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Asymptotic Properties of the Fenchel Dual Functional 
and Applications to Decomposition Problems 

A. AUSLENDER 1 

Communicated by O. L. Mangasarian 

Abstract. We study dual functionals which have two fundamental 
properties. Firstly, they have a good asymptotical behavior. Secondly, 
to each dual sequence of subgradients converging to zero, one can 
associate a primal sequence which converges to an optimal solution of 
the primal problem. Furthermore, minimal conditions for the conver- 
gence of the Gauss-Seidet methods are given and applied to such kinds 
of functionals. 
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1. Introduction 

Recently, three particular extremum problems have been investigated 
by Tseng and Bertsekas (Ref. t ) ,  Bertsekas, Hosein, and Tseng (Ref. 2), 
Han (Ref. 3), Han and Lou (Ref. 4), and Censor and Lent (Ref. 5). In these 
papers, to solve the primal problem, the authors consider the dual problem 
for which they propose a parallel decomposition algorithm that leads to an 
attractive algorithm. In Refs. 1, 2, and 5, the proposed method is the 
Gauss-Seidel method with either exact (Ref. 5) or inexact (Refs. 1 and 2) 
minimization along the coordinates. Gauss-Seidel methods for uncon- 
strained optimization have been studied extensively (Refs. 6-10). Typical 
conditions for convergence are the strict convexity of  the objective function 
or the boundedness of  its level sets. Unfortunately, in Refs. 1-5, the dual 
level sets are unbounded and it is one of  the merits of  the authors in Refs. 
1-2 and 5 to overcome this fact and to prove convergence by using the 
particular structure of  their problems. 
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In fact, in all these papers, the dual functional has two fundamental 
properties, which do not appear clearly in the previous papers. Firstly, it 
is asymptotically well behaved; secondly, each dual sequence of sub- 
gradients converging to zero induces a primal sequence converging to an 
optimal solution. In this paper, we clarify these notions and show that 
proving primal convergence of various methods reduces, for these problems, 
to proving convergence to zero of dual sequences of subgradients generated 
by the method. 

The notion of convex function which is asymptotically well behaved 
was recently introduced by Auslender and Crouzeix in Ref. 11. We recall 
this notion in Section 2 and give a characterization of such functions required 
in other sections. In the same section, we introduce the general problem 
and its dual and recall the main properties resulting from Fenchel's duality 
theory. 

In Section 3, we prove that the dual functional of the former problems 
possesses the two fundamental properties. As a consequence, we prove that 
Han and Lou's algorithm converges under very general assumptions, thus 
improving on their convergence results. 

Finally, in Section 4, we propose a general variant of the Gauss-Seidel 
method whose convergence is obtained without the usual assumptions of 
strict convexity and boundedness of the level sets, the latter assumption 
being replaced by the asymptotical behavior condition. Specialized to the 
particular problems studied in Refs. 1-5, we obtain an implementable 
parallel algorithm close to those proposed therein. In the sequel, we assume 
that the reader is familiar with the theory of convex analysis. All notations 
and classical definitions follow from Rockafellar (Ref. 12). 

2. Preliminaries 

2.1. Asymptotically Well-Behaved Convex Functions. Let us consider 
a closed proper convex function defined on RN; denote by Of(x) the 
subdifferential o f f  at x and by d(y]S) the distance from the point y to 
the set S. We say that a sequence {Xk} is stationary for f if it satisfies 

lim d(OlOf(xk))=O, (1) 
k-><x~ 

that is, if we can find X*~Of(Xk) such that x*--> 0. 
Many algorithms for the minimization o f f  generate such a sequence, 

and it is natural to ask oneself whether such a sequence is minimizing or 
not. The answer is certainly yes if the function is inf-compact; i.e., for each 
A, the level set {x:f(x)<~ A} is bounded, a condition not always satisfied 
(see Ref. 13). 
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Definition 2.1. A closed proper convex function fo r t  R N is asymptoti- 
cally well-behaved if every stationary sequence {x,} for f is minimizing, 
that is, 

lim f(xn) = m = inf( f(x)  lx ~ RN). (2) 
n ~ o o  

Denote by 4 this class of functions. Several characterizations of 4 
and examples of such functionals are given in Ref. 13. Let us now state a 
new characterization of 4 which will be useful in the following. 

We say that a sequence {Xk} is strongly stationary f o r f  if it is a stationary 
sequence and if the sequence (f(x~)} is bounded above, that is, there exist 
M such that f ( x , )  <~ M for each n. We denote by 4t  the class of closed 
proper convex functions f on R N for which each strongly stationary 
sequence for f is minimizing. Then, we have the following proposition. 

Proposition 2.1. Let ri d o m f  denote the relative interior of the domain 
o f f  (dora f ) .  If ri d o m f =  dotal,  then 4 =  41. 

Proof. Obviously, 4 c  41. Assume that 41 ¢ 4. Then, by Theorem 
2.2 in Re£ 13, there exist f ~  4~, A > m such that r(~) = O, with 

r(A) = inf(l] e HIe ~ of (x ) , f (x )  = A). 
This implies the existence of sequences {Xk} and {x*) such that 

x* ~ Of(Xk), f(xk) = A, lira X'k---- O, 
k ..~ o o  

a contradiction with f ~  41. [] 

2.2. General Problem and Its Dual  Let q be a closed proper convex 
function from R ~ to ]-oo, +co], and let C~, i = 1, 2 , . . . ,  m, be closed convex 
sets in R n. Denote by 3(. tC) the indicator function of a set C, 

0, if x~  C, 
8 ( x i C ) =  +oo, otherwise. 

Its conjugate ~*(. ] C) is the support function of the set and is given by 

~*(yIC) = sup{(x, y)Ix ~ C). 
Consider the fundamental problem 

(P) a = i n f ( q ( x ) l x ¢ C ) ,  with C = ( ~  C~ 
i = 1  

under the following assumptions: 

(H1) (~ ri C~nri dom q is nonempty; 

(H2) there exists y~ ~ ri dora 8"(. 1C~) 

such that - ~ y; ~ dora q*, Vi. 
i = 1  
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If  Ci is polyhedral, d C~ and ri dom 8*(-IC~) can be replaced by Ci and 
dora 8*(. I C~), respectively. 

To comply with Refs. 1-5, we rewrite problem (P) as 

a = inf(q(x) + k(Ax)), (P) 

where 

k(u , ,  u2 . . . .  , urn) = ~, 8(u, I Ci) 
i = 1  

and A is the linear transformation from R" to R "×m, defined by 

Ax = (xl, x 2 , . . . ,  xm), with x~ = x, i = 1, 2 , . . . ,  m. 

We have 

At), = A t" (Y,, Y2, . . . ,  Y,~) = ~ Y,, k * ( x * , . . . ,  x*)  
i = 1  

= ~ 8*(x*[C,),  (3) 
i = 1  

and from Theorem 31.2 in Ref. 12, the Fenchel dual (D) of (P) is given by 

(D) f l = i n f ( g ( y ) [ y = ( y , , y 2 , . . . , y m ) ~ R ~ × ' ~ ) ,  

g(y)-- q* y. y, + 8*(-y~l c,). 
I i = 1  

Remark that 

ri C , = r i  dom 8(.IC,) .  

Then, under Assumptions (H1) and (H2), we can use Theorems 23.9, 6.7, 
and 23.8 in Ref. 12 to obtain 

(" ) 0 08(xlc) ,  
i 1 i = 1  

ayq* Yi = aq* ~1 y/ (4) 
1 i i = l , . . . , m '  

( ( ' )  am(y)= aq* __Ely, -aa*(-y,  lC,) . (5b) 
i / i = l , . . . , m  
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Now, denote by Sp the optimal set of  solutions of (P) and by SD the optimal 
set of solutions of (D). Then, Sp is the set of vectors x such that 

OeOq(x)+ ~ 06(x I Ci) , (6) 
i = 1  

and So is the set of vectors y = (Yl , . . . ,  ym) such that 

O~oq* y, -o~*(-y,[C,), vi, (7) 
i 1 

and we have 

s ,  ~ O, s o  ~ •, ,~ = -3 ,  (an) 
g(y) + q(x) >~ O, Vx ~ C, Vy ~ R "×m. (8b) 

Let us remark that Assumption (H1) does not imply that g is inf-compact. 
In order to obtain this property, it is easy to see that we must replace (HI)  
by the following stronger assumption: 

(HI')  (~ int Ct c~ int dom q is nonempty, 
i = I  

which is necessary and sufficient for g to be inf-compact. 

3. Asymptotical Behavior of the Dual Functional 

In this section, we prove that the dual functional of the extremal 
problems considered in Refs. 1-5 possesses the two fundamental properties 
claimed in the introduction. 

3.1. The Han and Lou Problem. In Ref. 4, Han and Lou study Problem 
(P) with the following additional assumption: 

(A1) q is strongly convex and differentiable on Rn; that is, there exists 
p > 0 such that 

q(Ax + (1 - A)y) ~ Aq(x) + (1 - A)q(y) - A(1 - A)p ttx - y  II 2, 

Vx, y, vA ]0,1 [. 

Under this assumption, it follows from Theorem 26.6 in Ref. 12 that q* is 
differentiable on R" strictly convex and cofinite. Then, (H2) is automatically 
satisfied and (H1) becomes: 

(A2) (Y~ ri C~ is nonempty. 
i = 1  
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In the remainder of  this subsection, we shall only assume (A1) and (A2), 
and we shall denote by P1, D1, Sp1, Sw,  al,/31 the symbols P, D, Sp, So, 
or,/3. Furthermore, from Assumption (A1), Se~ reduces to the singleton x*. 

Now, we begin with a preliminary result. 

Set 

Proposition 3.1. Let 

z e A  ri C~. 
i = !  

h, = 8 * ( .  t C, - z ) ,  

and let h~0 + be the recession function of  hi. Denote for each i by L~ the 
constancy space of  hl, 

L~ = {y: -(h,O+)(-y) = (hi0+)(y) = 0}, 

and let L~ be the orthogonal complement of  L~. Set 

k,= h, + 8(.[L~-). 

Then: 

(i) ki is inf-compact; (9a) 

(ii) (y,, x) = (y ,  z), Vx ~ C~, Vy~ ~ L~. (9b) 

Proof. 

(i) Since 

ri(Ci) -- ri dom 8(.  ] C~), 

and since 

z e r i  Ci, 

we have 

0~ ri dom 8( ' [  C i - z ) .  

From Corollary 13.3.4 in Ref. 12, it follows that 

(hi0)+(y) > 0, Vy~O,y~L~. (10) 

We have now to prove that, for each sequence {Yn} with y. ~ L~ and 
t im .~ [ ]y .  [[ = +oo, we have h~(y.)~ +oo. If  this were not true, there would 
exist M > 0 and a sequence {y.} such that 

y.~L~, []y. [] -~ +oo, limyJ[]ynH=y, h~(y~)<~M. 
n --} o o  
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Since 

(y,,  M)  ~ epi h, and (y, 0) = lim,_,oo (y,, M)/IiY, [i, 

it follows that (y, 0) e 0 + epi hi; note that 0 + epi hi is the recession cone of  
epi hi. Since 0 + epi hi = epi(hi0+), we would have 

(h,0)+(y) <~ 0. 

Now, y ~ L{ and y # 0 contradicts (10). 
(ii) From Theorem 8.8 in Ref. 12, we have, for each y~ ~ L~ and for 

each x* e dom 6*(. I C~ - z), 

8*(x,* + Ay, I c i  - z) = 8*(x* j c i  - z )  = ,~i, v;~ ~ R,  

so that, for each x ~ C ,  we have 

A(yi, x - z ) < ~ t x i - ( x * , x - z ) ,  VA, 

which implies that 

(Yl, x - z) = 0. [] 

Theorem 3.1. Under Assumptions (A1) and (A2), g belongs to ~t ;  
i.e., for each sequence {Yk, Ck} such that 

ckcog(yk), g(yk)<~M, lim ck ~- {), (11) 
&->co 

the sequence {yk} is a minimizing sequence. Furthermore, the sequence 
{x k = Vq*(~ yk)} converges to the unique solution x* of (P1). 

ProoL 

(i) Fix 

z e ~  ri Ci 
i = 1  

and denote, for each y~ ~ ~", 

y~= y~1+ yi2, 

Y:~  Yi, 
t = l  

Obviously, 

y= yl + y2. 

Let 

c k =(ckt, c~, . . . ,  c~) 

with y .  ~ Li, Yi2 c L{, 

i = 1  i ~ 1  
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by definition, and from (11) we have 

ck=Vq*(.~k)--d k, lira c~=0,  
k--~co 

with 

(12) 

dkeos*(--y~lCi)Cc, dkeCi ,  --ykeOs(dktCi). (13) 

We first show that the sequences ()7 k} and {x k} are bounded.  

i = 1  

Since z c Ci, we have 

8*(--yklCi--z)>~O, for each i, 

and we obtain then 

8*(-y~lC~-z)<~L, Vk. 

But, from Theorem 8.8 in Ref. 12, we have 

8*( -y f  [ c, - z) = a*(-yke[ C~ - z), 

(ii) 
From (11), there follows that 

q*0  7k) + 8"(--)7k I C) <~ q.(fik) + ~ tS.(_y~t C,) <~ M. 
i = 1  

Now, let 

x~( '~  Ci. 
i = 1  

We have then 

q*(37 k) - (x, yk) ~< M. (14) 

Since q* is cofinite, it follows from Lemma 26.7 in Ref. 12 that q*(. ) - (x, • ) 
is also cofinite and thus is inf-compact. From (14), it follows that {ilk} 
is bounded. Since Vq* is continuous, this implies that the sequence 
{x k= Vq*(yk)} is also bounded. 

(iii) Now, let us prove that, for each i, the sequence (Y~2} is bounded. 
From (11), we have 

q.(fik) + ~ ~.( _yki [ Ci - z) - 0 7k, z) ~< M. 
i = l  

Since the sequence {)7 k} is bounded, it follows that there exists L >  0 such 
that 
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SO that 

a*(-yf21 C,-  z) <~ L. 

Using Proposition 3.1, we conclude that the sequence {yk2} iS bounded. 
(iv) From the definition of  the conjugate, we have 

ak = q ( x  k) + g(yk)  = q (x  k) + q , ( yk )  + ~ B , (_y~ t  C,) 
i = 1  

= q ( x k ) + [ - - q ( x k ) + ( f i  k, Xk)]+ ~ (--yl k, d~) 
i = 1  

= (37 k, x k) + ~ ( -y~,  d~). 
i = 1  

Let us show that {ak} goes to zero. Without loss of  generality, since the 
sequences {xk}, {)7~}, {yk2} are bounded,  we can suppose that they converge 

ra 
to Y, 37, 37,2, respectively. It follows that the sequence {~=~ Y~1} converges to 
f i - ~ = l  Y'/2. From (9) and since d k ~  C,, we have 

(_yk, d k) = -(Y~2, d ~ ) -  (Y~l, z), (15) 

and summing over i we obtain 

flk = (_yk,  d~)=  - (Y~2, d ~ ) -  ~, 
,=1 i=1 , y , z  . 

Since {d~} converges to Y, passing to the limit we obtain 

lim flk = -  (E 37,2, x ) -  (37-E Y'~2, z). (16) 

On the other hand, the sequence {)7 k, x k } converges to (37, Y). This implies that 

lim ak = (37, ~) -- (Y. 37iZ, Y) -- (37--~ Y'~2, Z) = (37--E Y~2, ~ -- Z). 

NOW, since d k c  C~, Vi, it follows that Y~ C, and from (9) we have 

(ykl, Y-- Z) = 0, Vi, 

so that 

which implies that 

lim O~k = 0. 
k--~oo 
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We then have 

lim g(yk) = _q(£), ~ C. 
k---~ o o  

Together with (8) this implies that £ = x* and that {yk} is a minimizing 
sequence for the dual (D1). [] 

As a consequence of Theorem 3.1, we prove now that the Han and 
Lou algorithm converges under Assumptions (A1) and (A2). Since we have 
taken the same notations as those of Han and Lou, we can state the 
forthcoming theorem. 

Theorem 3.2. Let {x k} and {yk} be the sequences defined in Ref. 4. 
Assume that (A1) and (A2) are satisfied. Then, the sequence {x k} converges 
to the optimal solution of (P1) and the sequence {yk} is a minimizing 
sequence for the dual (D1). 

Proof. Following Corollary 4.4 and formula (4.2) in Ref. 4, we have 

-y~a~(xk+w~lC~), lim wk=0. 
k - ~  

Then, setting 

xk + 

and since 

- -  * k X k - - V q  
i 

we obtain 

--Wk EOg(yk), lim wk=O. 
k -~ oo 

Furthermore, from Lemma 4.5 in Ref. 4, there follows that 

g(yk) <~ g(yO). 

The statement of the theorem is now a direct consequence of Theorem 3.1. 
[] 

Remark 3.1. Han and Lou have only proved convergence of the 
sequence {x k} in the polyhedral case, and when int C # O. In this case, 
they proved also convergence of the sequence {yk}. However, in this case, 
g is inf-compact and this assumption is very restrictive. Indeed, if one of 
the C~ is a hyperplane, int C~ is empty. 
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Remark 3.2. Recent contributions by Tseng (Refs. 14 and 15) concern- 
ing Han and Lou's result were brought to the author's attention by a referee. 
Using a radically different way of reasoning, Tseng showed convergence 
under the weaker assumption 

~-'] ri Ci # ~. 
i = 1  

Tseng (Corollary 3 in Ref. 14) also sharpened the result of Theorem 3.2, 
obtaining convergence of the sequence {yk} to an optimal dual solution. 
Indeed, Theorem 3.2 of this paper, a direct consequence of Theorem 3.1, 
ignores the particular structure of the algorithm of Han and Lou. Rather, 
it is a result about the structure of the dual functional. 

We close this section with a result that will be used in Section 4. 

Proposition 3.2. Under Assumption (A1), the function 

y=(yl,. . . ,ym)~Vq * ~ 
i =  

is Lipschitz on R n×m. 

Proof. Set 

x=Vq*(~yl), x'=Vq*(Y~y~). 
Then, 

y,=Vq(x), ~ y~=Vq(x'), 
i = t  i = 1  

and since Vq is strongly monotone, we have 

y~,x-x '  >~2pllx-x'lt 2, 
i i = 1  

so that 

l l x -x ' l l  ~ (1/2p) ~ tlY,-Y',I[- [] 
i = 1  

3.2. The Bertsekas, Hosein and Tseng Problem (Ref. 2). In Ref. 1 and 
in Section 3 of Ref. 2, the authors study the following problem: 

(P2) a2=min(q(x)[x~ C), 
where 

c = (x ~ ~n : a ~  = bh  q(x)  = E fj(x,) ,  
j = l  
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A is an (m, n) real matrix, and b E R  m. They assumed that: 

(B1) each functionf~ is a dosed  proper cofinite and essentially strictly 
convex function; 

(B2) C n ri dom q is nonempty. 

Set 

gj = f * ,  Ci = {x: a~. x = hi}, 

where ai is the ith row of  A. We have 

8*(x*lCi)  - -  where p, satisfies x*=p,a, ,  
L+oo, otherwise, 

q* x = s  x j ' x j -  
i l j  l ! 

Performing the scaling x* = p~a~, we see that the dual becomes 

(D2) /32=inf(h(p)lp~R~), 

h ( p ) =  ~ g~(aj" p ) -  ~ p,b,, 
j = l  i = l  

where Aj denotes the j th  column of  A and A~. p = (At, p). 
It is easy to remark that h is ditterentiable and that 

Vh(p) = Ax(p) - b, 

where 

xj(p) = arg min fi(v j) - A ~  .pv~. 
vj 

Indeed, since f~ is essentially strictly convex and cofinite, g~ is differentiable 
everywhere, and we have 

ag~(tj) = {g'(t~)}. 

Furthermore, we have 

tj ~ a fA  xj ) C~ x~ c a gj ( tj ) c~ f j ( xj ) + gj ( b ) = tj xj , 

so that 

xj = g~(tj), with xj = arg min(fj(vj) - tjvj). 
oj 

Obviously, Assumptions (H1) and (H2) are implied by (BI) and (B2). From 
the results of  Section 2.2, the solution sets Sp2 and So2 are nonempty, 
- a 2  =/32, and Sp2 is reduced to a singleton x*. 
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Before proving that h possesses the two fundamental properties, we 
recall some properties of  the subgradients of  fj. 

Let us denote by cj and/j  the right and left endpoints of  domfj  (possibly 
+ ~  or -oo), i.e., 

cj = sup{xj IJ~(xj) < +~},  lj = inf{x/fj(xj)  < +~}.  

We make the assumption 

(B3) lj ~ c~, Vj. 

Then, under Assumption (B2), there exists an x such that 

x~C, /j < xj < cj, Vj. (17) 

Let us denote by f f ( x j )  and f f(xj) the left and right derivatives o f f  i at x~. 
For xj ~ ]/j, cj[, the derivatives f+ and f f  are finite and f f  ~<ff .  These 
functions are increasing functions with f f  right-continuous and f f  left- 
continuous. We define 

f f ( / j ) =  l i m f f ( ~ ) ,  f j - ( / j ) = - o o ,  i f / j > - ~ ,  (18) 

ff(cj) = lim f f ( ~ ) ,  ff(cj) = +co, if c~ < +a3. (19) 

For each xj c ]lj, cj[, we have 

u ~ afj(xj)cc, ff(x~) <~ u <~f+(xj). (20) 

These inequalities can be extended to the endpoints lj and cj by using 
Theorem 25.6 in Ref, 12, and we have 

u~Ofj(l~), iffu<~ff(l~) when fj(/j) ~ N, 

uefj(c~), iff u>~ff(cj) when fj(cj) ~ R. 

Theorem 3.3. Assume that (B1), (B2), (B3) are satisfied. Then, h e :T; 
and if the sequence {Vh(pk)} converges to zero, the sequence {x k= x(pk)} 
converges to the optimal solution x*. 

Proof. 

(i) Let us prove first that the sequence {x k} is bounded. Denote by 
A -1 the pseudoinverse of  A, and set 

d k = A x k - b = V h ( p k ) ,  z k = A - l d  k, w k = x k - - Z  k. 

Since  d k  E A R  n, we h a v e  

A w  k = A x  k - A 2  "k = A x  k - A A - l  d k = A x  k - d k = b. 
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Since d k'+ 0, we have zk-* O, and we can write the equivalences 

xk-~ +OOc~ wk'* +O0, (21a) 

x:---> -ooC:> w~]-- ,, -oo. (21b) 

Set t ~ = A ~ . p  k. Since x~=g}(tk), we have 4~ofj(x~-), and by (20) this 
implies that 

f f ( x ) )  <<. t~. <-f~(x)). (22) 

Let J be the set of indices j for which the sequence {x)} is bounded, and 
let jc  denote its complementary set. If JC is nonempty, there exists a 
subsequence {X kl} such that, for each j ~ jc, we have 

either x k'-* +co or x k,-. -co. 

Then, set 

J~ = {j: x),-~ +oo}, J~ = {j: x),-, -oo}, 

and let x satisfy (17). For I sufficiently large, we deduce from (21) and (22) 
that 

Y~ t ) , (w) ' -x j )+ Y~ f;(x)')(w)'-xj) 
j~J jJ~ 

+ E f;(x)O(W)t--Xj) ~L, (23) 
j e h  

where 

Set 

L =  ~ tk ' (wk'--Xj)=(A' 'pk ' ,wk'--X)  
rl=l 

= (pk,, Aw k, _ Ax)  = (pk,, b - b) = O. 

f ; ( g , )  =y~, j ~ , ,  

y ; ( g 9  = z', j ~ 2  

Since f f  and f+  are increasing functions, 

lim y{=aj and lim z~=~j 

exist. Furthermore, we have 

g' = g~CyD, J~J , ,  

x), = g~f zj), : ~ J~. 
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Since fj is cofinite, gj is real-valued, and then using Corollary 24.5.1 in 
Ref. 12 it follows that aj = +0o and flj = - ~ .  Fo r j  E J, we can assume without 
loss of generality that x k~ converges to Yj E [ lj, cj]. I f  ~ E ]/j, cj[, the sequence 
{t k,} is bounded. In the other case, {tk'(w~'--Xj)} is bounded or converges 
to +oo. Then, taking the limit in (23) where L = 0, it follows that J~ is empty. 

(ii) Since the sequence {x k} is bounded, there exists at least one limit 
point of  this sequence. Let Y be such a point. Then, there exists a subsequence 
{x k,} which converges to Y and we have 

A ~ - b =  lim Axk,-b=O, 
l~+co 

SO that ; e C. 
Now, set 

I1 = {j: xj = cj}, 12 = {j: ; j  =/j}, 

I f  the sequence {t~,} is bounded, we have 

lim t~'(~ - x~') = O. 
l--~ oO 

I3={j: /j < ~j < Cj}. 

(24) 

From Corollary 24.5.1 in Ref. 12, this is the case f o r j  E 13. Furthermore, if 
the sequence {t~ ~} is unbounded, we have 

t ; ' - >  "FO0, j e l l ,  

t~' + -oo, j E I2. 

It follows that, for l sufficiently large, 

t~,. (;j-x'?)>~o, jEz, uI2. (25) 

Now, from the definition of x~, we have 

ak=q(xk)+h(pk)= ~ t~" X~--(p k, b). 
j= l  

Since 

then 

t~. ~j = ~ A~p ~. ;~ = ( f ,  ~ )  = (p~, b), 
j = l  j = l  

j = l  

and from (8), (25), and (24), it follows that 

lim h(p k~) = -q(~).  
I---~ oo 
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Together with (8), this implies that £ is an optimal solution and that the 
subsequence {pk,} is a minimizing sequence for the dual (D2). Now, since 
Sp2 is reduced to a singleton x* and since ~ was an arbitrary limit point 
of the sequence {xk}, it follows that the whole sequence {x k} converges to 
x*. Furthermore, taking again the same arguments as before, it follows that 
the whole sequence {pk}  is a minimizing sequence for (D2). [] 

Remark 3.3. In Ref. 1 and in Ref. 2, Section 2, it is only assumed that 
C r~ dora q ~s O instead of (B2). In addition, we must note that the proof 
of Theorem 3.3 uses essentially the technical tools introduced in the proof 
of  Lemma 5 in Ref. 1 and the latter part of Proposition 1 in Ref. 1. 

In the next section, we replace Assumption (B1) by the stronger 
condition 

(BI') fj is strongly convex for each j. 

As a consequence of (BI'), we see that (B1) is satisfied, and there exists 
8 > 0 such that 

(cj - d j )  x (xj - yj)>t 8Ix j - yjl  2, 

Vcj ~ afj(xj), Vdj ~ afj(yi), Vxj, yj ~ dom 0fj. (26) 

The following theorem is needed for Section 5. 

Proposition 3.3. If Assumptions (BI') and (B2) are satisfied, then Vh 
is Lipschitz on R m. 

Proof. 
that 

0 = A j .  p - cj(p).  

Using (26), this implies that 

( A~ . (p - p ' )  ) x ( x j (p  ) - x j (p ' )  ) >t 81xj(p ) - xj(p')l 2, 

which yields 

IxAp) -xAp')l-< I IAd 811 lip - p'll; 

and since 

Vh(p) = Ax(p) - b, 

it follows that Vh is Lipschitz on R m. 

By characterization of x j (p) ,  there exists cj(p) e af j (x j (p) )  such 

[] 
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3.3. The Censor and Lent Problem. In Ref. 5, Censor and Lent consider 
the following extremal problem: 

(P3) a3=min - 2  logxjlxeC , C={x:Ax=b}, 

where A is an (m, n) real matrix and b ~ N'.  
As in Section 3.2, setting x* = p~a~, we can write the dual problem as 

(D3) 

Denote 

/33 = inf(h(p)[p ~ W"), 

h(p)= ~ gj(A;" p) -  ~ p,b,, 
j = l  i=1 

~" sup(tj- xj + log xj t xj > 0), 
gj ( t j )  = t = + 0 %  

xj(p) = arg max(Aj • p.  vj + log vj), 
vj 

Then, we have 

if t j<0,  

otherwise. 

i fAj  . p < 0 .  

xj(p) = -  1/tj, with tj=Aj .p, if t j<0,  

[ - log( -A~ - p ) -  1, if A~. p < 0, 
gj(A~" p) = l +°°, otherwise, 

so that 

dora h = {p = A t. p <0}, 

h ( p ) = -  ~ log(-A~" p)-  ~ pibi-n, 
j = l  i= l  

In Ref. 5, the following assumptions were made: 

Vp ~ dom h. 

(27) 

(28a) 

(28b) 

(29a) 

(29b) 

(C1) N(A)c~R~={0}, where N(A)={x: Ax=0}; 

(C2) C h in t  R~_ ~ Q. 

As pointed out in Ref. 5, it follows from Assumption (C1) and the Gordan 
transposition theorem that dora h is nonempty. Furthermore, Assumption 
(C1) implies also that (H2) is satisfied and Assumption (H1) is a direct 
consequence of (C2). Then, a3 = -/33, and the optimal sets Sp3 and SD3 are 
nonempty. Since - log  is a strictly com, ex function, Se3 is reduced to a 
singleton x*. Also, from (27), (28), and (29), it follows that 

dom h = int dora h, (30) 

h is continuously differentiable on its domain, and 

Vh(p) = Ax(p) - b. (31) 
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Theorem 3.4. Assume that (C1) and (C2) hold. Then: 

(i) let M >--/3 and  set LM = {p: h(p) <~ M}; then, there exist two real 
r/> s > 0 such that 

s <<- xj(p) <<. r, Vp e LM n dom h, (32) 

and Vh is Lipschitz on LM; 
(ii) h e ~ and, for each sequence {pk} in LM such that Vh(p k)-~ O, 

the sequence {x k= x(pk)} converges to x*. 

Proof. 

(i) Since x j ( p ) = - l / A ~ . p ,  we have 

- l o g ( - A ~ .  p) = log xj(p), 

and for z e C c~int R~, it follows that 

zJx~(p)=-  ~ A~ .p .  z j = - ( A ' p , z ) = - ( A z ,  p ) = - ( b , p ) ,  
j = l  

which implies that 

j = t  

h(p) = az(p) - n, 

Then, we have 

O~z(p)~ M + n, 

Now, since z~ > 0, we have 

~,(p) = Z log xj(p)+zdxj(p). 
j = l  

Vp ~ LM n dom h. (33) 

lim log ¢ + z j ~ = + m ,  lim log rl+zJ~ l = +0o. 
~-,+oo ~1_~O + 

From (33), it follows that there exist r and s such that (32) holds. Further- 
more, it follows from formula (28) that Vh is Lipschitz on LM. 

(ii) Consider now a sequence {pk} in LM such that Vh(pk)->0, and 
let us prove t h a t  {pk} is a minimizing sequence for the dual problem and 
that {x k} converges to x*. From (32), it follows that {x k} is bounded and 
then there exists at least one limit point of the sequence {xk}. Let ~ be an 
arbitrary limit point of this sequence, and let {x k~} be a subsequence 
converging to ~. From (32), it follows that s <~ £ ~< r and we have 

A . f -  b = lim Vh(pk0 = 0, 
1~+oo 

so that 

~ e  C h i n t  R~. 
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Furthermore, since 

A)t k k p x) = - 1 ,  

it follows that 

n 

h(pkO = Z log x ; , -   jp-- 
j = l  i = l  j = l  

= ~ log x k' + (A'p k~, x k' - ~). (34) 
j = l  

Now, from (32) and (28), it follows that the sequence {A'p k} is bounded, 
and taking the limit in (34), we obtain 

lim h(p k') = ~ log £j. 
l~c~ j = l  

Then, from (8), it follows that £ = x*, and we deduce obviously that the 
whole sequence {x k} converges to x* and that {pk} is a minimizing sequence 
for the dual problem. Then, h c ~'1 and from Proposition 2.1, h belongs 
to ~. [] 

4. Variant of the Gauss-Seidel Method 

n 
Let ni, i = 1, 2 , . . . ,  n, be positive integers; set N = ~i=~ ni ; and for each 

i, let hi be a closed proper convex function defined on W*,. Let ho be a 
closed proper convex function defined on ~ s  set 

h(y) = ho(yl , . . .  ,yn)+ ~ h~(yl), 
i = 1  

and consider the extremum problem 

(R) [3=inf(h(y)ly~R"~') .  

All the dual problems introduced in Refs. 1-5 are special instances of (R). 
Indeed, for (D1), 

h,(y,) = t$*(-y,l C,), 

for (D2) and (D3), 

h = ho. 

We shall assume that: 

(E0) fl is finite; 

(El.) he ~ : l ;  

ho(y) = q*(~ y,); 
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(E2) for each sequence {yk} converging to a boundary point of 
dora ho, we have limk_~+~ h ( y  k) = +oo; then, (E2) trivially holds 
when dom h0 = RN; 

(E3) dom ho = int dom ho, ho is continuously differentiable on dom 
ho, and for each M > f l ,  Vho is Lipschitz on the level set 
{y: h ( y )  <~ M}; 

( ° (E4) 1]i=1 dom hi) c dom ho. 

It is easy to see that all these assumptions are satisfied for the former dual 
problems (D1), (D2), (D3) if the basic assumptions of these problems hold. 
Consider now the following variant of the Gauss-Seidel method. 

Algorithm 4.1. Start with y0 ~ dom h. Suppose that y k  has been com- 
puted. Then, for i = 1, 2 , . . . ,  n, find successively yk+l which solves 

(S~) min hi, k(yi)+(1/2)l lyi-y~ll  2, 
where hi'k is defined by 

hi .k(y i )  , r  k+l = n t y l  , . . . ,  yk+~, y~, y k + i , . . .  ' y k ) .  (35) 

Propos i t ion  4.1.  Set 

yi, k ="  k+l k+l k+l 
tY l  , . . . , Y H , Y l  ,yk+l , . . .  ,yk). 

Suppose that Assumptions (E0), (El),  (E2), (E3), (E4) are satisfied. Then, 
for each k and for each i = 1, 2 , . . . ,  n, there exists a point yk+l which solves 
(Si k) such that yi, k belongs to dora h. 

Proof .  Suppose that yg and yj ,  k , j  = 1 , . . . ,  i-- 1, belong to dom h. Let 
{Yl} be a minimizing sequence for problem (sk), 

lim hi'k(y~i) = d~,k = in f (h~ 'k (y~)+  0/2) l ly~-  y,~ll21 y, ~ R-i). 
I - ~ o O  

From Assumption (E2), and since hi 'k(  • ) + (1/2)[[ • -y ,~l l  ~ is strongly convex, 
it follows that the sequence 

{yi, k,l = (yk+l, k+l 1 . . . , y , _ ,  , y , ,  yk+,, . . . , y k ) }  

belongs to a compact set included in dom ho. Let then 
" ~ / k + l  p~k tY~ ,...,Yk--+l~,fi~,Y~+~,''',Yk) 

be a limit point of this sequence. Since h is closed, it follows that 

( 1 / 2 ) [ l y , - y k l l 2 + h ( y " k ) < ~ d ~ . k  and y k + l = ~ i .  [] 
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From Proposition 4.1, we have that the algorithm is well defined. There 
remains to prove that it converges. 

Theorem 4,1. Under Assumptions (E0), (El) ,  (E2), (E3), (E4), {yk} 
is a minimizing sequence. 

Proof. Since yk+l is an optimal solution of  (S~), we have 

(1/2)lly~ +x -y~l l  2 ~< h~'k(y~) - h"k(yk+l), (36) 

from which it follows that 

h ( y  k+l) <~ . . . <~ hi'k(yki+l) ~ h "k(y~)  <~ " " " <~ h ( y  k).  (37) 

This implies that the sequence {h(yk)} is decreasing. Then, if we set 

So = {y: h ( y )  <. h(yo)}, 

we have 

y~k ~ So, y = lira h ( y  k) exists. (38) 
k-~oo 

From Assumption (E0), y is finite, and it follows from (36), (37), and (38) 
that 

lirn Ily~ - y~+~ll = o ,  vi, (39) 
k--* co 

Set 

fii'k( vi) = hi 'k(  V,) + (1/2)[I V~ --y~[12. 

From the necessary optimality conditions, 

0 ~ O/~',k(yf+'), 

we obtain the existence of  c~ ~ ah~(y~ +~) such that 

V,ho(y 'k) + c~ + yf+~ - y~ = 0, 

where Viho denotes the partial gradient of  ho relative to y~ ~ R% Then, from 
Assumption (E3), (38), and (39), we get 

7 h "  k+l"+ek+ k+~ k o~Y ) ~ Y~ --Yi + ~ = 0 ,  with lira E~=O. (40) 
k ~ c o  

Finally, from (39), we have 

lira V~ho(y k+l) + c~ = 0. 
k-~oo 

Since h c ~ ,  we conclude that {yk} is a minimizing sequence. [] 
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Remark 4.1. Assume that h = ho and n~ = 1, for each i. Then, the 
algorithm can be made implementable by requiring yk+l to satisfy Ineq. 
(36) and 

l l V , h ~ ' k ( y ~ + ~ ) + y ~ + ~ - y ~ [ l < ~ E ~ ,  with E ~ 0 ,  

rather than being the exact minimum. 
The proof of Proposition 4.2 holds with minor modifications, and such 

a point can be computed in a finite number of steps. 

Remark 4.2. In fact, this algorithm may be viewed as the Gauss-Seidel 
method applied to minimizing in an augmented linear space the function 
w given by 

r /  

w ( y l , . . . ,  y , , ,  z l , . . . ,  z, ,) = h ( y ~ , . . . ,  y , , )  + v I ly , -  z, II 2 
i = 1  

By letting 

Wo(y l ,  Y2 , .  . . , Y,,, z l ,  . . . ,  z , ,)  = h o ( y l , .  . . ,  y , , )  + ~ tly,- z, ll 2, 
i = l  

we see that w has the same form as h. The above reasoning is based on 
that in Ref. 6, page 232. 

Remark 4.3. In view of the results given in Section 4 concerning 
Problems (P1), (P2), (P3), we observe, as mentioned previously, that all 
assumptions of Theorem 4.2 are satisfied by the duals (D1), (D2), (D3). 
Applying the Gauss-Seidel variant to these duals produces a dual minimiz- 
ing sequence { y k }  and a corresponding primal sequence { x  k} converging 
to the optimal solution of the primal problem. 

Remark 4.4. For the nonpolyhedral case, in order to obtain conver- 
gence results, Han and Lou assumed in Ref. 4 that f--~n~=~ int dom Ci was 
nonempty. This is equivalent to asserting that the dual level sets are bounded. 

n . 

Such an assumption is unnecessary, and we may only assume that f")i=~ n 
dom C~ is nonempty. 

Remark 4.5. In Ref. 5, the result of Censor and Lent relies on an exact 
minimization at each iteration. We showed (Remark 4.1) that an inexact 
minimization works as well and yields also dual convergence results not 
obtained in Ref. 5. 
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