} (4)

Then, it foliows from our continuity assumptions on the dynamics f and
A2(iv) that, for every R >0, there exists A = A(R)> 0 such that, for every
x€d,E with |x|=R,

min{{n(x), flt, x, y, z))y: i=1,2} =0, (5)

for all yeY, zeZ, and 1[0, T]. Hence no nth stage trajectory (and
therefore no motion), contained in {x: |x|=< R}, can leave E, n E, through
d,E. Hence, if a motion ¢ € ®[ -, #,, x4, ', A] should leave E,n E,, then
either “¢ leaves E; first” or “¢ leaves E, first.” Therefore, V() is defined
unambiguously by (3). If E,n E, =, then the same is true trivially.

Remark 4.3. It will be seen below that A2(i), (iii), (iv) may be replaced
by any other assumptions which guarantee: (a) E, and E, are closed; (b)
if E, = R", then the corresponding game has continuous value (and similarly
if E;=R"); and (c) for every R >0, there exists 2 A = A(R)> 0 such that,
if ¢ is an nth stage trajectory with lo(z)] = R for all ¢, then ¢ does not leave
E,nE, through a A-neighborhood of 8E,n9E,. Thus, for example,
Theorems 3.2 and 3.3 of Ref. 1 provide alternative hypotheses to A2(iii) if
E, and E, are arbitrary closed subsets of R".

Let R>0. Denote by S(R) the set of all initial points (¢, x,) €
[0, T]1x E,; n E, such that any solution ¢(-) of (2) with ¢(1,) = x, satisfies
le(t)]=R for all te[t, T]. It follows from assumption Al that, given any
(to, %) €[0, TIX E;n E,, there exists R,>0 such that (1, x,) € S(R,).
Hence,

[0, TIXE(n E;={J{S(R): R>0}.

Furthermore, we have the following lemma.
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Lemma 4.1. S(R) is compact. If (¢, xo) € S(R), then for every te
[15, T] and for every motion ¢ € ® -, ¢, x,, ', A], we have (¢, p[t]) € S(R).

Proof. The proof is straightforward; see “note iv” in Section 3 of
Ref. 1. 4

For notational convenience, we will write S, for S(R)n{(t, x):
x€ E,n E,} and S, ,; for S(R)n{(¢, x): telo, 7], x€ E;n Ey}.
Set
M =M(R)=max{|f(t,x,y,2)|: t€[0, T], |x|=R, ye Y, ze Z}.
Let A =A(R) be as in Remark 4.2 above. Define
h=h(R)=A/4M. (6)

It is clear that, if (15, xo) € S(R) and ¢[ -] is a motion in a game starting at
(15, Xo), then

lo[t]—xo|=Ar/4, for all te[1, to+h]. {7)

Lemma 4.2. Let R>0 and S=S(R). Then, there exists h=h(R)>0
such that a game with initial point (t, x) € S;r_s 77 has value w(t, x) and w
is continuous on S;r_s 77-

Proof. Let R be given. Take A and h to be as defined above with
respect to R. Let (1, o) € S;r—n 1. Define

O, ={xeE\nE,: d(x,0E,)=3A/4,d{(x,0E;)=A/4]},
O, ={xecE,nE,: d(x,0E;)<A/4,d(x,0E,)=3)\/4},
Q,={xe E;nE,: d(x,3E,)<3A/4,d(x,dE,) <3)A/4},
Q={xeE,nE;: x2Q,0 000}

If x,€Q;u,, then by (7) and Remark 4.2, all motions starting at
(o, Xo) remain in E; N E, for the duration of the game. Therefore, the game
starting at such a point is a game with no phase restrictions since V(¢)=
g(@[ T]) for all motions ¢. By Theorem 3.1, w(t,, X,) exists. Moreover, w
is continuous on (s U Q) N S r—p 13-

If x,€Q,, then by (7), all motions stay in E, for the duration of the
game. Hence, the game is one with phase restrictions on only the maximizer,
player 1, since V(¢) # co for all motions ¢. By Theorem 1.1 of Ref. 1, such
a game has value w(f,, Xo). Moreover, in view of assumption A2(iii)(a) and
Theorem 3.3, w is continuous on ;N S;r-p r7. Observe that, if x,€ QN
(Q;uQy), then V(g)=g(¢[T]) for all motions. Therefore, w(t;, x,) is the
same whether the game is regarded as one with no phase restrictions or as
one with phase restrictions on the maximizer. It follows that w is continuous

on S[T—-h"r} A (Q; U 93 U Q4)‘
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Similarly, if x,€},, the game is one with phase restrictions on the
minimizer only. Hence, w(t, x) exists and, by assumption A2(iii)(b), is
continuous on Q,N 87—, 77. Since O, " Q, =, we get, as in the case of
Q,, that w is defined and continuous on Spr—p N (0 Q0 0QY).

Since E, EZ=U?:1 Q;, w is continuous on all of 57_, . O

Remark 4.4. If in Assumption Al we require that g(-) be locally
Lipschitz, then the same proof shows that w will also be locally Lipschitz
on Sronry-

Remark 4.5. Examining the proof of Theorem 3.2, one finds that it is
sufficient, for continuity or local Lipschitz continuity of w on S;r_j 7y, to
assume g{-) to be continuous or localily Lipschitz relative to the closed set
S, rather than on all of E; N E,.

Remark 4.6. The choice of h above depends only on the dynamics,
the compact control sets Y and Z, and the constant R. Hence, Lemma 4.2
can be applied to games with initial points in S;y_x7—(k-1)s; and with
terminal time T - (k — 1), provided the payoff is defined through a function
which is continuous relative to Sr_x_q»-

We will need the following lemma in the proof of Lemma 4.4 below,
This is parallel to Lemma 1.3 of Ref. 1, to which we refer the reader for proof.

Lemma 4.3. Consider a game with phase restrictions on only the
minimizer, ie., E;=R" Let t;€[0, T}, and let X C E;~ E, be a compact
set such that, for some real number «,

w(t,x)>a, for every xe X.

Then, there exists a strategy I'*, defined on [t,, T, such that
Vie)> e, forall g e{®[-,1,, x, T*]: xe X}.

Lemma 4.4. Let X be a compact subset of E,n E, with (T—h, x)e

Sr_n for all xe X. Suppose that, for some a € R,
w(T—h,x)> a, forall xe X.

Then, there exists a strategy I’ on [T —h, T, independent of x, such that
Vig)>a, forall p el J{®[-, T-h x, Tl xe X}

Similarly, if w(T ~h, x) < e for all xe X, then there exists A such that
Vip)<a, forall pel J{®[-, T—h,x,A]: xe X}.



522 JOTA: VOL. 68, NO. 3, MARCH 1991

Proof. We will prove the first statement. The second statement can
be treated in a similar manner. By Lemma 4.2, w is continuous on X. Since
X is compact, there exists an «’ such that

w(T—-hx)=a, forall xe X. (8)

LetQ);,i=1,...,4,beasinthe proof of Lemma4.2. Define X; = X n{},
and X, = X\ X,. Clearly, X;’s are compact and X = X, U X,. Furthermore,
if x € X;, then the game with initial point (T — A, x) is a game with phase
restrictions, if any, on only the ith player (see the proof of Lemma 4.2).
Consider the case when x € X. Then, the game with initial point (T -5, x)
is a game with phase restrictions on the maximizer, as considered in Section
1. Let T, be the extremal strategy defined with respect to C*(a’). Note that,

by (3),
{(T—h,x):xeX,}CC (a)).
Since X, is compact, we may apply Lemma 3.1 to obtain
Vie)z=a'> a, forall pelJ{®[-, T—h x T ]:xeX}. (9)

In the case when x e X,, the game with initial point (T —h, x) is a game
with phase restrictions on the minimizer. Note that, by (8), w(T —h, x) > «,
for all xe X,, and X is compact. By Lemma 4.3, there exists a strategy I',
such that

Vie)>a', for all ol J{®[-, T—h,x, T} xe X5} (10)

Now, take I' to be the strategy whose nth stage partition is the common
refinement of those of I'; and I',. Let the nth stage of I play the nth stage
of T'; if the initial point of the game, (T —h, x), has x€ X,. In the case
x € X, X,, the corresponding game is one with no phase restrictions and
can play either Ty or T, at the nth stage. For the sake of definiteness, let
us say I plays I'; in such a case. Note that any motion ¢ in ®[-, T—h, x,I']
is either in ®[-, T—h, x,I';] or in ®[-, T—h, x,I',]. Therefore, it follows
from (9) and (10) that I" has the desired property. O

We now state and prove the main theorem of this section.
Theorem 4.1. Assume A2. Then, the game starting at a point (1, Xo) €
[0, T]1x E, n E, has value w(f,, x,). Moreover, w is continuous on [0, T]x
E, " E, [locally Lipschitz if g(-) is locally Lipschitz].
Proof. Note that
[0, TIXE,n E;={_J{S(R): R>0}.
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Hence, it suffices to show that, for an arbitrarily chosen R, the statement
of the theorem holds with [0, T]x E, n E, replaced by S(R). Let R >0 and
S§=S(R). Let h=h(R) be as in (6). Then, for some positive integer o, we
have

Sc\J Sir-wnry
k=1

We will prove, by induction on k, that:

(i) For (1, x)€ S;r—n 11, w1, x) is defined [i.e., the game starting at
(t, x) has value] and w is continuous on S;r—wn 71

(ii) If X is a compact subset of E such that, for some o € R and all
(T—kh,x)e([0, TIX X)) Sir—in1y, Ww(T —kh, x)> a, then there exists a
strategy I'(«, k) such that

Vip)>a, forall o e\ J{®[-, T—kh,x, T (e, k)]: xe X}.
Similarly, if w{T —kh, x) < a, then there exists A{a, k) such that
Vie)<a, forall pel\ J{®[-, T—kh,x, Ala, k)] xe X}.

Note that statement (i) is the primary goal. Statement (ii) will be needed
in the inductive step of the proof of statement (i). Let k = 1. Then, statements
(i) and (ii) are exactly the assertions of Lemma 4.2 and Lemma 4.4,
respectively.

Suppose, as our inductive hypothesis, that (i) and (ii) hold for k.
Consider a game starting at (o, Xo) € S;7—(+1)n 7—xr With final time T — kh,
dynamics (2), and payoff (3) defined using, in place of V(-),

w(T —hk, o[ T~ kh)), if e[t]le E\nE,, VYte[ty,, T—kh],
Vi{g)={ -0, if ¢ leaves E, first,
+00 if o leaves E, first.

Note that by Lemma 4.1, (T~ kh, o[ T—kh])e Sr_.,. Hence, by our
induction hypothesis, w(T ~kh, [ T —kh]) is defined for any motion ¢
with initial point (f,, X,). Let us call such games G, and write I';, A, for
strategies and w;, w; for lower and upper values in G,. Since, by the
induction hypothesis, w|S;_;, is continuous and the duration of a G,-game
is less than or equal to h, we have by Lemma 4.2 (see Remark 4.6) that
wil, Xo) exists and wy is continuous on S;r—c+1)n7—knj. Also, note that,
by the definition of V,,

Wil St = W|Sr_in- (11)
Now, we need only show that

w (1o, Xo) = wi (19, X0) = w' (15, Xo).
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Once this is established, we will have that w({,, x,) exists and equals
wy(to, Xo). Moreover, the continuity of w on S;r_+1ynr—-wn follows from
that of w,.

Claim C1. w™(t, xo) = w; (1o, Xo).

Proof. Suppose that the claim is false: wy(t, x5) > w™(f;, Xo). Let
vo=w (ty, Xo). Then, by definition, there exists a strategy I';, defined on
[te, T—kh], and 8 >0 such that

Vilg) > vo+ 8, for all ¢, €®[-, &y, x5, I'1]. (12)
In particular, for all ¢, € ®[-, 1y, xo, I',],

¢ t]€ E,, for all teft,, T—kh]. (13)
Let

X, ={e[T—kh]: oe®[-, t, o, I'1], Vi) # o}
By (12) and the definition of V,,

w{T —kh, x)> v+ 8, for all xe X,. (14)

Note that the statement ““ V,(¢,) # 0 is equivalent to the statement “¢,[f] €
E, Vte[t,, T—kh].” Since ®[-, ty, xo,';] is compact as a subset of
C[t,, T, and since E,C R" is closed, the set

{‘PGQ[', t03x09r1]: 90[1]6 El, Vte[t()’ kah]}’

is compact in C[t,, T]. It follows that X, is compact. Therefore, by our
induction hypothesis, there exists ['(v,, k), defined on [ T — kh, T, such that

Vi(e)> v,+8, forall pe®[-, T—kh, x,I'(vy, k)], x€X,.

Let T* be the concatenation of I'; defined on [#,, T—kh] and
I'(v,, k) defined on [T—kh, T]. Let ¢*e®[-, to, xo, I'*]. By the defini-
tion of T%, there exist motions ¢, €®[-,%,x,I] and e¢c
®[-, T—kh, o*[ T—kh],I'(v,, k)] such that

*[t] m {‘pl[t}’ for te[t09 T—kh]:r

C7 e, for re[T—kh, T1.

By (13), ¢*[t]e E, for all te[t,, T—kh]. Now, if ¢*[f]€ E, for some
felty, T—kh], then

(15)

V(g*)=c0. (16)
If ¢*[t}e E, for all 1€[t,, T—kh], then by (15) and the definition of V|
eltle E,, for all te[ty, T~ kh], (17a)

Vie*)=V(e). (17b)
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Because of (17a), V,(¢,) 5 0. Therefore,
e*[T~kh]l=¢,[T—kh]e X,.
By the defining property of I'(v,, k) and (17b), we get
V(e™) = V(g)> vy+ 8. (18)

Since ¢*e®[-, 1, x5, I'*] was chosen arbitrarily, we conclude from (16)
and (18) that

iﬁf Plty, x5, %, A]> v,.
Therefore, w™{1,, xo) > v5. This contradiction proves Claim C1. ]
Claim C2. w, {1y, x5) = w™ {15, Xo).
Proof. The proof of this claim is paraliel to that of Claim C1. Here,

one uses A{w,, k) with v,=w(1,, x;). We omit the details. 0

To compilete the proof of Theorem 4.1, it remains to prove statement
(ii) in this case. Let X be a compact subset of E such that, for all xe¢ X,

(T—(k+1)h, x)€ Sr_(kriyns
and, for some o € R,
w(T—(k+1)h, x)> a.

We need to show that a strategy I'(a, k+ 1), as described in statement (ii},
exists. Since w# w; on Sr_¢,.)),, We have

wi(T—{k+1)h, x})>a, for all xe X.

Arguing as in the proof of Lemma 4.4 [using the fact that G,-games with
initial points (T —(k+1)A, x), x€ X, are of duration =h], we obtain that
there exists a strategy I'y on [T —(k+1)h, T~ kh] such that

Vi{e)> a, forall o @[, T—{k+1)h x,T,], xeX
Let
Xi={@[T—khl: e @[, T (k+1)h, x,T,], Vi(¢,) # 0, xe X}.

Using the compactness of X, we get, as before, that X, is compact. Also,
by the definition of V|, w(T —kh, x)> o, for all xe X,. Let I'(a, k) be as
guaranteed by the induction hypothesis. Take I'(a, k+ 1) to be the concate-
nation of I'; and I'(«, k). Then, I'(a, k+1) has the desired property; the
proof of this is similar to that concerning I'*, above.
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In a similar manner, one can obtain the strategy A(e, k+1). This
concludes our induction and proves the theorem. [

Note that, as a corollary to the proof of the theorem, we have the
following statement.

Corollary 4.1. For every compact subset X of E,n E,, there exists
XA>0 such that, for any x,€X, w(f x)=w;(t,x) for all (fx)e
[0, T]1x (x;+AB), where w, is the value in a G,-game, as defined above,
where only one of the players is restricted to a phase set.

Proof. Let R>0 be such that [0, T]x X CS(R). Corresponding to
this R, let A>0, h>0,and ,i=1,...,4, be as in Lemma 1.3. Note that
any x,€ X belongs to some Q,, i=1,...,4. Take A= A. The conclusion
follows as in the proof of Theorem 4.1 using the definitions of A and h;
see Remark 4.2 and (6). O

5. Characterization of the Value

Set

H(t, x, p) =max min{p, f(¢, x, y, 2)).
y z

Let CY(F), FCR" denote the set of all functions which are continuously
differentiable on a neighborhood of F. Recall (Ref. 13 and 14) that a function
w(t, x), continuous on [0, T]X F, is called a viscosity supersolution (sub-
solution) of

u,+H(t, x, Du)=0, (19a)
w(T, x)=g(x), for all xe F, (19b)

if for every ¢ € C'([0, TIxF) such that w—¢ has a local maximum
{minimum) at a point {(f,, x5) € [0, T) x F, then

@,(to, Xo) + H(tg, Xo, Dup(to, X0)) = 0 (=0)

holds. Note that the inequalities are the reverse of those in Ref. 13 and Ref.
14, since the values of w are prescribed at the terminal, instead of the initial,
time. In the case when E, = E,= R", Berkovitz showed (Ref. 15) that w is
a viscosity solution of {19) with F= R". Under Assumption Al, one may
apply standard uniqueness results (Ref. 13, 14, 16) to characterize w as the
only such function. When E,= R" (that is, state constraints are imposed
on at most the maximizing player) and the corresponding value function
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w is continuous, one can verify by essentially the same arguments as in
Ref. 15 that w is a viscosity supersolution on [0, T) x E; and a viscosity
subsolution on [0, T') x int( E,); see Ref. 1 or Ref. 17. It has also been shown
that such conditions, together with prescribed terminal values, determine
w uniquely on [0, T]x E,; see Ref. 18, Ref. 11. When E,=R", similar
staternents hold with “super” and “sub” switched. Such uniqueness results
were first obtained by Soner (Ref. 10) in the context of an infinite-horizon
optimal control problem with discounted cost and the associated Hamilton-
Jacobi-Bellman equation. Further investigations of such problems, under
various and more general assumptions on the data, have been carried out
by Capuzzo-Doleetta and Lions in Ref. 18 and Ref. 11. In particular,
uniqueness results for the Cauchy problem are proved in Ref. 11 (cf.
Theorems iii.2 and iii.4).

Here, let us note that it follows from Corollary 4.1 that the local
properties of the value function w are the same as those of the value w,
of a game with state constrainis on at most one of the players. There-
fore, combined with the results of Ref. 1, we may conclude the following
proposition.

Proposition 5.1. For every compact subset X of E,n E,, there exists
x>0 such that, for every x € X, letting U = X N (x+AB), then:

(A) If d(x,6E,)<]), then w is a viscosity supersolution of (19a) on
[0, T)x U and a viscosity subsolution on [0, T) X (% nint(E,)).

(B) If d(x,dE,)<A, then w is a viscosity subsolution of (19a) on
[0, T)x % and a viscosity supersolution on [0, T) X (% nint(E,)).

(C) If d(x,(3E,udE,))=2, then w is a viscosity solution of (19a)
on [0, T)x U.

Remark 5.1. It follows from this proposition that w is a viscosity
solution on [0, T) xint(E, n E,), supersolution on [0, T)x4E,, and sub-
solution on [0, T) X E,.

Thus, in view of the uniqueness results mentioned above, one expects
the following theorem to hold.

Theorem 5.1. Let E = E,n E,. Properties (A}, (B), (C) above and the
terminal condition w(T, x)= g(x), for all x € E, determine w uniquely if E
satisfies assumption A3 below,

Assumption A3, For every compact subset X of E, there exists A*>0
and a function v: X - B suchthat, forany %, x € X with |x — x] <A*, we have:
(i) there exists ag= ay(X)> 0 such that
X+av(x)eint(E), Ya (0, ay);



528 JOTA: VOL. 68, NO. 3, MARCH 1991

(ii} if X €dE, then there exists {=¢(X) such that
d(Z+av(x),dE)=éa, a (0, ay).

Indeed, this can be proved by modifying the arguments of uniqueness
proofs in problems without state constraints (e.g., Theorem 2.5 of Ref. 16
or Theorem V.4 of Ref. 13} along the lines suggested by Soner in Ref. 10.
Since no single reference contains all the details for our setting, we give a
sketch of the proof and leave some of the details for the appendix.

We will need the following lemma which follows easily from Assump-
tion Al. The proof is omitted.

Lemma 5.1. Assume Al. Then:

(i) H(t x, p) is continuous on [0, T]x ExR".
(ii) For every compact subset X of E, there exist constants K >0
and C >0 such that

;H({»xap)mﬁ(t:xaq)g
=(K|x|+C)lp—ql, Vte[0,T], xeX, pqeR’,

= K|x~-x||pl, Vie[0,T], x,¥¢X, peR"

Proof of Theorem 5.1. Let w, and w, be two functions continuous on
[0, T]1x E, satisfying (A), (B), (C), and wi(T,x)=g(x), for all xe E. It
suffices to show that, for every compact subset X of E, w, = w, on [0, T]x X.
Hence, without loss of generality, we may assume that E itself is compact.
Let C and K be as in the above lemma. Let

To=T=-1/(2K).

It suffices to show that w, =w, on [Ty, T]X E, since then by similar argu-
ments one obtains inductively that

Wy =W,, on[T—i/2K), TIxE, i=2,3,....

We proceed to show that w, = w, on [T, T]1x E. Let L be any positive
number satisfying

L=C/(1~-K(T-T,)).
Consider the following compact set:

Q={(t,x):te[T,, T, |x|=L(T,—T),xe E}.
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It foliows from statement (iia) of Lemma 5.1 that
|H(t,x,p)-Ht,x, 9)|=|p—gq|, forall(t,x)eQ,and p,geR"  (20)

Suppose that we prove that w,=w, on ). Then, since L was chosen
arbitrarily, it follows that this equality holds on (T, T]1x E and the con-
tinuity of w;’s extends the equality to [ T,, T} X E. Hence, we will only show
w;=w, on (.

Now assume, for contradiction, that

max {wl(ts x) - WZ(ts X)}E Ty,
(tx)ef)

for some 0,> 0. Let
M > max{” wl”ao, ” wZHwa O-O}a
where

[ willoo= [max |wi(1, x)].

For € >0, define {1, CQ by

Q.={(t,x)eQ:te[Ty+e/L, T],|x|= L(t— Ty}~ €}. {21)
By the continuity of w,’s there exists €,<1 such that, for all € (0, &),
 max {wi(t, x) = wo(t, x)} = /2. (22)

Fix € €(0, &) and let n € C™(R), depending on ¢, be such that

0, if r=-—¢’,

—4M, if r=0, (23)

n(r)={

with n'(r) =0 for all r. Let ¢(0, 0o/4(T—T,)). Let

(t*, x*)e arg max{wi(1, x) = wy(t, x) + o (1 = To)}.
Lx)efl,

Let
7t x) =n(|x|*~ L*(1— Tp)*).

Note that, since |x|=< L(t—T,) ~ € and 1= T,+ ¢/ L imply that
xP—L(t—TY =€,

we have

supp(n) CO\Q.. (24)
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Let X and A* be respectively as in Proposition 5.1 and Assumption A3 with
X =E. Set A =min(A, A*). Fix y€(0, 0o/4). For a, >0, define ¢, 5: %
- R by

bap(t, X, 3, 2) = wi(t, x) = wals, ) = (1/ Bt = sI"— ¥ a(x, »)
—GBM/A)x = x*+ |y - y*’]
+o(t—To)+7(1, x)+7(s, ), (25)
where ¥ (x, y) is defined as follows [» = »(x*) is as in Assumption A3]:

if d(x*,0E,)<A and d(x*,0E,)= A,

then ¥, (x, y) =|(y —x)/a —v[5 (26a)
if d(x*,3E,) <A and d{(x*,3E )=,

then ¥, (x, y) =|(x~y)/a—v[}; (26b)
otherwise, ¥, (x, y)=(1/a)|x—y|*. (26¢)

Note the dependence of ¢, g on x* and therefore on e. By its continuity,
¢.p achieves its maximum on the compact set X} at some point
(11, X1, 51, y1). We will need the following statements about (¢, x,, 5;, 1),
see the appendix for proofs.

Claim C1. For every fixed €€ (0, &), we have:
(a) 28 (0, €) such that, for all a, S,
|x/= L(#, — To) ~ 6 and |y,| = L(s; — To) - 8.

(b) For all @ and B, |x, —x*| <A, [y —x¥|<A.

(c) [t;—s;|=0as B->0and|x;,—y|>0as a~>0.

(d) (1/B)ty=si+y¥a(x,y)>0as a, 0.

(e) There exists 7,>>0 such that, for all a, 8 sufficiently small, we
have t;, 8, =T~ 7.

(f) if d(x* aE —1)<A, then either d(y,,dE;)<A or, for all o, B
sufficiently small, y;cint(E,). Similarly, if d(x*,0E,)<A, then either
d(x,,9E,)<A or, for all a, B sufficiently small, x; € int(E,).

Claim C2. |x—x**+|y—x**>0as a>0and f->0.

We now show that conditions (A), (B), (C) and the above claims lead
to o =0, a contradiction which proves the theorem. Since the definition of
¢ap depends on x*, for fixed € we distinguish three cases.
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Case 1. d{(x* 6E,)<A. Then,bycondition (A), w is a viscosity super-
solution of (19a) on [0, T)x 4; here, U = E n(x*+AB). Note that, by
Claim C1(b) and the choice of A, x,€% Now, the function
(t, x) = da (1, x, 51, 1) has an absolute maximum relative to { at (¢, x,).
By Claim Cl(e), if e, B8 are sufficiently small, then #, < T—r,. By Claim
C1{a), x, £ 3. Therefore, this function has a local maximum on [0, T)xX E
at {t;, x,). We may therefore conclude from (A) that, for all a, 8 sufficiently
small,

—o+(2/B)(t,—51)— 7.1, x1)

+H(t, x,, z; +H(6M/ A% (x;— x*)) = 0, 27
where, setting r(t, x) =|x[*~ L*(t — T,)?, we have

At %) = =20 (r(ty, ) L*(1, - Tp)
and

1=

{“(27/‘1)[(}’1 —x)/e=v]=20'(r(t;, x))x;,  if d(x¥,0E,) = A,
(2y/a)(x,—y) =279'(r(ty, )%, if d(x*,0E;)<A.

Furthermore, the function (s, y)— ¢, (1, %, s, y) has an absolute
minimum relative to Q at (s, y,). By Claims C1{(a) and Cl(e}, {s,, y,) £ 6}
Suppose that d(y,, dE,)= A. Then by Claim C1(f), y, ¢ int(E,) for all @, 8
sufficiently small. Therefore, this function has a relative minimum on
{0, T)x U nint(E,} at (s,, y,). Hence, again by (A), for sufficiently small
a, B,

(2/B)(t1“51)+ﬁ,(51, YI)+H(SIa Y1, Z2+(6M//\2)(y1 A—X*))SO: (28)

where

~Qy/ )y —x)/a=v]+20'(r(s;, y))y1, i d(x¥,8E5) = A,

2 {(ZY/Q)(xl =y +29'(r(sy, vy, if d(x*, oE;) <A.

I d(y,dE,) <A, then (s, ¥) > =, 5(t;, Xy, s, y) has a local minimum on
10, TY x U. Using (B), we again have (28).

Case 2. d(x* 9E,)<i. This case is handled as in Case 1 using
conditions {A) and {B) and the appropriate form of ¥, . This leads to (27)
and (28) with

{(27’/3){(}’1 —xy)/a=v]=27'(r(t;, x:))x,, if d{x*,0E,)= A,
Qy/a)(x,—y1) =20 (r(t,, x1))x,, if d{x*,9E;)<A,

L=
and

7 = {(2'}’/‘1)[0’1_351)/a - V]+27I'(r(51, J’1))}’1 5 if d(X*s 351)2/\»
L@y /@)=y +20'(r(se, y0))yis if d(x* aE,) <.
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Case 3. d(x* 0E,)=A, and d(x*, 3E,)=A. Then, by claim Ci(b),
x; and y, lie in int(E, n E,). Recalling Remark 5.1, we can obtain (27) and
(28) with

zy=(2y/ a)(x = 1) = 29'(r(t;, X1)) X1,
2= (2y/ a)(x; = y1) +27'(r(s1, y:1))y:-
Combining (27) and (28), we have that, for sufficiently small «, 8,
o =2L{7n'(r(sy, y)L(s; = To)+n'(r(t,, x ) L(t; = Ty)]
+H(ty, %y, z; +(6M/A%)(x; — x*))
= H(sy, y1, 22~ (6M/A*)(y; — x*)). (29)
We now estimate the right side of (29). Define
A, =|H(t;, x;, z; +(6M/ A (x, — x*)) = H(1,, X, 2,)|,
A, =|H(t),x,z;)— H(t;, %y, 2,)],
As=|H(t;, x,, ) — H(t,, y1, 22)l,
Ay=|H(ty, y1,22) — H(s1, y1, 2],
As=|H(sy, 1, 22— (6M/A})(y, = x*)) = H(sy, 31, 22)-
Then, using (20), we have
A, =6LM|x,—x*|/A%,  As=6LMly,—x*|/A°, (30a)
A= Lz =z = 2L(1n'(r(sy, yOlIyal + 0" (r(ty, x ) |xa]). (30b)
By statement (ii)(b) of Lemma 5.1,
As=K|x, = |z
=2K[y(¥a(x1, 1) +VE 0o, y) HIn—xlln (s, ylnll. (3D

Using (30b), and noting that n'(r)=0 for all r, by construction, we can
write (29) as

g=A, +A3+A4+A5+2LU17’(?(S1 , Yyl = L(s, — To))
+|n'(r(t, x)N(xs| — L(t, — To))]-

Note that, by Claim C1(a), the quantity in the square bracket is negative.
Therefore,

o=A+A;+A,+As. (32)

Now, let 9> 0. Using (30a) and Claim C2, we have that there exist a,
and B, such that

A+ As=9/4, if @ <a, and B <p;.
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Note that, by Claim C1(a), {n'(r(s;, y,))| remains bounded as a, 8-0.
Therefore, using (31) and Claim C1{c) and C1(d), we have that there exist
a, < ay, B>< B such that

A3S'l9/4, ifa(azandﬁ<32.

Finally, with € < ¢, and o < «, fixed, we may choose, by Claim Ci(c), 8
sufficiently small to obtain

A=< /4.
Thus from (32), we obtain o= 3. Since 9 >0 was chosen arbitrarily, we
have o =0, contradicting the choice of o. O

6. Appendix

In this section, we provide the proofs of Claims C1 and C2. These
arguments are adaptations to our case of the arguments in Ishii (Ref. 16)
and Soner (Ref. 10).

Proofs of Claims C1(a), Cl{b), Ci{c). Note that (T, x*) e (.. There-
fore, by (24) and using w (T, )= g(-) = wy(T, ), we have that, for any «
and S,

Gap(T,x*, T, x") =~y (x*, x*) + o(T-To) =~y +o(T—Tp).
By the definition of (¢, x,, 51, ¥1),

Gapltis X1, S1, 1) = Gap( T, x*, T, x¥).
This gives

(1/B)t~ 5112”{" YW (X1, y)+ (3M/)\2)[!x1 ”X*|2+ 37 “X*iz]

=7ty X)) — 55, y1)

=wi(ty, x) = wylsy, y1) +y—o(T—1t,)

<2M+0/4<3M. (33)

Now, Claim C1(a) follows from the fact that —7(z, x) > 4M as |x]*—
L*(t—To)*~0; Claim C1(b) is clear from (33); and Claim C1{c) follows

because the right side of (33) is independent of e, 8 and, if |x — y|> 0, then
¥, (x,y)>c0as a0, O

Proof of Claim Ci(d). Let & be as in Claim C1(a) and «,(x,) as in
Assumption A3. Since 8 is independent of a, 8, we have that (t,, x,, t,, x,+
av)eQ, if a € (0, &), where &€ =min(8, ay(x,)). Hence, if « € (0, &), then by
the definition of (¢, x,, s,, y1),

Pap(tis Xy, 81, V1) Z o p(ty, Xy, 1), X+ av).
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This gives
1/ Bty =51+ y¥a(x1, 1)
<|wy(s1, y1) — wilty, X1+ av)|+ |7 (s1, y1) — 7 (t1, X, + av)|
+BM/ Ay = x*P =[x —x*]. (34)
Using the continuity of w, and % and Claim C1(c), we conclude that the

right side of (34) tends to zero as a, B> 0. O

Proof of Claim Cl(e). Suppose that the statement is false. Then, there
exist a,, B, > 0 as n— oo with corresponding t,, and s;,, such that either ¢,
or s5,, tends to T as n~> . But, by Claim C1{c), both s,, and t,;,~ T. For
notational convenience, we will write ¢,, and (1, X,,, 5,, ¥,) instead of ¢, g,

and (tn, X1n, S1ps Vin)-
By (22),

max{w, (¢, x)—wy(t, x): (1, x) € Q} = 0/2,
and the maximum is achieved at (¢*, x*). Also, since

wi(t, x) — wy(t, x)+ o (1t — To) = wi(t, x) — wy(t, x),

forall (¢, x) witht=T,,

we get

wy (1%, x¥) = wo (1%, x*)+ o (t* ~ Tp)

=max{w,(t, x)—wy (s, x): (£, x) e Q.}.
Therefore,

max{,(1, x, t, x): (1, x) € Q.} = ¢, (1%, x*, t¥, x*)

=0,/2—7, (35)

where for the last inequality we have also used (24) and the fact that
(t*, x*) € Q.. On the other hand,

ma‘x éﬂ(tQ x} t’ x)s ¢n(lna xﬂ, Sns yﬂ)
= Wl(t,,, xn) - WZ(sru yn)+a(tn - TO)'
Since w,(T,-)=w,(T,-), the right side of the above equals

[Wl(tn;xn)— wl(xxn)]+[w2(nxn)~w2(sn’yn)]+a'(zn - TO) (36)
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Since the w;’s are uniformly continuous over the compact set {}, since
Sn, 1, ~> T, by assumption, and |x, —y,| - 0, by Claim C1(c), combining (35)
and (36) and letting n - o0, we obtain

o(T—Ty)=o0/2— 7.
Since y € (0, go/4), we have o(T — T,) > B,y/4. But this is impossible, since
o <o/ (HT—Tp)). [
Proof of Claim C1(f). Suppose that d{x*,6E,) <A, butd(y,, E;)=A.
Then,
V. (x,y)=l(y—x)/a-["
Now, by Claim C1(d), since vy is fixed,

zo=(y—x)/a~v->0, as a, B0, 37
By Claim C1(b), x, € x*+ AB. Since A < A*, we have by Assumption A3 that:
X +aveint(E,), for a €0, ag(x;)); {38a)
there exists >0, such that d(x,+av, 9E,) = ¢a, if x,€3E,. (38b)

Now,
n=Extal(vtz,)

If x, € int(E,), then y, € int( E;) for sufficiently small a. Suppose that x, € 8E, .
By the triangle inequality,

d(x;+av,0E,)=d(y,,dE,) +|y, — (x, + av)|.
Hence,
d(yy,dE) =d(x,+av, 3E,) —ajz,].
By (37) and (38b), for all a, 8 sufficiently small, d{y,,3E,)> 0; therefore,
yi€int(E,). Similarly, if d(x*, 8E,) <A, but d(x,, E;)= A, one obtains x, €
int(E,). -
Proof of Claim C2. Recall that (¢*, x*)e0),. Let
0 < a <min(e, as(x*)).
Then, (¢*, x*+ av) e Q. Therefore,
& (1, %1, 81, v = (%, x*, t*, x* + av).
This gives
1/ Bty — s>+ Yo (1, y1) +BM/ A% |x, ~ x* +]y, - x*]
=[w(f, x)) ~wy(s1, y)+ ot~ Tp)]
=[w (%, x*) = wy (1%, x* + av)+ o (t* - T)1— 5(¢*, x*+ av).
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Adding and subtracting w,(¢;, x,) and w,(¢#*, x*) to the first and the
second expressions in the square bracket, respectively, we obtain

(3M//\2)Hx1 _x*fz'{‘b’x “X*ﬁ

= A +[walsy, y1) — walty, %))

+ w1, x*) — wy(r*, x* + av)] - (¥, x* + av), (39)
where

A, =[w(t;, x1) —wy(ty, X1} +0(t;— Tp)]

—[w (1%, x*)— w, (%, x*)+ o (1* — T,) 1.

Note that, by the definition of (t*, x*), the last expression on the right

is equal to

max {w,(t x)—wylt, x)+o(t— Tt

(tx)e
Hence, A, is bounded above by
max {w(t, x)—wy(t, x)+o(t— Tp)}

(t,x)eQ,

—-(max {wi(t, x) —wy(t, x)+ ot — T))}.
tx}e),

Thus, it follows that either A, <0 or, if A, =0, then A, >0 as e~>0.
Going back to (39), using the continuity of w,, (24), and Claim Cl{(c), we
observe that the remaining terms on the right of (39) tend to zero as a, B > 0.
This is the desired conclusion. O
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