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Differential Games of Fixed 
Duration with State Constraints' 

K .  H .  G H A S S E M I  2 

Communicated by L. D. Berkovitz 

Abstract. We consider differential games of fixed duration with phase 
coordinate restrictions on the players. Results of Ref. 1 on games with 
phase restrictions on only one of the players are extended. Using 
Berkovitz's definition of a game (Ref. 2), we prove the existence and 
continuity (or Lipschitz continuity) of the value under appropriate 
assumptions. We also note that the value can be characterized as the 
viscosity solution of the associated Hamilton-Jacobi-Isaacs equation. 

Key Words. Differential games, phase restrictions, value function, vis- 
cosity solutions. 

1. Introduction 

Let E1 and E2 be two given closed sets in R ". Cons ider  a differential 
game o f  fixed dura t ion  governed  by an ord inary  differential equat ion and 
with terminal  payoff  in which the ith player,  i =  1, 2, must  choose  his 
strategies in such a way  that  all resulting trajectories lie in Ei. Such restric- 
t ions can be formal ized by using an extended real-valued payoff  which 
penalizes each player  for  violating his constraint .  

In  in t roducing  a new not ion o f  a game in Ref. 2 (see also Ref. 3), 
Berkovitz considered a game with no state constraints,  i.e., the case where 
E1 = E 2 = R " .  In  Ref. 1, we studied the case where only  one o f  the Eds 
equals R". Here, using Berkovitz 's  definitions, we examine the quest ions 
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of the existence of value and its regularity properties in games where both 
E1 and E2 are allowed to be proper subsets of R". We show that, under 
appropriate assumptions, such games can be viewed as a finite sequence of 
games in each of which only one of the players faces the possibility of 
violating his constraint. We then use an inductive argument to extend the 
results of  Ref. 1 to conclusions about the general case. 

Games with phase coordinate restrictions as above have been con- 
sidered previously by Friedman (Refs. 4 and 5), Scalzo (Ref. 6), Subbotin 
(Ref. 7), and Zaremba (Refs. 8 and 9). Each author, using a particular 
definition of a game, establishes the existence (Refs. 4-9) and continuity 
or Lipschitz continuity (Refs. 4-6) of  the value. In Refs. 4, 5, 7, games with 
phase restrictions on essentially only the players are treated. In Ref. 6, 
Scalzo extends the results of  Friedman to games with phase restrictions on 
both players. Our technique for extending the results of Ref. 1 is similar in 
spirit to that of  Ref. 5, but we make fewer assumptions on the data. 

The paper is organized as follows. In Section 2, we state the basic 
assumptions on the data of  the problem and review the definitions and 
notations used in the paper. Section 3 recalls, for the convenience of  the 
reader, the results of Refs. 1 and 2, which we will need in the later sections. 
In Section 4, we state and prove the main theorem (Theorem 4.1). In Section 
5, we discuss properties which characterize the value of such games, as the 
unique constrained viscosity solution (see Refs. 10 and 11) of the associated 
Hamilton-Jacobi-Isaacs equation. 

2. Definitions, Basic Assumptions, and Notation 

The following basic notation is used in the paper. The letter B stands 
for the closed unit ball in R ~. I f  E C R", then 

d(x, E) = inf{tx-  el: e c  E}. 

If  E is a domain with C2-boundary OE and x ~ OE, then n(x) denotes the 
unit inward normal to OE at x. C([a, b]) denotes the space of all continuous 
functions x:[a, b]-~ R ~ with the uniform topology. If  F and G are subsets 
of  R", then int(F) denotes the interior of F, and F\G,  the set {x ~ F: x ~ G}. 
Finally, if F is a subset of the domain of a given function f then we will 
use f I F  to denote the restriction of f to F, and supp(f )  to denote the 
closure of {x: f ( x )  ~ 0}. 

We now briefly review the definition of a differential game according 
to Berkovitz. For a more complete discussion and the relationship between 
this and other definitions, the reader should consult Refs. 2 and 3. 
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Let Y and Z be compact subsets of  Euclidean spaces R v and R q, 
respectively, and f :  [0, T] × R" x Y x  Z ~  R ". If  J is an interval in R, let 
~ ( J )  and ~f(J) denote the set of all measurable functions from J into Y 
and Z, respectively. Let T > 0 be given, A zero-sum two-person differential 
game of fixed duration (-< T) is completely defined once we specify (a) 
what is meant by a strategy for each of the players and (b) what payoff is 
assigned to a pair of  strategies. In Berkovitz's definition, these are done as 
follows: 

(a) Strategies. A strategy F of  player I in a game with initial point 
(to, Xo), to~[0, T), is a sequence {F., II.} where ~ .  is a (not necessarily 
uniform) partition {to = ~'o < r~ < ~'2 < " " " < ~'p. = T} of  the interval [to, T] 
and, for each n, F.  is a collection of  mappings [F~,  F.~, . .  , ,  F.p} with 

F.o~ ~([r0, r,)), 

I ' .  i : ~ ( [ " r 0 ,  P/'i)) X ~ ( [ ~ 0 ,  'Ti)) .o~ 0~([¢r0 ' Ti+l))"  

A strategy A for player II is defined in a parallel manner. It is not required 
that the players use the same partitions. The letters F and ~ will, throughout 
the paper, denote respectively strategies of  player I and player IL 

(b) Payoff. To each pair of strategies (F, A), one associates a set of  
absolutely continuous functions, called motions, as follows. First, note that, 
to a pair of strategies, we can associate a sequence of  pairs of  control 
functions {(u~, Vn)} where, letting {to= So< sl < • • • < Sq,, = T} be the nth 
partition for A, we have 

u° ~ ~a([~o, T)), v° ~ y([~o,  T)), 

v . l [ s , ,  s,+,)= a.,(~,.[[~o. ~,), u.l[~o. ~,)). 

Now, let xo. be a sequence converging to Xo. For each n, consider the 
initial-value problem 

:~(t) = f ( t ,  x( t ) ,  u . ( t ) ,  Vn(t)), V t  ~ [to, T], ( la)  

X(to)  = Xo,,. (lb) 

Conditions are imposed (see below) on the dynamics to ensure that (1) has 
a unique solution 9.  defined on [to, T] and that the sequence {qv.} is 
uniformly bounded and equicontinuous on [to, T]. Such a ~. is called an 
nth stage trajectory, and the set of  all nth stage trajectories is denoted by 
O( . ,  to, xo., F, A), It follows from Ascoli's theorem that the sequence {¢~,} 
has accumulation points q~ in C([to, T]). Such limit points are called 
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motions. The set of all motions corresponding to a pair (F, A) is denoted 
by qb[., to, Xo, F, A]. Note that d~[., to, Xo, F, A] is independent of  the choice 
of  the sequence xo,,. For notational brevity, we will write qb[., to, Xo, A] for 
U r  qb[., to, Xo, F, A] and ~ [ . ,  to, Xo, F] for U• ~ [ ' ,  to, xo, F, A]. We are 
now ready to define the payoff P[to, Xo, F, A] associated to a pair (F, A) 
for a game with initial point (to, Xo). Let g: R " ~  R be a given function. 
Define 

P[to, Xo, F, A] = {g(~o[ T]): ~ c cI)[to, Xo, r ,  A]}. 

We assume the following concerning the data of  the problem throughout 
the paper. 

Assumption A1. (i) The f u n c t i o n f  in ( la)  is continuous on [0, T] x 
R " x  Y x Z .  

(ii) The function (% ~:)~f(z,  ~, y, z) is locally Lipschitz, uniformly in 
y and z, on [0, T] × R ". 

(iii) The function g, used to define the payoff, is continuous on R". 
(iv) Isaacs' Condition. For any (t, x ) e [ 0 ,  T ] x R  ~, and s e  R ", 

max min(s,f(t, x, y, z)) = rain max(s,f(t, x, y, z)). 
y z z y 

Remark 2.1. For a discussion of  the Isaacs' condition, see Section 9 
of  Ref. 2. The Isaacs condition may be dropped by allowing relaxed controls 
as admissible choices of  control function for each player (see Ref. 12). 

3. Review of  Known Results 

Let Et and E2 be two given closed subsets of  R ". Consider the game 
defined in the sense described in Section 2 with dynamics 

2 = f ( t ,  x, y, z), (2) 

where y c Y and z ~ Z denote the control parameters of palyers I and II, 
respectively, and the penalized payoff is defined by 

P[to, Xo, F, A] = { V(q~): ~ e qb[to, Xo, F, A]}, 

where 

t 
g(~[T] ) ,  

v ( ~ )  = - o o  

+cO, 

if~o[t]eElc~E2, VtC[to,  T], 
if ~ leaves El first, 
if ~o leaves E2 first. 

(3) 
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Here by "~p leaves E1 first" we mean that there exists t~ [to, T] such that: 

(i) for all te[to, f],¢[t]EElc~E2; 
(ii) there exists 6 > 0 such that, for all t ~ (?, f +  8), ~[ t ]  e E2\E1. 

Similarly for "q~ leaves E2 first." Clearly, we need to impose conditions to 
ensure that V(, ) is well-defined; see Remark 4.2 below. 

For (t, x) c [0, T] x R", let us define the upper  and lower values of the 
game with initial point (t, x), t c  [0, T), by 

w+(t, x) = inf sup Pit, x, F, z~], 
/a F 

w-(t, x) =sup  inf Pi t ,  x, F, A], 
F 

respectively, and 

w+(T, x) = w-( r ,  x) = g(x). 

The game is said to have value if  w + = w-, and the common value is denoted 
by w(t, x). For a real number  a, let 

C+(~)  = {(t, x): x ~/~, ~ E2, w+(t, x) -> ~}, 

C - ( a )  = {(t, x): x e El  c~ E~, w-( t ,  x) <- a}.  

Suppose first that E~ = E2 = R". Then one can show (see Theorem 7.1 
of Ref. 2) that Assumption A1 implies that w + and w- are continuous on 
[0, T] x R" (locally Lipschitz if g is locally Lipschitz). It follows that the 
sets C+(a )  and C-(c~) are closed. This allows the introduction of extremal 
pointing strategies F~ and A~. We will briefly describe Fe for a game with 
initial point (to, xo). For more detail, see Section 10 of Ref. 2. 

Let Fe={F,,17,,}, where 1-i, is a uniform partition, {t0=%<~-~< 
• " ~ F n ~'2< • <~'p. T}, and F , = {  ,,}i=o. To define F,,, i->0, let (u,v) be a 

pair of  admissible control functions on [to, ~'~] and ~;(-) the solution of  
(2) on [to, r~] with controls u and v and q~(to) =xo.  Let w~ satisfy 

Iwi-~o(r~) 1 --- min{ tw-  q~(~-i)l: (% w)~ C+(w+(to, xo))}, 

and set 

s~ = wi - q~(r~). 

Define F,,(u, v)= y* with y* determined as follows. I f  s; = 0, let y* denote 
an arbitrarily picked element of Y. If  s~ ~ 0, let y*~  Y be such that, for 
some z*cZ, (y*,z*) forms a saddle point on Y x Z  for the function 
(y, z) ~ (si,f(% q~( ~'~), y, z)}. The existence of (y*, z*) follows from Al(iv). 
The strategy A e is de fin ed similarly using C - ( w- ( ( to, Xo) )). The importance 
of  these extremal strategies lies in that (cf. Lemma 10.1 of Ref. 2), if 



518 J O T A :  VOL. 68, NO,  3, M A R C H  1991 

~p ~ qb[t0, Xo, re]  (respectively, ~p ~ ~[to,  x0, A~]), then (t, q~[ t]) 
C+(w+(to, X)))(C-(w-(to, Xo))) for all t~[to, T]. It follows from this 
property of  the extremal strategies that (Fe, Ae) provides a saddle point for 
the game at (to, Xo). In particular, the game has value. 

Theorem 3.1. (Theorem 10.1 of Ref. 2). If  Et = E2 = R ~, then the game 
above with any initial point (t, x) ~ [0, T) x R" has value w(t, x) and w( . , .  ) 
is continuous on [0, T] × R" (locally Lipschitz if g is). 

In the case when one of the E{s is a proper closed subset of R n, the 
upper and lower values are no longer continuous. However, one can show 
(see Lemma 1.2 of Ret: 1) that, if E2 = R ~, then w ÷ is upper semicontinuous. 
Thus, in that case, the sets C+(a) are dosed.  Therefore, one can define Fe 
as before and obtain the following lemma. 

Lemma 3.1. (Lemma 1.5 of Ref. 1). Suppose that E2=R n. If ~ 
• [to, Xo, Fe], then (t, ~0[t]) ~ C+(w+(to, Xo)) for all t~ [to, T]. 

The existence of  value follows (see Theorem 1.1 of Ref. 1). Similar 
results are obtained if only E1 = R ~. We will also need the following result, 
obtained in Ref. 1 (parallel statements hold for the case E~ = R~). 

Theorem 3.2. (Theorem 3.1 of Ref. 1). Let E2 = R ". Suppose that Et 
is the closure of  a domain with C 2 boundary. If  

max min(n(x),f(  t, x, y, z)) > O, 
y z 

for all (t, x)~ [0, T]×OE1, 

then w is continuous on [0, T] × E1 (locally Lipschitz if g is). 

4. Phase Restrictions on Both Players 

In this section, we allow for both of the Ei's to be proper subsets of 
R ". We make the following assumption. 

Assumption A2. 
domains in R n. 

(ii) 
(iii) 

(i) The phase sets El and E2 are closures of C 2 

Assumption A1 holds for the data. 
I f  n~(x) denotes the inward unit normal to OE~ at x ~ OE~, then 

(a) max min(nl(x),f(t, x, y, z)) > O, for all (t, x) ~ [0, T] x OE1, 
y z 

(b) max min(n2(x),f(t, x, y, z))>  O, for all (t, x) ~ [0, T] x OE2. 
z y 
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(iv) Either E~ c~ E2 = ~ or, if x e E~ n E2, then for all t ~ [0, T], y ~ Y, 
and z s Z ,  

(n,(x),f(t ,x,y,z))>O, i = 1 , 2 .  

Remark 4.1. Assumptions A2(i), (ii), and (iii)(a) imply by Theorem 
3.2 that, if  we take E2 = R ~, then the corresponding games will have con- 
tinuous value on [0, T] × E~. Similarly, by virtue of A2(iii)(b), the games 
with E~ = R" have continuous value on [0, T] × E2. 

Remark 4.2. Suppose that E~ c~ E2 # Q. For A > 0, define 

aaE = {x c E, c~ aE2: d(x, OE1) < A} w 

{x ~ E2 n OEI : d(x, OE2) < )t}. (4) 

Then, it follows from our continuity assumptions on the dynamics f and 
A2(iv) that, for every R > 0, there exists A = A (R) > 0 such that, for every 
x~O~E with Ixl- R, 

min{(n,(x),f(t, x, y, z)): i = 1, 2}->0, (5) 

for all y c Y, z ~ Z ,  and t~ [0, T]. Hence no nth stage trajectory (and 
therefore no motion), contained in {x: Ix I -< R}, can leave Et c~ E2 through 
OxE. Hence, if a motion q~ ~ qb[., to, Xo, F, A] should leave E~ c~ Ez, then 
either "~  leaves E~ first" or "q~ leaves E2 first." Therefore, V(q~) is defined 
unambiguously by (3). If E~ c~ E2 = Q, then the same is true trivially. 

Remark 4.3. It will be seen below that A2(i), (iii), (iv) may be replaced 
by any other assumptions which guarantee: (a) E t and E2 are closed; (b) 
if E~ = R", then the corresponding game has continuous value (and similarly 
if E2 = R ' ) ;  and (c) for every R > 0, there exists a ,~ = A (R) > 0 such that, 
if  ~ is an nth stage trajectory with t~(t)  I ~ R for all t, then ~ does not leave 
El c~ E2 through a A-neighborhood of  OE~c~OE2. Thus, for example, 
Theorems 3.2 and 3.3 of Ref. 1 provide alternative hypotheses to A2(iii) if 
E1 and Ez are arbitrary closed subsets of  R n. 

Let R > 0 .  Denote by S(R) the set of all initial points (t0,xo)~ 
[0, T] x E~ c~ E2 such that any solution ~( .  ) of  (2) with ~(to) = xo satisfies 
Iq~(t)l-< R for all t~ [to, T]. It follows from assumption A1 that, given any 
(to, Xo)~[O,T]xE~nE2, there exists R o > 0  such that (to, Xo)~S(Ro), 
Hence, 

[o, T] × E~ • E2 = U {S(R): R > 0}. 

Furthermore,  we have the following lemma. 
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Lemma 4.1. S(R)  is compact. If  (to, xo)~ S(R) ,  then for every t~ 
[to, T] and for every motion ~ e O[ . ,  to, x0, F, hi ,  we have (t, p [ t ] )  ~ S(R).  

Proof. The proof  is straightforward; see "note iv" in Section 3 of 
Ref. 1. [] 

For notational convenience, we will write St for S ( R ) n { ( t , x ) :  
x c E1 n E2} and St~,~ ] for S(R)  n {(t, x): t ~ [or, r] ,  x c E1 n E2}. 

Set 

M = M ( R )  = max{If(t, x, y, z)[: t ~ [0, T], Ix[ <-- R, y ~ Y, z c Z}. 

Let h = A ( R )  be as in Remark 4.2 above. Define 

h = h(R)  = A/4M. (6) 

It is clear that, if (to, Xo) ~ S(R)  and ~o[. ] is a motion in a game starting at 
(to, xo), then 

I~[t]-Xol<-)~/4, for all tO[to, to+h].  (7) 

Lemma 4.2. Let R > 0 and S = S(R).  Then, there exists h = h (R) > 0 
such that a game with initial point (t, x )~  S[T-h,r] has value w(t, x) and w 
is continuous on Str_h,r ]. 

Proof. Let R be given. Take h and h to be as defined above with 
respect to R. Let (to, Xo) ~ S[r-h,r]. Define 

f~l = {x ~ E~ n E2: d(x, OE2) >- 3 t / 4 ,  d(x, OE~) <- h/4}, 

f~2 = {x 6 Ea c~ E2: d(x, OE2) <- h/4 ,  d(x, OE1) >- 3A/4}, 

~'~3 --*~ {X E E~ n E2 :  d(x, OE2) <- 3A/4, d(x, OE~) <- 3A/4}, 

~'~4 = {X C E 1 f~ E2:  x ~ ~"~1 u ~~2t...J O3}. 

I f  XOE~f'~3U~'~4, then by (7) and Remark 4.2, all motions starting at 
(to, Xo) remain in E~ n E2 for the duration of the game. Therefore, the game 
starting at such a point is a game with no phase restrictions since V(9~)= 
g(~p[T]) for all motions ~. By Theorem 3.1, w(to, Xo) exists. Moreover, w 
is continuous on (03 u 04) n S[T-h,T]. 

If  xo~ ~ ,  then by (7), all motions stay in E2 for the duration of  the 
game. Hence, the game is one with phase restrictions on only the maximizer, 
player I, since V(~p) ~ ~ for all motions ¢. By Theorem 1.1 of Ref. 1, such 
a game has value W(to, Xo). Moreover, in view of  assumption A2(iii)(a) and 
Theorem 3.3, w is continuous on O~nStT-h.r ]. Observe that, if Xo~ f~  n 
( 0  3 k.) ~'~4), then V(~) = g (~ [ T]) for all motions. Therefore, w (to, Xo) is the 
same whether the game is regarded as one with no phase restrictions or as 
one with phase restrictions on the maximizer. It follows that w is continuous 
o n  S[T--h.T ] ~ (O1 t j  ~r~3 k..2 ~r~4). 
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Similarly, if x0c 122, the game is one with phase restrictions on the 
minimizer only. Hence, w(t, x) exists and, by assumption A2(iii)(b), is 
continuous on ~2 c~ S[T-h,T]. Since ~2~ ~ f~:= Q, we get, as in the case of 
f ~ ,  that w is defined and continuous on S~T-h.T1C~ ( f~ W f~3 U f~4)" 

4 
Since E~ ~ E2 = L.J~=~ fL, w is continuous on all of S[T-h,T]. [] 

Remark 4.4. If  in Assumption A1 we require that g( .  ) be locally 
Lipschitz, then the same proof  shows that w will also be locally Lipschitz 
o n  S[T_h.T]. 

Remark 4.5. Examining the proof  of  Theorem 3.2, one finds that it is 
sufficient, for continuity or local Lipschitz continuity of  w o n  S[T--h,T], [0 
assume g( .  ) to be continuous or locallly Lipschitz relative to the closed set 
ST, rather than on all of E1 ~ E2. 

Remark 4.6. The choice of  h above depends only on the dynamics, 
the compact control sets Y and Z, and the constant R. Hence, Lemma 4.2 
can be applied to games with initial points in SEr_kh-r_Ck_~h3 and with 
terminal time T -  (k - 1)h, provided the payoff is defined through a function 
which is continuous relative to Sr-(k-l~h- 

We will need the following lemma in the proof  of Lemma 4.4 below. 
This is parallel to Lemma 1.3 of  Ref. 1, to which we refer the reader for proof. 

Lemma 4.3. Consider a game with phase restrictions on only the 
minimizer, i,e., E1 = R ". Let tl c [0, T], and let X C El ~ E2 be a compact 
set such that, for some reat number or, 

w-(tl ,x)>a, for every xcXi 

Then, there exists a strategy F*, defined on [t~, T], such that 

V ( ~ ) >  a, for all q~ c{qb[.,  tl, x,F*]:  xcX}.  

Lemma 4.4. Let X be a compact subset of  E 1 (3 E 2 with ( T -  h, x) 
Sr-h for all x ~ X. Suppose that, for some a ~ R, 

w(T-h , x )>a ,  for alt x~  X. 

Then, there exists a strategy F on [ T - h ,  T], independent of x, such that 

V(~o)> a, fora l lq~U{cb[ . ,T-h ,x ,F]:x~X} .  

Similarly, if w ( T -  h, x) < a for all x ~ X, then there exists zX such that 

V(q0 < a, forallq~cU{dP[.,T--h,x,A]:x~X}. 
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Proof. We will prove the first statement. The second statement can 
be treated in a similar manner. By Lemma 4.2, w is continuous on X. Since 
X is compact, there exists an a '  such that 

w( T -  h, x) -> a ' ,  for all x ~ X. (8) 

Let Oi, i = 1 , . . . ,  4, be as in the proof  of  Lemma 4.2. Define X1 = X ~ 1~1 
and X2 = X\XI.  Clearly, Xi's are compact and X = X~ w X2. Furthermore, 
if x c Xi, then the game with initial point ( T -  h, x) is a game with phase 
restrictions, if any, on only the ith player (see the proof  of  Lemma 4.2). 
Consider the case when x E X1. Then, the game with initial point ( T -  h, x) 
is a game with phase restrictions on the maximizer, as considered in Section 
1. Let F~ be the extremal strategy defined with respect to C+(a'). Note that, 
by (8), 

{( T -  h, x): x ~ X1} C C*(c~'). 

Since X~ is compact, we may apply Lemma 3.1 to obtain 

V(qO>-a'>a, for all ~o ~(._) {~ [ . ,  T-h,x,F~]: x~X1}. (9) 

In the case when x ~ X2, the game with initial point ( T - h ,  x) is a game 
with phase restrictions on the minimizer. Note that, by (8), w(T-h, x)> a, 
for all x ~ X2, and X2 is compact. By Lemma 4.3, there exists a strategy F2 
such that 

V(q~)> a ' ,  for all ~ U { d g [ - ,  T-h,x,  Fz]: x~X2}. (10) 

Now, take F to be the strategy whose nth stage partition is the common 
refinement of  those of  F~ and F2. Let the nth stage of  F play the nth stage 
of  F~ if the initial point of  the game, ( T -  h, x),  has x c Xi. In the case 
x ~ X~ n X2, the corresponding game is one with no phase restrictions and 
can play either F~ or F2 at the nth stage. For the sake of  definiteness, let 
us say F plays F1 in such a case. Note that any motion q~ in qb[ .  T -  h, x, F] 
is either in qb[., T - h ,  x, F~] or in qb[., T - h ,  x, F2]. Therefore, it follows 
from (9) and (10) that F has the desired property. [] 

We now state and prove the main theorem of this section. 

Theorem 4.1. Assume A2. Then, the game starting at a point (to, x0) c 
[0, T] x E1 n E2 has value W(to, Xo). Moreover, w is continuous on [0, T] × 
E1 c~ E2 [locally Lipschitz if g( .  ) is locally Lipschitz]. 

Proof. Note that 

[0, T]xE, nE2=U{S(R): R>O}. 
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Hence, it suffices to show that, for an arbitrarily chosen R, the statement 
of the theorem holds with [0, T] x E~ ~ E 2 replaced by S(R). Let R > 0 and 
S = S(R). Let h = h(R) be as in (6). Then, for some positive integer or, we 
have 

scG 
k = l  

We will prove, by induction on k, that: 

(i) For (t,x) eSrT-kh.T1, W(t,X) is defined [i.e., the game starting at 
(t, x) has value] and w is continuous on Srr_~.r 1. 

(ii) If  X is a compact subset of E such that, for some o~ c R and all 
(T -kh ,  x)~([O, T]xX)~S~r-kh.rl, w(T-kh ,  x)>a,  then there exists a 
strategy F(a, k) such that 

V(~p) > ol, for all ~ c(_J {gP[., T-kh ,  x ,F(a,k)]:x~X}.  

Similarly, if w(T-kh ,  x ) <  ~, then there exists h(c~, k) such that 

V(¢) < a, for all ~ E U {qb[., T -  kh, x, A(~, k)]: x ~ X}. 

Note that statement (i) is the primary goal. Statement (ii) wilt be needed 
in the inductive step of the proof of statement (i). Let k = 1. Then, statements 
(i) and (ii) are exactly the assertions of Lemma 4.2 and Lemma 4.4, 
respectively. 

Suppose, as our inductive hypothesis, that (i) and (ii) hold for k 
Consider a game starting at (to, Xo) ~ S[T-(k+l)h,T-kh] with final time T -  kh, 
dynamics (2), and payoff (3) defined using, in place of V(. ), 

~ w(T-hk,~p[T-kh]),  ifq~[t]~E1c~E2, VtC[to, T-kh] ,  
Vl(p) = ~-eo,  if p leaves E 1 first, 

( +oc if q~ leaves E 2 first. 

Note that by Lemma 4.1, (T-kh ,  ~[T-kh])~  Sr-kh. Hence, by our 
induction hypothesis, w(T-kh ,  p [ T - k h ] )  is defined for any motion 
with initial point (to, Xo). Let us call such games G~ and write F1, A~ for 
strategies and w-~, w[ for lower and upper values in G~. Since, by the 
induction hypothesis, w I Sr-kh is continuous and the duration of a G~-game 
is less than or equal to h, we have by Lemma 4.2 (see Remark 4.6) that 
wl(to, Xo) exists and wl is continuous o n  S[w_(k+l)h,T_kh]. Also, note that, 
by the definition of V~, 

Wl ] ST-kh = WlST-kh" ( 1 1) 

Now, we need only show that 

w-( to, Xo) >- wl(t0, Xo) --> w+ ( to, xo). 
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Once this is established, we will have that W(to, Xo) exists and equals 
wl(to, Xo). Moreover, the continuity of w on S[r-(k+l)h,r-kh] follows from 
that of  w~. 

Claim C1. w - ( t o ,  Xo) > - wl(to, xo). 

Proof. Suppose that the claim is false: w~(to, xo)> w-(to, Xo). Let 
Vo = w-(to, Xo). Then, by definition, there exists a strategy F~, defined on 
[to, T-kh] ,  and 6 > 0 such that 

VI(q~I) > Vo+6, for all q~dg[. ,  to, ;co, F~]. (12) 

In particular, for all ¢~ ~ ~ [ . ,  to, x0, F~], 

¢~[t] ~ El,  for all t ~ [to, T -  kh]. (13) 

Let 

X1 ={~pa[T-kh]: ~p ~ qb[., to, Xo, F1], V,(q~0 # co}. 

By (12) and the definition of V~, 

w ( r - k h ,  x)> Vo+6, for all x~Xa. (14) 

Note that the statement "V~(q~) ~ oo" is equivalent to the statement " ~ [ t ]  c 
E2,Vt~[to, T-kh].'" Since ~ [ ' , t o ,  xo, F1] is compact as a subset of 
C[to, T], and since EzC R n is closed, the set 

{q~ e alP[., to, Xo, F1]: ~ [ t ]~  E2, Vt~[to, T-kh]},  

is compact in C[to, T]. It follows that X~ is compact. Therefore, by our 
induction hypothesis, there exists F(vo, k), defined on [ T -  kh, T], such that 

V(q~)>Vo+t~, fora l l  q~Eqb[., T-kh,  x,F(vo, k)], x~X~. 

Let F* be the concatenation of F1 defined on [to, T-kh]  and 
F(vo, k) defined on [T-kh ,  T]. Let ¢*~qb[ . ,  to, Xo, F*]. By the defini- 
tion of F*, there exist motions q~ c ~ [ - ,  to, Xo, Ft] and q~ 
d9[., T -  kh, q~*[ T -  kh], F(vo, k)] such that 

~ . [ t ]  =/qvl[t] ,  for t~[to, T-kh] ,  
~[t] ,  for t~ [T-kh ,  T]. (15) k 

By (13), q~*[t]~E~ for all t~[to, T-kh] .  Now, if ~*[t-]~E2 for some 
~~ [to, T -  kh], then 

V(¢*) =co. (16) 

If  q~*[t]~ E 2 for all t~ [to, T-kh] ,  then by (15) and the definition of V, 

¢~[t]~E2, for all t~[to, T-kh] ,  (17a) 

V(~*) = V(~p). (17b) 
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Because of (17a), V1(~1)¢oe. Therefore, 

~p*[ T -  kh ] = ~p~[ T -  kh ] ~ X,  . 

By the defining property of F(vo, k) and (17b), we get 

v (~*)  = v(~o) > Vo+~. (1.8) 

Since q~*~ ~ [ . ,  to, Xo, F*] was chosen arbitrarily, we conclude from (16) 
and (18) that 

inf P[to, Xo, F*, A] > vo. 
z~ 

Therefore, w-(to, Xo) > vo. This contradiction proves Claim C1. [] 

Claim C2. w~(to, xo) >- w+(to, )Co). 

Proofl The proof of  this claim is parallel to that of Claim C1. Here, 
one uses Mvo, k) with vo = w+(to, Xo). We omit the details. [] 

To complete the proof of  Theorem 4.1, it remains to prove statement 
(ii) in this case. Let X be a compact subset of E such that, for all x ~ X, 

( T - ( k +  1)h, x) c S T _ ( k + l ) h  , 

and, for some c~ c R, 

w ( T - ( k +  l )h ,x )>  a. 

We need to show that a strategy F(o~, k +  1), as described in statement (ii), 
exists. Since w ~ wl o n  Sr-(k+l)h, we have 

w ~ ( T - ( k + l ) h , x ) > a ,  for all x ~ X .  

Arguing as in the proof of Lemma 4.4 [using the fact that Gl-games with 
initial points ( T - ( k +  1)h, x), x~  X, are of duration --<h], we obtain that 
there exists a strategy Fz on [ T - ( k +  1)h, T - k h ]  such that 

Vl(~o) > a, f o ra l l~p~dP[ . ,T - (k+l )h , x ,F~] ,  x ~ X .  

Let 

X,={~o~[ T - k h ] :  ~ e a p [ . ,  T - ( k  + l)h,x,F~], V,(q)l)~eo, x ~ X } .  

Using the compactness of X, we get, as before, that X1 is compact. Also, 
by the definition of Vl, w ( T - k h ,  x ) >  a, for all x6  X 1. Let F(c~, k) be as 
guaranteed by the induction hypothesis. Take F(c~, k + 1) to be the concate- 
nation of F~ and F(% k). Then, F(o~, k + l )  has the desired property; the 
proof of this is similar to that concerning F*, above. 
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In a similar manner, one can obtain the strategy A(a, k + l ) .  This 
concludes our induction and proves the theorem. [] 

Note that, as a corollary to the proof  of  the theorem, we have the 
following statement. 

Corollary 4.1. For every compact subset X of  E1¢-~ E2, there exists 
A > 0  such that, for any xoEX, w( t ,x )=wl( t ,x )  for all ( t ,x )e  
[0, T] x (xo+AB), where wl is the value in a G~-game, as defined above, 
where only one of  the players is restricted to a phase set. 

Proofl Let R > 0 be such that [0, T] x X C S(R). Corresponding to 
this R, let 2~ > 0, h > 0, and f~i, i = 1 , . . . ,  4, be as in Lemma 1.3. Note that 
any x o ~ X  belongs to some f~i, i = 1 , . . . , 4 .  Take ~=Z .  The conclusion 
follows as in the proof  of  Theorem 4.1 using the definitions of  A and h; 
see Remark 4.2 and (6). [] 

5. Characterization of the Value 

Set 

H ( t, x, p) = max min(p,f( t, x, y, z)). 

Let CI(F), F C R ~, denote the set of all functions which are continuously 
differentiable on a neighborhood of  F. Recall (Ref. 13 and 14) that a function 
w(t, x), continuous on [0, T] x F, is called a viscosity supersolution (sub- 
solution) of  

u, + H(t, x, Dxu) = 0, (19a) 

w(T, x) = g(x) ,  for all x~  F, (19b) 

if for every ~ C 1 ( [ 0 ,  T ] x F )  such that w - ~  has a local maximum 
(minimum) at a point (to, Xo) ~ [0, T) x F, then 

q~,( to, Xo) + H( to, Xo, Dxq~( to, Xo))--> 0 (--0) 

holds. Note that the inequalities are the reverse of those in Ref. 13 and Ref. 
14, since the values of  w are prescribed at the terminal, instead of  the initial, 
time. In the case when E1 = E2 = R ", Berkovitz showed (Ref. 15) that w is 
a viscosity solution of  (19) with F = R n. Under  Assumption A1, one may 
apply standard uniqueness results (Ref. 13, 14, 16) to characterize w as the 
only such function. When E_,= R" (that is, state constraints are imposed 
on at most the maximizing player) and the corresponding value function 
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w is continuous, one can verify by essentially the same arguments as in 
Ref. 15 that w is a viscosity supersolution on [0, T ) x  E1 and a viscosity 
subsolution on [0, T) × int(E1); see Ref. 1 or Ref. 17. It has also been shown 
that such conditions, together with prescribed terminal values, determine 
w uniquely on [0, T] x El ;  see Ref. 18, Ref. 11. When E~ = R n, similar 
statements hold with "super"  and "sub"  switched. Such uniqueness results 
were first obtained by Soner (Ref. 10) in the context of  an infinite-horizon 
optimal control problem with discounted cost and the associated Hamil ton-  
Jacobi-Bellman equation. Further investigations of such problems, under 
various and more general assumptions on the data, have been carried out 
by Capuzzo-Dolcetta and Lions in Ref. 18 and Ref. 11. In particular, 
uniqueness results for the Cauchy problem are proved in Ref. 11 (cf. 
Theorems iii.2 and iii.4). 

Here, let us note that it follows from Corollary 4.1 that the local 
properties of  the value function w are the same as those of  the value w~ 
of  a game with state constraints on at most one of  the players. There- 
fore, combined with the results of  Ref. 1, we may conclude the following 
proposition. 

Proposition 5.1. For every compact subset X of E~ n E2, there exists 
> 0 such that, for every x ~ X, letting ~ = X c~ (x + hB),  then: 

(A) If  d(x, aE~) < [) ,  then w is a viscosity supersolution of (19a) on 
[0, T ) x  a// and a viscosity subsolution on [0, T ) x  (a//c~int(El)). 

(B) If  d(x, OE2)< X, then w is a viscosity subsolution of  (19a) on 
[0, T) x 0// and a viscosity supersolution on [0, T) x ( ~  n int(E2)). 

(C) If  d(x,(OElwOE2))>-h, then w is a viscosity solution of (19a) 
on [0, T) x o//. 

Remark 5.1. It follows from this proposition that w is a viscosity 
solution on [0, T )×  int(E1 c~ E2), supersolution on [0, T)× OE1, and sub- 
solution on [0, T) x E2. 

Thus, in view of  the uniqueness results mentioned above, one expects 
the following theorem to hold. 

Theorem 5.1. Let E = El c~ E2. Properties (A), (B), (C) above and the 
terminal condition w( T, x ) - - g ( x ) ,  for all x c E, determine w uniquely if E 
satisfies assumption A3 below. 

Assumption A3, For every compact subset X of E, there exists A* > 0 
and a function v : X -~ B such that, for any :~, x e X with Ix - ~J < h*, we have: 

(i) there exists a0 = a0(~) > 0 such that 

~+ av(x) ~ int(E),  Va c (0, a0); 
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(ii) if £ e OF,, then there exists g = g(~) such that 

d(X+a~,(x),OE)>-ga, a~(O, ao). 

Indeed, this can be proved by modifying the arguments of  uniqueness 
proofs in problems without state constraints (e.g., Theorem 2.5 of  Ref. 16 
or Theorem V.4 of  Ref. 13) along the lines suggested by Soner in Ref. 10. 
Since no single reference contains all the details for our  setting, we give a 
sketch of  the proof  and leave some of  the details for the appendix. 

We will need the following lemma which follows easily from Assump- 
tion A1. The proof  is omitted. 

Lemma 5.1. Assume A1. Then: 

(i) H(t ,x ,p)  is continuous on [0, T ] x E x R  n. 
(ii) For  every compact subset X of  E, there exist constants K > 0 

and C > 0 such that 

IH(t, x ,p ) -n( t ,  x, q)l 
~(Klxt+C)Ip-ql, V t ~ [ O , T ] ,  x c X ,  p ,q~R" ,  

IH(t,x,p)-H(t,~,p)l 
~KIx-~llPl, V t ~ [ O , T ] ,  x , £ ~ X ,  p ~ R  ~. 

Proof  of Theorem 5.1. Let wl and w2 be two functions continuous on 
[0, T]xE ,  satisfying (A), (B), (C), and w~(T,x)=g(x), for all x~E .  It 
suffices to show that, for every compact subset X of  E, w~ = w2 on [0, T] x X. 
Hence, without loss of  generality, we may assume that E itself is compact. 
Let C and K be as in the above lemma. Let 

To = T -  1/ (2K).  

It suffices to show that w~ = w: on [ To, T] x E, since then by similar argu- 
ments one obtains inductively that 

w~=w2, o n [ T - i / ( 2 K ) , T ] x E ,  i = 2 , 3 , . . . .  

We proceed to show that wl = wz on [ To, T] x E. Let L be any positive 
number satisfying 

L >- C / ( 1 -  K( T -  To)). 

Consider the following compact set: 

f~ ={(t,  x): t e [To, T], [x[ <- L( To- T), x c E}. 
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It follows from statement (iia) of  Lemma 5.1 that 

I H ( t , x , p ) - H t ,  x , q ) t < - [ p - q l ,  f o r a l l ( t , x ) ~ , a n d p ,  q ~ R  ~. (20) 

Suppose that we prove that w~= w2 on fL Then, since L was chosen 
arbitrarily, it follows that this equality holds on (To, T] x E and the con- 
tinuity of  w~'s extends the equality to [ To, T] x E. Hence, we will only show 
W 1 = W 2 on fL 

Now assume, for contradiction, that 

max {wl ( t ,  x )  - w2(t, x ) } -  > o'o, 
( t , x )e~  

for some o'o > 0. Let 

where 

M > max{il w, 11oo, II w211~, o'0}, 

IIw, jl~= max iwi(t, x)]. 
( t ,x)ef t  

For e > 0, define Ft, C ~ by 

~ = { ( t , x ) e a :  te[To+~/L, T],lxl~L(t-To)-e}. 

By the continuity of  wi's there exists eo < 1 such that, for all e ~ (0, co), 

max {Wl(t, x) - w2(t, x)} -> o'0/2. 
( t,x )eCt~ 

(21) 

Fix e e (0, %) and let 77 6 C ~ ( R ) ,  depending on e, be such that 

0, if r -  < - e  2, 
r/(r) = - 4 M ,  if r->0, 

with rf(r)-<.0 for all r. Let crc (0, o.o/ 4( T -  To) ). Let 

(t*, x*) c arg max{wl(t, x) - wz(t, x)  + o.(t - To)}. 
(t,x)~f~, 

Let 

~(t, x) -- n(Ixl 2-  L2(t-  7"0)2). 

Note that, since Ixl<_ L( t  - To) - e  and t>_ T o + e / L  imply that 

IXl 2 -  L2( t - To)2<_ - E  2, 

we have 

supp(~?) C ~ \ ~ , .  

(22) 

(23) 

(24) 
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Let h and A* be respectively as in Proposition 5.1 and Assumption A3 with 
X = E. Set h = min()t, A*). Fix 3' ~ (0, tro/4). For a, fl > 0, define ~b~,o :II x 
I I ~ R  by 

q~,.o (t, x, y, z) = wl (t, x) - w2(s, y) - (1/fl)It - s l  2 -  y ~  (x, y) 

- ( 3 M / A 2 ) [ l x -  x*[  2 + [Y - y , [ 2 ]  

+ t r ( t -  To)+ q(t, x ) +  ~(s, y), (25) 

where ~ , ( x ,  y) is defined as follows [~, = p(x*) is as in Assumption A3]: 

if d(x*, OE1) < Z and d(x*, OE2) >- h, 

then ~ ( x ,  y) = [ ( y - x ) / a  - v[2; (26a) 

if  d(x*,  OE2) < A and d(x*, OE1) >>- A, 

then ~ ( x ,  y) = [(x - y ) / a  - ~,12; (26b) 

otherwise, ~ ( x ,  y) = (1 /a) lx -y[2 .  (26c) 

Note the dependence of ~b~.~ on x* and therefore on e. By its continuity, 
~b,.~ achieves its maximum on the compact set f~xl~ at some point 
(q ,  x l ,  Sl, YO. We will need the following statements about (tl,  Xl, sl, Yl), 

see the appendix for proofs. 

Claim CI. For every fixed e ~ (0, eo), we have: 

(a) 3~ ~ (0, E) such that, for all a,/3, 

IX1[--< L(tl - To) - 6 and [Yl[ -< t ( s l  - To) - 8. 

(b) For all a and/3, Ix l - -x*l<h,  ly - -x*I<h.  
(c) Ih - s~ l~O as/3-~0 and Ix i - -Yml~0 as o t ~ 0 .  

(d) (1 / / 3 ) ]h -S l l 2+y~ , ( x , y ) -*O as a, f l ~ 0 .  
(e) There exists to>  0 such that, for all a, 13 sufficiently small, we 

have t~, sl <-- T -  to. 
(f) if d ( x * , O E - 1 ) < h ,  then either d ( y l , o E 2 ) < h  or, for all a,/3 

sufficiently small, yl c int(El). Similarly, if d(x*, OE2) < A, then either 
d(x~, OE1) < A or, for all a, 13 sufficiently small, x~ c int(E2). 

Claim C2. Ix-x*12+ty-x*[2--->o as a ~ 0  a n d / 3 ~ 0 .  

We now show that conditions (A), (B), (C) and the above claims lead 
to tr = 0, a contradiction which proves the theorem. Since the definition of 
4~,,t3 depends on x*, for fixed e, we distinguish three cases. 
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Case 1. d (x*, OE~) < Z. Then, by condition (A), w is a viscosity super- 
solution of (19a) on [0, T) × o//; here, ~1 = E ~ (x*+TtB). Note that, by 
Claim Cl(b)  and the choice of A, x ~ .  Now, the function 
(t, x) ~--> ck~,~(t, x, Sl, y~) has an absolute maximum relative to ~ at (tl, x0. 
By Claim Cl(e), if a,/3 are sufficiently small, then tl < T -  T0. By Claim 
Cl(a), Xl ~ a l l  Therefore, this function has a local maximum on [0, T)x  E 
at (q,  x0. We may therefore conclude from (A) that, for all a,/3 sufficiently 
small, 

- o .  + ( 2 / / 3 ) ( t l  - s ~ )  - ~ , ( t ~ ,  X l )  

+ H ( t ~ ,  Xa, z~ + ( 6 M / A 2 ) ( x ~  - x* ) )  >- O, (27) 
where, setting r( t, x) = Ix] 2 -  L2( t - To) 2, we have 

~ , ( t l ,  Xl) = --2~,f(r(tm, xi))L2(tx- To) 
and 

=~-(2"y/o~)[(yl-xl)/a-v]-2~q'(r(tl,Xl))Xl, if d(x*,OE2)>-A, 
z~ I.(2y/a)(x~ - Y 0 - 2 " 7  (r(fi,  xO)x~, if d(x*, OE2) < A. 

Furthermore, the function (s,y)~->4),,~(q,Xl, s ,y) has an absolute 
minimum relative to ft at (sl, y~). By Claims Cl(a) and Cl(e), (sa, y~) ~ 0fL 
Suppose that d(yl ,  017,2) - A. Then by Claim Cl(f) ,  y~ ~ int(E0 for all a, 13 
sufficiently small. Therefore, this function has a relative minimum on 
[0, T) x o//n int(E~) at (sx, Y0. Hence, again by (A), for sufficiently small 

(2 / /3 ) (q -s~)+"q , ( s~ ,y l )+H(s l , y l , z2+(6M/A2) (y~-x*) )<-O,  (28) 

where 

- v] + 2~7'(r(sl, y~))y~ if d(x*, OE2) > A, zz = { - (2y /a ){ (y l  - x l ) / ~ ,  , - 
[(2y/o~)(x~-Yl) +2r / ( r ( s , ,  y~))yl, if d(x*, OE2) < h. 

T f d(y~, OE2) < A, then (s, y) ~ - $ . , ~ ( t l ,  x~, s, y) has a local minimum on 
[0, T) x ~. Using (B), we again have (28). 

Case 2. d(x*,OE2)<A. This case is handled as in Case 1 using 
conditions (A) and (B) and the appropriate form of q~.  This leads to (27) 
and (28) with 

~ ( 2 y / o c ) [ ( y l - x O / a ,  v] - 2r/ '(r(h, xt))xl ,  if d(x*, OE1)>- A, 
z~ = I.(2y/a)(x~ -Yl) -2~7 (r(q,  xa))x~, if d(x*, OE1) < A, 

and 

{ (2y /a ) [ ( y~ -x l ) /a -v ]+2~7 ' ( r ( s~ , yO)y~ ,  if d(x*,OE,)>_A, 
z2= [ (2y /a ) ( x l - - y~ )+Zn  (r(s~, YO)Y~, if d(x*, 0E0 < A. 
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Case 3. d(x*,OE1)>>-A, and d(x*,OE:)>--A.  Then, by claim Cl(b), 
xl and yl lie in int(El n E2). Recalling Remark 5.1, we can obtain (27) and 
(28) with 

zl = (2 y /  a ) ( x l  - YI) - 2~7'(r(tl, x l )  ) x l ,  

z2 = ( 2 y /  a ) (x l  -Yl) + 27/'(r(sl, Yl) )Yl . 

Combining (27) and (28), we have that, for sufficiently small a,/3, 

or -< 2 L [ ' q ' ( r ( s l ,  y , ) L ( s , -  To)+ "q'(r( t , ,  x , ) L ( h -  To)] 

+ H(t l ,  x~, z l + ( 6 M / A 2 ) ( x ~ - x * ) )  

- H ( s l ,  Yl ,  z 2 -  ( 6 M / h Z ) ( y l  - x*) ) .  (29) 

We now estimate the right side of (29). Define 

A~ = IH(t~,  Xl, z~ + ( 6 M / A 2)( xl  - x* )  ) - H ( t l ,  x l ,  zl)l, 

A2 = [H  ( t, , xi, zt)  - H ( tl , x l  , z2)I, 

A3= IH ( t l ,  Xx, z2) - H ( tl , Y l ,  za)[, 

A4 = [ H ( t l ,  Yl,  z2) - H ( s ~ ,  Yl, Z2)[, 

A5 = t H ( sl , e l ,  z2 - ( 6 M / A 2)(y~ - x * )  ) - H ( s~ , eL, z2)t. 

Then, using (20), we have 

A I - < 6 L M I x ~ - x * I / A  2, A 5 - < 6 L M l y l - x * I / A  2, (30a) 

A 2 ~ Liza - z2[-< 2L(]Tf (r (s~ ,  Yl)[ [eli + ]T/'(r(h, Xx))[ IXl]). (30b) 

By statement (ii)(b) of Lemma 5.1, 

A3-< K i x l  - yliiz21 

- < 2 K [ y ( x I t , ~ ( x l , y l ) + ~ x l t , ~ ( x l , Y l ) ) + [ y l - x l l [ ~ l ' ( r ( s l , y l ) ) [ [ y l [  ]. (31) 

Using (30b), and noting that v/'(r)-<0 for all r, by construction, we can 
write (29) as 

or-< A~ +A3+ A4 + As+  2 L H ~ f ( r ( s l ,  Y~))I(lYl[- L(s~ - To)) 

+[Tf(r(tx, Xl))[(lXll-L(tl- To))]. 

Note that, by Claim Cl(a), the quantity in the square bracket is negative. 
Therefore, 

or-< A1 +A3+A4+As. (32) 

Now, let O > 0. Using (30a) and Claim C2, we have that there exist al 
and fl~ such that 

AI+As-< 0/4,  if a < a ~  and/3 <i l l .  



JOTA: VOL. 68, NO. 3, MARCH 1991 533 

Note that, by Claim Cl(a) ,  trt'(r(s~,yl))l remains bounded as ~ , /3~0 .  
Therefore, using (31) and Claim Cl(c)  and Cl(d) ,  we have that there exist 
a2<  al , /32 </31 such that 

A3 <- 0 /4 ,  if ~ < a2 and/3 </32- 

Finally, with e < eo and a < a2 fixed, we may choose, by Claim Cl(c),  /3 
sufficiently small to obtain 

A4-< 0/4 .  

Thus from (32), we obtain ~<-~.  Since O >  0 was chosen arbitrarily, we 
have cr = 0, contradicting the choice of o-. [] 

6. Appendix 

In this section, we provide the proofs of Claims C1 and C2. These 
arguments are adaptations to our case of  the arguments in Ishii (Ref. 16) 
and Soner (Ref. 10). 

Proofs  of  Claims Cl(a), Cl(b), Cl(c). Note that (T, x*)~ f~ .  There- 
fore, by (24) and using wl(T,.  ) =  g( .  ) --w2(T, .  ), we have that, for any a 
and/3, 

4~.~ (T, x*, T, x*) = - 7 * ~ ( x * ,  x*) + o r (T -  To) >- - 7 +  c r ( T -  To). 

By the definition of (tl, x~, sl, y~), 

4~,¢(tl, xl, sl, Yl) -> 4~,¢ (T, x*, T, x*). 

This gives 

(1//3)1 tl - s112+ Y * ,  (xl, y~) + (3M/A 2)[ IX 1 - -  X*12"d~ - [Yl - -  X*] 2] 

- O(t , ,  x l )  - ~ ( s , ,  Yl) 

<-- wl( tl , xl) - w2(sl, Yl) + 3' - o ' (  T -  tl) 

~ 2 M  +cr /4<3M.  (33) 

Now, Claim Cl(a)  follows from the fact that - ~ ( t ,  x ) ->4M as ixI 2 -  
L2( t -To )2~O;  Claim Cl (b)  is clear from (33); and Claim Cl(c)  follows 
because the right side of  (33) is independent of  oe, fl and, if tx -Yt > 0, then 
~ ( x , y ) ~ e o  as a-~O. [] 

Proof  of Claim Cl(d). Let 3 be as in Claim Cl(a)  and ao(xl) as in 
Assumption A3. Since 6 is independent of  a,/3, we have that (fi, x~, q,  x~ + 
av)  ~ f~, if a c (0, g), where g = rain(6, c%(xl)). Hence, if a c (0, g), then by 
the definition of (q ,  x~, s~, y~), 

qS~,¢(tl, xl,  sl, Yl) --> ~b=,¢(tl, xl,  tl, Xl -t- Old'). 
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This gives 

(1/  /3 )[h - 81] 2+ ")t~a(X1, y~) 

--< I w2(sl, Yl) - wl(q,  xl + av)l + l~(Sl, Yl) - ~ ( q ,  x, + av)l 

+ (3M/A 2)[ty~ - x*l 2 -  lx~ - x*12]. (34) 

Using the continuity of w2 and ~ and Claim Cl(c),  we conclude that the 
fight side of  (34) tends to zero as a,/3 -> 0. [] 

Proof of Claim Cl(e). Suppose that the statement is false. Then, there 
exist a . , /3 .  + 0 as n ~ oo with corresponding fin and s~. such that either tl.  
or s~  tends to T as n+co .  But, by Claim Cl(c),  both s~  and t ~ +  T. For 
notational convenience, we will write 4~n and (t. ,  x~, s~, y.)  instead of ~b~.,~. 
and (tl~, Xl., sly, y~.). 

By (22), 

max{wl(t, x)  - Wz(t, x): (t, x) ~ f~} - o'0/2, 

and the maximum is achieved at (t*, x*). Also, since 

we get 

w,(t, x) - w2( t, x ) +  o- ( t -  To)-  Wl(t, x) - w2( t, x), 

for all (t, x) with t > - To, 

wl(t*, x * ) -  w2(t*, x * ) + o - ( t * -  To) 

--> max{wl(t, x)  - w2(t, x): (t, x) c [~e}. 

Therefore. 

max{&.(t, x, t, x): (t, x ) c  f~.}-> 4~.(t*, x*, t*, x*) 

- -  o - 0 / 2  - 3', ( 3 5 )  

where for the last inequality we have also used (24) and the fact that 
(t*, x*)6 f~ .  On the other hand, 

max ~ . ( t , x ,  t , x )<-4~n( t . , x . ,  s . , yn )  

<- wl ( t . ,  x . )  - w2(s.,  y . )  + cr(t. - T0). 

Since wl( T,. ) =  w2(T,-), the right side of the above equals 

[ w l ( t . , x . ) - w l ( T , x . ) ] + [ w z ( T , x . ) - w 2 ( s . , y . ) ] + o - ( t . -  To). (36) 
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Since the w~'s are uniformly continuous over the compact set f~, since 
s,, t, -~ T, by assumption, and Ix, -Y,t  ~ O, by Claim Cl(c),  combining (35) 
and (36) and letting n-~ o% we obtain 

cr(  T - T o )  >- O-o/ 2 - 3`. 

Since 3' c (0, O-o/4), we have tr( T - To) > flo/4. But this is impossible, since 

~r < o 'o / (4(T-  To)). [] 

Proof of Claim Cl(f) .  Suppose that d (x* ,  dE1) < )t, but d(y~, E2) >- A. 
Then, 

~ ( x ,  y) = ](y-x)/c~ - ul  2. 

Now, by Claim Cl(d) ,  since 3' is fixed, 

z , ~ = ( y - x ) / a - v ~ O ,  as a, f l ~ 0 .  (37) 

By Claim Cl(b),  xl ~ x* + AB. Since A _< A*, we have by Assumption A3 that: 

xl + c~v ~ int(E0,  for a ~ (0, ao(Xl)); (38a) 

there exists ? >  0, such that d(x l  + ow, OE1) >- &~, if xa ~ OEI. (38b) 

Now, 

yt  = xa + a (  v + z~). 

Ifx~ ~ int(E0,  then Yx c int(E~) for sufficiently small o~. Suppose that x~ ~ OE~. 
By the triangle inequality, 

d(Xl + ap, OE~) ~ d ( y , ,  OE1) + [Yl - (Xl + a ~')l. 

Hence, 

d ( y , ,  OE~) >- d ( x l  + av, 8EI) - atz~l. 

By (37) and (38b), for all a, fi sufficiently small, d(y~, OE~) > 0; therefore, 
Yl E int(E~). Similarly, if d(x* ,  OE2) < h, but d(x~,  Ex) >- £, one obtains x~ c 
int(E2). [] 

Proof of Claim C2. Recall that (t*, x*) e ~ , .  Let 

O< ~ < rain(E, ao(X*)). 

Then, (t*, x* + c~u) ~ fL Therefore, 

4, (q ,  xl ,  s~, y~)>_ 4'(t*, x*, t*, x* + ~v). 

This gives 

(1//3)1 tl - s~ 12 + 3 " ~  (x~ , Yl) + ( 3 M / A 2)[tx~ - x*l 2 + iYl - x*l 2] 

--< [wl(q,  x l ) -  w2( sl ,  yl)  + o'( fi - To)] 

- [w,(t*, x*) - w2(t*, x* + ca,) + or(t* - To)] - ~(t*, x* + c~ ~,). 
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Adding and subtracting w2(tl,  xl)  and w2(t*, x*) to the first and the 
second expressions in the square bracket, respectively, we obtain 

( 3 M / A  2)[[Xl - x*I 2 + lY~ - x*l 2] 

<- A ,  + [ w2( sl ,  Yl) - w2( tl , xl)] 

+ [w2(t*, x*) - w2(t*, x*+  a~ , ) ] -  ~(t*,  x * +  a~,), (39) 

where 

a ,  = [ w l ( t l ,  x~) - w2(t~,  x l )  + o-(tl  - 70)]  

- [Wl(t*, X*) - w2(t* , X*) + o'(t* - To)]. 

Note that, by the definition of  (t*, x*), the last expression on the right 
is equal to 

max {wl(t,  x )  - w2(t, x )  + o-(t - To)}. 

Hence, A, is bounded above by 

max {wl(t, x ) - w 2 ( t ,  x ) + o - ( t -  To)} 
(t,x)cf~, 

- -  max {wl(t, x )  -- W2(t, x )  + ~r(t -- To))). 

Thus, it follows that either A, < 0 or, if A, > 0, then A -, 0 as e -* 0. 
Going back to (39), using the continuity of  w2, (24), and Claim Cl(c) ,  we 
observe that the remaining terms on the right of  (39) tend to zero as a,/3 ~ 0. 
This is the desired conclusion. [] 
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