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Iterative Computation of Noncooperative 
Equilibria in Nonzero-Sum Differential 
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Abstract. We study the Nash equilibria of a class of two-person non- 
linear, deterministic differential games where the players are weakly 
coupled through the state equation and their objective functionals. The 
weak coupling is characterized in terms of  a small perturbation param- 
eter e. With e = 0, the problem decomposes into two independent stand- 
ard optimal control problems, while for E ¢0,  even though it is possible 
to derive the necessary and sufficient conditions to be satisfied by a 
Nash equilibrium solution, it is not always possible to construct such a 
solution. In this paper, we develop an iterative scheme to obtain an 
approximate Nash solution when e lies in a small interval around zero. 
Further, after requiring strong time consistency and/or  robustness of 
the Nash equilibrium solution when at least one of the players uses 
dynamic information, we address the issues of existence and uniqueness 
of  these solutions for the cases when both players use the same infor- 
mation, either dosed loop or open loop, and when one player uses open- 
loop information and the other player uses closed-loop information. We 
also show that, even though the original problem is nonlinear, the higher 
(than zero) order terms in the Nash equilibria can be obtained as solu- 
tions to LQ optimal control problems or static quadratic optimization 
problems. 
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1. Introduction 

A challenging task in nonzero-sum differential games with nonlinear 
dynamics and nonquadratic cost functions is to establish the existence and 
uniqueness of a noncooperative equilibrium and to develop constructive 
procedures to obtain the corresponding strategies, especially when the infor- 
mation structure is dynamic. In this paper, we address these issues, under 
the Nash equilibrium solution concept, for a class of nonzero-sum differen- 
tial games where the players are weakly coupled through the presence of a 
small parameter e in the state equation. When e = 0, the problem decomposes 
into two independent single decision maker problems whose solutions can 
be obtained using known results in optimal control theory. The approach 
developed in this paper iterates on the zeroth order solution thus obtained, 
to arrive at better approximations to the true Nash equilibrium solution, if 
one exists. The procedure is developed for the cases where both players use 
the same information, either closed loop or open loop, and when one player 
uses open-loop information and the other player uses closed-loop infor- 
mation (Ref. 1). Further, we address the issues of convergence, existence, 
and uniqueness of the solutions obtained using this procedure. 

The class of weakly coupled systems is a subclass of regularly perturbed 
systems, which have been studied extensively for the single decision maker 
case (see Refs. 2 and 3). In Ref. 2, the solution to regularly perturbed optimal 
control problems has been obtained using both the dynamic programming 
approach and Pontryagin's minimum principle. Here, we extend the results 
of Ref. 2 to differential games with weakly coupled decision makers. One of 
the sources of difficulty in attempting to extend the results from the single 
decision maker case to a game situation is the fact that the state trajectory 
under dynamic information patterns (e.g., feedback state information) is not 
the same as the state trajectory under the open-loop information pattern 
(Ref. 1). It is this equivalence of the optimal trajectories in the single decision 
maker problems under different information patterns that is exploited in 
Ref. 2 to prove the existence and uniqueness of the solution in the closed- 
loop information case. 

Differential games with weakly coupled agents have been studied before 
in Refs. 8 and 10 for the special class of linear-quadratic (LQ) problems, 
but the approximate solutions have been obtained using (as the starting 
point) the solution of the perturbed problem, i.e., the one with E ¢0. This 
implies, however, that the perturbed problem is solvable, which is an assump- 
tion that is difficult to justify a priori, especially in nonlinear differential 
games. In this paper, we will develop a method that will circumvent this 
difficulty, by making direct use of the weakness in the spatial coupling 
between the two independent subsystems. The idea of exploiting the presence 
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of weak coupling among decision makers to solve otherwise unsolvable 
problems has been studied earlier in the context of stochastic multiple deci- 
sion maker problems in Refs. 4, 5, and 6. 

The rest of the present paper is organized as follows. Section 2 deals 
with the problem formulation, where we formally introduce the three types 
of information structures that we will be considering in this paper. In Section 
3, we first assume that the Nash equilibrium solution is expandable as a 
function of E, and obtain the various terms in this expansion as the solution 
of simpler optimization problems. Further, we establish the uniqueness of 
such an asymptotic expansion in the sense that, irrespective of the starting 
policy choices, a Cournot or Gauss-Seidel policy iteration yields uniquely 
the successive terms in the expansion at successive steps of the iteration. 
Section 4 justifies the assumption of the asymptotic expansion of the Nash 
equilibrium solution, by showing that, if we use the first (k + 1) terms of the 
above expansion, we have an O(E -~+2) Nash equilibrium. Further, we estab- 
lish the uniqueness of the various terms in the expansion. Section 5 provides 
the concluding remarks. 

2. Problem Statement 

In this section, we provide a precise mathematical formulation for the 
class of two-person, deterministic differential game problems which will be 
studied in this paper. We consider only the two-player case without much 
loss of conceptual generality, and simply note that the results derived here 
are readily extendible to the multiple player case in a rather straightforward 
manner, as further explained in Section 5. 

Consider the game dynamics described by the following state equations: 

21(t)=f1(xl(t), ul(t))+Ef12(x2(t)), x1(to)=XIo, (la) 

22(0 =f2(x2(t), u2(t)) + Ef21(xl(t)), x2(to) =X20, (lb) 

where x(t)= [x~(t), x~(t)]' is the state vector of dimension n, and xi(t) is the 
ith subsystem state of dimension ni, i= 1, 2. The functions f~(. , .  ), J~2(., .), 
f21(., • ),J~(. ) are infinitely many times differentiable in their arguments. The 
control of Player i, denoted by ui(t), belongs to Nm,, i= 1, 2. The scalar E is 
a small parameter which (weakly) couples the two players. 

The objective functional for Player i is given by 

Ji(u,, uj ) = g~f(x~( tf) ) + eguf(xj( tf) ) 

f'J + (g~(xs, u~) + eg~(xj, uj)) dr, i , j= 1, 2 , j¢ i ,  (2) 
0 

which he strives to minimize. 
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We will deal with three types of information structures for the differen- 
tial game: (i) both players have open-loop (OL) information; (ii) both 
players have closed-loop perfect state (CLPS) information; and (iii) Player 
1 uses open-loop information, and Player 2 uses closed-loop information 
(OL-CLPS). Under any one of these patterns, let the information available 
to Player i at time t be denoted by Ii(t). For the open-loop information 
pattern, 

Ii(t) = {x ( to ) }  ; 

and for closed-loop perfect-state information, 

I (t) = { x ( s ) ,  0_< s_< t}.  

In the open-loop case, for each fixed X(to), a permissible strategy is a measur- 
able mapping 7i: [to, t f]-- ,N mi, i= 1, 2. In the closed-loop case, by imposing 
strong time consistency or asymptotic robustness (Ref. 1), the information 
to Player i can be assumed, without loss of generality, to be 

l (t) = {x( t0) ,  x ( t ) } .  

Hence, in this case, for each fixed X(to), a permissible strategy is a measurable 
mapping ~/i: [to, tz]X~'"~o¢l m', i= 1, 2. We let F~, i= 1, 2, be the appropriate 
strategy space in each case. Then, the problem is to find a pair of policies 
{ ~, ~' e F~, 7 ~ e F2} that constitutes a Nash equilibrium solution, i.e., a pair 
{y*~F1, y ~ F 2 }  such that the following inequalities are satisfied for all 
{yieFi, i = 1, 2}: 

J~:=Jl(Y*, T~')-<JI(Yl, Y*), (3a) 

j * . - j t ,  * 2 "- 2~yI, ~'*)-<J~(7/*, ~'2)- (3b) 

In the open-loop case, the Nash equilibrium is known to be weakly (but 
not strongly) time consistent. In the closed-loop or the mixed case, the Nash 
equilibrium is known to exhibit informational nonuniqueness (Refs. 1 and 
11). In order to avoid this plethora of equilibria, we bring in the further 
refinement of strong time consistency or asymptotic robustness (to infin- 
itesimal noise), as discussed in Ref. 9. The significance of these additional 
impositions on the Nash equilibrium concept should become clear in Sec- 
tions 3.2 and 3.3 below, as we discuss equilibria under dynamic information 
patterns. 

3. Asymptotic Expansion of the Nash Equilibrium Solution 

3.1. Open-Loop Information Structure. Toward studying Nash equi- 
libria of the problem formulated in Section 2 under the OL information 
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pattern, let us first write down the necessary conditions associated with 
such a solution. Suppose that u*(t):=~,~(t, Xo), i = l ,  2, provides an OL 
Nash equilibrium solution. Then, there exist costate vectors 
p~(t) := [ph (t), p~2(t)]', i = 1, 2, which satisfy the following equations (Ref. 1): 

"* - * ( 4 a )  x, - f , ( x ,  , u~) + ef,2(x*), x~(to) =x~0, 
"* - * ( 4 b )  x2 - f2(x2,  u~) + ef2, (x*), x~(to) = X2o, 

u~( t ; e ) =  arg rain Hi(t, pff t), x*( t), uff t), u*( t) ), (5a) 
bt I ~ o~m l 

u~(t; e) = arg rain Hz(t, pz(t), x*(t), u*(t), uz(t)), (5b) 
u2~m2 

/}~(t; e) = -(8/Sx)Ht(t ,  p~(t), x*(t), u*(t), u~(t)), (6a) 

pi(tf; e) = (d/dx)g~f(x*(tf)) 

+ e(d/dx)g~f(xj(tf)), i,j = 1, 2 , j¢ i ,  (6b) 

where 

I-Ii( t, pi, x, ul, u2) =gi(xi, ui) + Eg~(xj, uj ) 
2 

+ E p~(f ,(x, ,  u~) + Ef, j(xj)) ,  
i=1 

i , j=l ,2 , jg : i .  (7) 

In the above expressions, we have used 8/8x to mean the first partial deriva- 
tive with respect to the vector x, and it is expressed as a column vector. Since 
f ( . , .  ),f~j(. ), i , j= 1, 2, iCj, are taken to be differentiable in their arguments, 
we can write down the first-order necessary condition for (5) as 

(8/8u~)g,(x*, u*) + (8/8u~)f(x*, u*)p, = 0, i=  1, 2. (8) 

Now, suppose that there exists an expansion for x*(t; e), pf(t;  e), p*(t; e), 
u*(t; e) in terms of  E as 

x*(0= ~ x(~(t)~ ~, p*(0 = ~ p(~(0eL 
k = 0  k=O 

u*(t)= ~ u~k~(t)e k. (9) 
k=O 

Using (9), we can obtain a power series expansion of  (4a), (4b), (6a), (6b), 
(8) in terms of  e, with the zeroth order terms satisfying: 

21°)=f(x~ °), ul°)), xl°)(to) =xi0, (10a) 

- u~ ) -  (a/ox,)f~(x, , 
( 0 )  _ _  (O)  p,  (tf)-g~f(xt (ty)), (10b) 

5 ~°)- fd/dx ~ftx(°h -(°) - - t  / jJjj~ j )1% , p~°)(t D =0, i , j= 1, 2,jvai. (10c) 

( 8 / c~ui )gi( xl °), u~ °)) + ( a / c)ui )f(  xl °), u~°))p~ °)= O. (lOd) 
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It should be noted that the unique solution to (10c) is p~°)(t)= O, j ~ i. Now, 
the E terms in the expansion (that is, the first-order terms) yield 

~7}1) = (O/~xi)fi(x~O).ui(O)'~ ~(l)).,~i T ± ( ~ / ~ u i ) f i ( x ~  0), :,1(0)],1(|)-4.- ~ (~(0)'~ ~i j~ i  --JU~,-~j 1, 

x~l)(to) = O, (1 la) 

2 2 (o) (o) (~) - [ ( a / a x , ) f , ( x ~  , u~ )x~ + (8~/au,&j , (x~O),  ..~(o)~.~.~(.1.(o)w~ 

_ ( 8 / S x i ) f i ( x } O ) , ,  (O) , ln( t )_  ( 8 2 / S U i S X i ) g i ( x ~ O ) , .  (0)'~. (1) ui ]ui  ~i Jl"ii 

;~l>(tA= ~ ~ (o> (,> ( d / d x D g r ( x ~  s )x< ,  (i lb) 

~(' ' - - ( d /  axj )g,j( x> °> ) - ( a /  axj ) f  ,y( ~(O>)p?> _ ( d /  dxj )f,( x>°>)p~ ' ', 

p~')(tf) = (o) (d/dx~:)g.Ax~ ), (11 c) 

2 2 (0) • (0)-t~,(1) (a /c3u,)&(x, , m , - ,  

+ [(a~/au~)f,(x? ) , .~ , ,(%, ..;('~ - ~- (a~/au~ ax;)f,(x,(°),.,. (o~,j~; ~( , )~o)  w .  

. ~ o ) a . . o ) _  a ( l l d )  (0) , ( 0 ) ; ~ ( 1 ) .  ( a 2 / a x i  aui)gi (x~O),  ui  ).,~i - -  v ,  + (U&3f~(x~  , . i  wi,  - 

where we have made use of the fact that p~9)(t)=-0, i~ j .  It should be noted 
that the functions x~l)(t), p~)(t), u~)(t) can be solved independently of 
x~l)(t), p~)(t), u~)(t), i¢ j .  Furthermore, the dependence on xj(t), pj(t), uj(t), 
i~ j ,  is only through the zeroth order terms, which have already been deter- 
mined in the previous step of the iteration. 

Before obtaining the general expression for the kth order terms, let us 
introduce some notation. Let W(a(E), b(E)) be a function which is infinitely 
many times differentiable in its arguments, where 

a(E) : :  ~ a(°E i, b(E) : :  ~ b(OE i. 
i=O i = 0  

Then, the kth total derivative of W(a(E), b(E)) with respect to e at e = 0 is 
given by 

( 1/k!) (dk/d~ k) W =  (8/~a) W(a (°), b(°))a (k) 

+ (8/8b) W(a (°), b(°))b (~) + R~ ( W, k), (12) 
k 

RI(W, k):= Y, ~ (1/j!)(8~/Sa j) W(a (°), b(°))a ~°" • • a (6) 
j~'2 l l+ '"+l)=k 

it,...,lj >_ 1 
k 

+ ~ ~ (1 / j ! ) (U/Sb:)W(a ~°), b(°))b (~°. • • b °'), (13) 
, /=2 Ii +""  + / / = k  

6,.,.,6_> I 

where (Y/ ,~a ~) W ( a %  8(°)) and ( 8 ~ / & ~ ) W ( a  (°~, b %  denote the jth partial 



JOTA: VOL. 71, NO. 1, OCTOBER 1991 143 

derivative operators with respect to a and b, respectively, at the point 
(a (°), b(°)). If W is a function of  one variable [i.e., W -  W(a(e))], then the 
above expression simplifies to 

(1/  k! )( dk / de k) W =  ( d /  da) W( a(°))a(~) + R2( W, k), (14) 
k 

R2( W, k) :=  Z Z (1/j!)(dJ/daQ W(a(°))a (h). • • a (~), (15) 
j = 2  Ii+..'+lj=k 

h , . . . , b  -> 1 

where (dJ /dd )W(a  (°)) denotes the j th derivative operator at the point a (°>. 
Now, the expressions for the kth order terms (the coefficients of  E k) in 

(9) are given by 

2}k) .~- ( ~ /~xi ) f i (x}O) .ui(O)xj~i~(k) .3 V ( ~/~bli)fi(x}O) ,,(O)'~,.i 2•i(k) + Mxk( t), 

x}k)(to) = 0, (16) 
pl~)_ 2 2 (o) ~o) (k) . (o)~. (k) . . . .  (~3 /Oxi)gi(xi , ui )xi - (O2/Oui 8xi)gi(x} °), "i )-i 

_ [ ( c ~ / ~ ) j S ( x ? ) ,  .,,(o~,)~ . . ( ~_ (o~  J r ,  - [ ( ~ / O u ,  c~x,) jS(x? ) , ..,(o)~, ,-~k)l"~°) ~ .  

- -  [ ( ~ / ~xi)fi( xlO), . ",(0)" ) Wli -(~)- Mpk(t), 
(k) ~2 2 (0) (k) Pii (If) = (0 /(~x~)gi(xi (tf))Xi (tj) + Mpkf, (17) 

• ( k )  P'7 = - [ t / ( k -  1)!](d k- ~/de ~- ~)(d/dxj)go{xJ .°~) 
k - - I  

- ~ (1/ j ! ) (¢/deJ)[(d/dxj) f j lP}~ - ' - l )  
/ = 0  

k - I  
(1 / i ! ) (d /dEl  ( k - l )  - ) [ ( U ~ x A U A p o  , 

l = 0  

p~k ) ( tj) = [ 1/(n - 1 )!1 ( d ("- l ) / de("- 1)) ( d /  dxjf)g~, (18) 

(aZ/axi 8ui)gi(xlO),. (o),..(k)± 2 2 (o) . (o),. (~) ui ).xi ~- (8 /¢3bli)gi(xi , ui )ui 

(0) (0) (k) 
+ ( 8 / ~ u , ) f ~ ( x ~  , ui )p~ 

+ (a~ /au~) f , ( x }O)  ' . (o~,. ~)_(o~ l .~ ~.~ ~ , .  T [ ( a ~ / ~ x ~ ) f , ( x } ° ) ,  -(°~'~-(°)., ~ ~ , .  

+ M.~(t) = 0, (19) 

where 

M x ~ ( t ) = R ~ ( f . k ) + [ 1 / ( k _ l ) ! ] ( d  k - ,  k ~ / d e  - )f j ,  (20) 

Mpk( t) = R, ( ( c~ / Sxi ) f  , k )p~ °) 
k--l 

+ ~ (1/l!)(dt/dEI)[(c3/Sxj)f(x~ °), ui(O))lPu(k-l) 
l = 1  

+R,( (c~ /Ox i )g .k )+  ~. (I/j!)(d~/dEJ)fj#~ k - ' - ' ) ,  (21) 
/ = 0  
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M~k( t) = Rl( ( O / 63ui)g~, k) 
k - I  

+ Z (1/l!)(d'/dE')(~/Oui)lf(x~°), u~°))]P ~ik-') 
/ = 1  

+ [R1 ((~/63ui)f~, k)]pl °~, (22) 

Mp~f = Rl ( ( ~3 / Oxif)gi( xl°) ( t f) ), k ). (23) 

( k ) ( t "  ~ Note that the term p~j ~ ,  can be computed from the ( k -  1)th order 
terms, independently of u}k)(t); and the rest of the e ~ terms, for every k > 0, 
correspond to solutions of optimal control problems as follows: For k = 0, 
(10a)-(10d) corresponds to the solution of two independent control prob- 
lems, one for each ie { 1, 2}, defined by 

ki =f(xi ,  ui), xi(to) = Xio, (24a) 

J~ = rain ~(x~(tz)) + g~(xM), uM)) dt . (24b) 
btt cZ ff'~m i 0 

The above optimal control problems are those obtained by setting E = 0 in 
the original differential game. 

For k > 1, (16), (17), and (19) correspond to the solution of the follow- 
ing LQ problem: 

5c, = ( O/ 63x,)f(x~ °~, u~°))xi + ( 63 / ~ue)f~(x~ °), ul°))ui + Mxk( t), 

XMo) = 0, (25a) 

J~* = min t(1/2)x~(ty)(632/63x~)ge.(x~°)(ti))xi(ti) 
ttlE ~j~mi l 

+ M ~ x ~ ( O  + 0/2) (u~[(63~/63g)gi(x~ °~, u} °~) 

(0)' 2 2 (0) +p~ (63/~ui)jS(x~ , ul°))]ui 
+x;[(632/63x~i)g~(x~O~, ~o~ co~, ~ 2 ~o~ u(O~,, ui ) + p ~  ( 6 3 / 3 x ~ ) f ( x i ,  ~ ) jxi  

r 2 CO) (0) (0)' 2 + 2xi[(8/c3xiOui)gi(xi , ui )+Pii ( 63 /C~Ui C~xi)fi(x~ °), ulO))]Ui 

+ 2x'Mp~(t) + 2u;M,,~(t))dt}. (25b) 

Therefore, the original differential game has been decomposed into two 
nonlinear optimal control problems (the zeroth order problems) and a 
sequence of LQ control problems. The issues of existence and uniqueness of 
the original problem can now be studied by analyzing these simpler prob- 
lems. This situation is analogous to the case of nonlinear, regularly perturbed 
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optimal control problems studied in Ref. 2. What  we have shown here 
though, is that, in spite of  the fact that there is an additional co-state vector, 
the game problem also admits a decomposition that is similar to the case of 
the usual optimal control problems. 

The above decomposition procedure for constructing a Nash equilib- 
rium solution can be summarized as follows: 

Procedure 3.1. 

Step  1. Use (10a)-(10d) to calculate u~°)(t) and U(z°)(t). Set k = 1. 

Step  2. Calculate u~)( t ) ,  i=  1, 2, using (t6)-(19).  Set k = k +  1. 

S tep  3. If O(~ ~+~) accuracy is required, stop at k = t+  I. Otherwise, go 
back to Step 2 and iterate. 

Notice that the computation of  u}~)(t), i=  1, 2, k>_0, using (16)-(19) is 
equivalent to the solution of  a Riccati equation and two linear equations, 
because (16)-(19) correspond to the solution of the LQ control problem 
(25). The solution to (25) is explicitly given by 

(26a) 

where 

u i ~ ) ( t ) =  - ,  , , , , , + & ) ,  --Rik (SikXik + BikPi~xia- + Bikpi~ 

PiK + Qik + P~BiKR :~ ~ B;kPi~ - S~kRi~S;~ + PikAik + A;~P~k = O, 

Pik( tf) = Qdk, 

pik q- SikRik Irik q- PikBikRik ~rik -- Pitcik - qik = O, 

p~(t f )  = q~k, 

/~k + ( 1/2) (r;.k + PikBik)R[/~(B;kP,k + r,k) 
-1 r - I  + Pi~-(-B~kRi~ BikPik -- B¢kRik rik + ci~) = O, 

Xik -- AikXiK -- Bik( R :~ I B;kp~k + RiZ lrik) + Cik , 

(26b) 

(26c) 

G(tj) = 0, (26d) 

xik(t0) = 0, (26e) 

A,k := (~/ax~)f~(x} °), u?)), Bi~ := (a/au,)f,(x? ~, u?)), 

G k : = M x ~ ( t ) ,  Q~m:=(a2/3x~)g~(x~°)(tf)) ,  O k : = M p k f ,  

Qik := [ ( 82 / Sx2)gt( x}°), ~i11(0)"1; "~ l~iir~(O)'( ~2 / ~ ~'2] ( ~ { , ~ / ~ i  IS ik~i'¢(O) , U~0))], 

,Rik :---- [(C32/8u2)gi(x~ 0), U~ 0)) (0)' 2 ~ 2 (0) + p .  (a/~u~)f,(x,  . ul°0], 

Sik := [ ( a2 / axi  aui )gi( x l  0), ldf 0)) .q- pf?)'( a2 / axi  alxi ) f  i( x l  0),/x}°))], 

--I t I t Aik := Aik -- BikRik Sik -- BikRiZ BikPi~, qik :---- Mpg, rtk := M,k. 
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3.2. Closed-Loop Perfect State Information Structure. When the infor- 
mation structure is CLPS for both the players, there exist a plethora of  
(informationally nonunique) Nash equilibrium solutions as mentioned 
before. However, by restricting the class of  admissible Nash equilibrium 
solutions to those of the feedback type (Ref. 1) or by requiring strong time 
consistency (Ref. 9), we can remove this informational nonuniqueness. A 
pair of  strategies ( ? '*sF l ,  y~sF2)  is in feedback Nash equilibrium, under 
the CLPS information structure, if there exist functions Vi: [to, tf ] X ~ n - ~ ,  
i= 1, 2, satisfying the following coupled partial differential equations 
(Ref. 1): 

-(U&) ~(t, Xl, x2) 

= min [((~/~x~) V~)'(f(x~, u~) + Ef~s(xj) ) 

+ ((~/&A vj)'(fj(xj, r2) + Efj,(x,)) 

+ gi(xi, Ui) + £:gij(Xi, ~/~(t, X))], 

V-(q, xl,  x2) =&f(x/) + Eg~(xj), i = 1, 2. (27) 

Since f ( . , .  ) and gi(., • ) were taken to be differentiable, we can write (27) 
in terms of the first-order necessary condition as 

- ( O / & )  V,.(t, x~, x2) = ((O/Ox~) Vi)'(jS(x~, yi*) + efj(xj))  

+ ((a/axj) vj)'(fj(xs, r?) + Efj,(x,)) 

+gi(xi,  r* )  + egij(xi, y*(t ,  x)), 

V,.(tf, Xl, x2) =&f(xl)  + egij(x2), i = 1, 2, (28a) 

where u*(t) = 7 *(t, x) solves 

(O/aui)fi(xi, u*)(a/axi) vi(t, xl , x2) 

+ (a/aui)&(x~, u*) = o, i=  1, 2. (28b) 

As the counterpart of  our assumption in the OL case, we will assume 
here that y*(t, x; e) and Vi(t, x~, x2 ; e), i=  1, 2, are expandable in e as 

y*(t,  x; e ) =  ~ e~y}k)(t, x), Vi(t, X; e) = ~ ekVi(lO(t, X). (29) 
k=O k = 0  

Using this, we can expand (28) in terms of e, and retaining only the E o terms 
yields 

- (O/at) Vim)(t, x i ,  x2) = (((~/Oxi) Vi(°))tfii(xi, ~/}m(t, x)) 

+ ((o/&j) v,%~(xj,  r)°~(t, x)) 

+gi(x. ~.~°~(t, x)), 
Vi~°) ( tj, x j , x2)=gif(xi), (30a) 
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where u} °) = 7/~°)(t, x) solves 

(~/~u,)f~(x,, u?~)(~/~x,) v ?  ~ 

+ (O/Oui)g~(x~, u? )) = 0, i= 1, 2. (30b) 

We first have the following useful observation. 

Lemma 3.1. (0/Oxj)V/(°)=0, iCjo 

Proof. Equation (30a)-(30b) provides a set of necessary and sufficient 
conditions for solution of the optimal control problem defined by (24), 
which is the zeroth order equivalent problem for the OL case; in addition, 
the Hamilton-Jacobi-BeUman equation in (30) is driven by the following 
state equation: 

~j=~(xj, ~.~°~(t, x)). (31) 

Since xj does not appear in the cost function (25b), and due to the assump- 
tion of strong-time consistency of the Nash equilibrium solution, the cost 
is independent of xj. But Vg)(t,x) is nothing but the cost-to-go at 
time t; hence, it should be independent of x2. In other words, 
( O/Ox) Vi ~°) =0, i ¢j. [] 

Making use of the above, we can rewrite (30) as 

-(cVat) v,(°~(t, x,,  x2)= ((a/~x~)V,%Z(x. 7 ~°~(t, x)) 

+g~(x. ~,?~(t, x)), 

Vg)(tf, x, ,  xz) =glf(x~), (32a) 

where u~ °) = y f°)(t, x) solves 

(#/#u~)f(x~, uf°))(8/Ox~) V,(°~+ (#/au~)g,(x,, u? )) = 0. (32b) 

The coefficients of E in (29) are given by 

(Uat) V('( t ,  x, ,  x2) 

= ((~/~x,) V?~)'[(~/au,)f,(x,, Z ?~(t, x))z ? ~(t. x)] 

+ ((9/Ox,) V~°))~(x~, y ~°3(t, x)) + ((O/Oxi) V,(°~)fj(xj) 

+ ((~/Oxj) v,"~)~(xj, ~)°~(t, x)) + (~/~u,)g,(x,. z ~°~(t, x)) ~'l'~(t, x) 

+go(x~, z)°~(t, x)), 

V,('( ts, x, .  x~)=g~AxA, (33) 
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and u} 1) = 7/ll)(t, x )  solves 

(~/c~ui)fi(xi, ~" l°)(t, x))(~/Oxi) V~ (l 

+ ((~/ax,)  v?~)'(a2/a.~)f(xi, r ?~(t, x))u? ~ 

+ (32/,~u~)gi(x,, r~°)(t, x))ul') = o, i =  1, 2. (34) 

Using (32b) in (33), we note that the terms containing t, ll~(t, x) drop out. 
Hence, (33) can be rewritten as 

( d/dt) Vi (~)= ( ( d/ ~xi) V~(~))'f,,(x,, y ~°)(t, x) ) + ( (O/Oxi) Vg))~j(xs) 

+ ((O/~xj) v~'~)~(xj, r~°)(t, x)) +g~(xs, r)°~(t, x)), 

VMf, x, , x2)= gur(xj). (35) 

Befi~re we provide the general expression for the kth order terms, k >__ 2, 
let us introduce some notation parallel to the one in the previous subsection. 
Let W(a, b(e)) be a function which is infinitely many times differentiable in 
b, with a being independent of e, and b(E) = ~ = o  ekb(k)" Then, the kth total 
derivative of W(a, b(e)), with respect to E, at e = 0 is given by 

(1/ k! )( dk / d~ k) W= ( O / ~b ) W( a, b(°))b (k) + R3( W, k), (36) 

k 
R3(W, k) = ~ ~ (1/j!)(dJ/db j) W(a, b~°))b ~''). •. b ~9, 

j=2  ll +""  + l j = k  
ll,.,.,lj>_ l 

(37) 

where (U/~bJ)W(a, b (°)) denotes the j th  partial derivative operator, with 
respect to b, at the point (a, b(°)). 

For k >_ 2, the e ~ terms are given by 

- (~/~t) v ]~( t ,  x~, x~) 

= ((a /ax, )  v~°~)'(a/au~)f~(x,, r f°~( t, x)) r ?~(t, x) 

+ ((~/~x,) v?))'f,(x,, r ?)(t, x)) + ((~/~x~) v?))~(x~, r)°~(t, x)) 

+ (~/Oui)gi(xi, yl°)(t, x))ylk)(t, x) + M~k(t, x), 

V]~(t~, x~, x~)= 0, (38) 

and u~ ~) = y l~)(t, x) solves 

[((~/~u~)f~(xi, r ?~(t, x))u~%](~/~x,) ~°~ 

+ (#Z/Ou~)g(x,, T ~°)(t, x))ul ~+ MC~( t, x) = 0, (39) 
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where 

M~k(t, x) = R3(f ,  k) 
k - 1  

+ E ((a/&,)Vf) '[1/(~-Z)!](d~-'/dE~-')f ,(  x,, r~°~( t, x)) 
/=t  

k--1 
+ ((a/ax3 v?-'))%j(xj) + E ((a/axj) v,%' 

/=1 

× [1/ (k-  l)!](dk-z/dE~-t)fj(xj, r}°)(t, x)) 

+ R3(gi, k) + ((a/ax;) v?-'))Z;(xj) 

+ [ 1 / ( k -  1)!](dk-l/dek-1)gu(x j, y}°)(t, x)), (40) 

M~(t, x) = R3((a/au,)f,, k)(O/ax3 V? ) 
k 

+ Z [1/(k-1)!](d~-Tde~-t)(a/au3f,(xf °), rf°~( t, x)) 
t=l 

x (a/ax~) v~ ° + R3((a/&3g, ,  k). (41) 

Using (32b) in (38), we note that the terms containing yf  drop out. Hence, 
(38) can be rewritten as 

- (e/at) v?)(t, xl, 

= ((a/axi) v,.(~))~(x,, r I°)( t, x)) 

+ ((a/ax;) v,%'f,.(x,, x)) + Mob(t, x), 

vi(k)(tf, X l ,  X2) = 0.  ( 4 2 )  

Unlike the OL case, we do not have equivalent optimal control problems 
at each iteration. As we mentioned in the proof of Lemma 3.1, the zeroth 
order equivalent problems are identical to the zeroth order equivalent prob- 
lems of the OL case. But, for k > 1, the evaluation of V, yk), i= 1, 2, corre- 
sponds to the evaluation of a cost function subject to a state equation (this 
does not involve any optimization), and the evaluation of u}~)(t) corresponds 
to the necessary condition for a static quadratic optimization problem. Iden- 
tifying these equivalent problems for the CLPS case is important in the game 
context as opposed to the single player optimal control problem. This is 
because, as mentioned earlier, in the one-player case, existence of the higher- 
order terms in the CLPS strategy can be shown using the fact that the 
optimal state trajectory is the same, irrespective of the information pattern 
(Ref. 2), whereas this property does not hold in nonzero-sum differential 
games. 
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and 

and 

For k = 1, the equivalent problems are given by 

v/ '(s ,  x~, x~) 

+ f ]  [((~/0~,) v?)(s, ~,, ~)')jSj(~j) 

+go(~J, :Y(°)( t, ~))] dt, 

~,=J;(G r l°)(t, ~)), ~i(s) = xi, 

~+ =f ,(G r)°~( t, ~)), ~j(s) = x;, 

(43a) 

(43b) 

(43c) 

min {(1/2)u;I((8/~3x3 V~°))'(OZ/Su~)f(x. )' }m(t, x)) 

+ (8Z/Ou:i)gi(xi, v (°)t t . ~ ,  , x ) ) l u ,  

+ u;(~/&,)~(x,, r ?~(t, x))(8/&O v~'}. 

For k > 2, the equivalent problems are given by 

l~ik)(s, xl ,  x~)= Mok(t, ~) dt, 

~;=f~(G r?~(t, ~)), ¢~(to)=x,, 

~.,-=£.(G r)°~( t, ~)), ~Ato) =xj, 

(44) 

(45a) 

(45b) 

(45c) 

min {(1/2)u;[((8/Sx3 ~°))'(82/Su~)f~(x. y }°)(t, x)) 
lgt~ O~mi 

+ (O2/8u~)gi(x~, y~°~(t, x))]u~+u;MC~(t, x)}, (46) 

where MC~(t, x), given by (41), depends on ~k)  Again, we have decomposed 
the original game problem into a sequence of simpler problems. We can now 
summarize the computation of the feedback Nash equilibrium using the 
above decomposition procedure as follows: 

Procedure 3.2. 

Step 1. Use (30) to calculate 7~°)(t, x) and y~°)(t, x). Set k=  1. 

Step 2. Calculate 7~)(t, x), i= 1, 2, using (34) and (35) if k=  1, or 
using (39)-(42) if k_> 2. Set k = k + 1. 

Step 3. If O(e t+ ~) accuracy is required, stop at k = l + 1. Otherwise, go 
back to Step 2 and iterate. 
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3.3. Mixed Information Structure. In this section, we study the situ- 
ation where Player 1 has open loop information, while Player 2 has closed- 
loop perfect state information (OL-CLPS case). As in the CLPS case, it is 
well known that this problem admits multiple Nash equilibria. To alleviate 
this problem and ensure informational uniqueness, we require that the Nash 
solution be robust to the presence of asymptotically diminishing noise in the 
system equation (Ref. 11). A pair of strategies {7" *, 7*} constitute a robust 
OL-CLPS Nash equilibrium if there exist costate vectors )~l(t), ~2(t), and a 
function V(t, x l ,  x2) such that the following equations are satisfied, with 
u~(t) = 7" ~(t ,  x0)" 

21 =J](xl, u*) + ef12(xl), xt(to) = xto, (47a) 

22 =J~(X2, 7"~(t, x)) + ef21(xl), xz(to) =Xzo, (47b) 

L =-(~/~x~)gi (x l ,  u * ) - ( U ~ x O S ( x l ,  u~)Zl 

- (O/au2)A(x2, 7~(t ,  x))(O/axOT,*(t ,  x))~2 - e ( d / d x 1 ) f z l ( X l ) • 2 ,  

2.1 (tj) = (d/dx~)gl/(x~ (tj)), (48a) 

~2 = -e(~/~x2)g,2(x2, ~ ~) - (~/~x2)f~(x2, 7" ~ )~  

- (a/3uz)f2(x2, ~ ~)(0/3x2))1 ~(t, x)~,2 - 6(d/dxz)f ,2(x2))q, 

A2(tf) --- e(d/dxz)g~2f(xa(tf)), (48b) 

(O/Oul)gt(xl,  u*) + (O/Oul)f~(xl, u*),~,l =0, (49) 

- ( O / O t )  V ( t ,  x l ,  x2) 

= ((~/Oxl) v) ' (~(x l ,  u~) + EY]2(x2)) 

+ ((O/gx2) V) ' ( f2(x: ,  7,*(t, x)) + efaj(xl)) 

+ g~(x2, 7,~(t, x)) + eg2~(x~ , u~), 

V( tf  , x,  , x2) =g2/(x2) + ~'g21AXl), (50) 

[(O/~u2)f2(x2, U~)]( O/aX2) V+ (a/(~u2)g2(x2, u*) = 0. (51) 

In the above expressions, unlike the case when both players have closed- 
loop information, ?, *(t, x) explicitly depends on the initial state xo, although 
we have suppressed this dependence in the notation. 

Now, as in the case of the other two information structures that we 
previously considered, we will assume that the optimal strategies are expand- 
able in an infinite series in e. Using this in (47)-(49), and comparing the e ° 
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terms yields the zeroth order solution for Player 1, which is given by 

jc(o) _ ¢ t~(o) u~O)), x~°)(to) = Xlo, (52a) t - - J t \ ~ l  , 

~(o)_ ,- ~ o ~  r (2°)(t, x(°))), x(2°)(to) = X~o, 2 - j 2 ~ 2  , (52b) 

- ( o )  
- -  (8/Su2)f~(x2 , 7 (2°)( t, X(°)))Z~ °), 

,~]°)(tf) = (d/dxl)g~f(x~°)(ty)), (53) 

~(0) = _(a/Ox2)f2(x(O), ~,, (2o)(t, x(o)))Z(0) 

- (o) 
- (~/&2)f~(x2 , 7~°)(t, (o) x ) ) ( a / ax2)7  ($)(t, x(°))z(2 °), 

Z(2°)(tfi =0, (54) 

(8/Ou,)g,(x~ °), u~ °)) + (8/Sul)J~(x~ °), u~°))~.~ °) =0. (55) 

Notice that the unique solution to (54) is )J2°)(t)~0. Using this in (53), it 
follows that the problem of computing u~°)(t) is equivalent to the following 
one-player optimal control problem: 

" ~ t O 

(0) _ r ~(o~ (56b) - j ~  , u , ) ,  x ~ ° ) ( t o )  = X ~ o .  

Comparing the coefficients of the E ° terms in (50) and (51) yields the 
following pair of equations to be satisfied by the zeroth order solution of 
Player 2: 

- (  8 / 8t) V (°) = ( ( 8 / 8xl ) V(°))'Ji ( xl , u~ °)) 

+ ((~/&~) v(°))'A(x~, r (~°)(t, x)) + g~(x~, r (2°)(t, x)), 

V(°)( tl, x~ , x2 )= g2F(xz), (57) 

(8/8u2)f2(x2, u(2°))(O/Ox2) V (°) + (8/Ouz)g2(x2, u(2 °)) = 0. (58) 

The equivalent problem for obtaining ~' (2°)(t, x) is given by 

(o)r t x ~ - 2 ~ , ~ - a r g  rain J(72(t, x)), (59a) 
y2~F2 

-~2 =f2 (x2 ,  U2), X2(tO) = X20, (59b) 

.f 'j J(u2)-=g2f(x2( l f ) )  + g2(x2,  u2) dt. (59c)  

Comparing the ~ terms in (47)-(49) yields the following equations for the 
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computation of u]l)(t) : 

2~,~ = (a/axl) f i (x~O),  ..(o),..(1) , .io),. (l) ,,1 )~l  -r ( a / a u O f i ( x ~  °), ,,1 :,1 +fi2(x~°)), 

x~l)(t0) = 0, (60) 

~ 1 ) =  -(a2/eqx2)gl(x~°), "~t(0)'* v(l)].~l -- (a2/ab/l axl)gl(xl(O), UI(0) )b/l(t) 

- [ ( a 2 / a x b A ( x ?  ~, u]°~)x~" + (a2/au ,  ax! ) f , (x~  °), .~°~)~1,];~I°) 

- ( a / a x o f l ( x ~ ° ) ,  • <0)~ , )  .1 I"~1 - (a /au2) f2 (x7) ,  7 7)(  t, x<°))) 

x (a/axl)).(2°>(t, x~°))),.(2 I) , 

2 : 2 (0) (1) )~ll)(tf)-----(a /ax l )g l f (X l  ( t f  ))X, ( t f  ), (61) 

, ~o) ~o~(t ' x~O))) (cl/clx~)Z~(x~O))z~o) ,~(21) = - (a / ax2)g t2 ( ,x2  , ~z 

- ( a / & 2 ) A ( x T ) ,  ~. ~°)(t, x~°)))z~ ~) 
(0) - ( a /a u ~ )A(x 2  , ). ~°)(t, x<°)) ) (a /ax2)7  ~°)(t, x~°~);.~ ~), 

)~2~l~(tf ) = (d /dx2)g~: (x~°) ( t f ) ) .  (62) 

I f we make use of the fact th at (g / ax ~ ) 1, ~2 °) (t, x) = 0, then the u] 1) (t) obtained 
above is identical to the first-order policy of Player 1 in the OL case. This 
is to be expected because of two reasons. One is that, in both cases, the first- 
order policy of Player 1 depends only on the zeroth order term of the open- 
loop representation of the zeroth order policy of Player 2. Secondly, the 
open-loop representations of Player 2's zeroth order policy are identical in 
both the OL case and the OL-CLPS case, since both are different representa- 
tions of the solution of  the same one-player optimal control problem. 

Now, let us study the first-order policy of Player 2. The associated 
equations are : 

- ( d / a t )  V ~'~ = ( ( a / a x 0  v ~ ) ) 7 ]  (x l ,  u~ °)) 

+ ( (O/a t )  V<°~) ' ( (a /au , ) f i ( x , ,  u]°~)ul ' )+fiz(X2))  

+ ( ( a / a x ~ ) V ~ ' ) f 2 ( x ~ ,  ~o) 7"2 it, x))  + ( ( U a x ~ )  v<°)) ' 

x ((a/au2)f2(x2, 7 (2°)(t, x)))" ~l)(t, x)  +d~t(xl))  

"4-(a/abl2)g2(x2, ~/(°)(t, x)))~l~(t ,  X)-f-g21(Xt, b/~0)), 

V~l~(tj ,, x~, x2)= g2V'(x0, (63) 
v 2 

(a-/auz)f~_(x2, 7 (20~( t, X))U(2 ! ) (a /ax2)  g ¢°) 

(o)/~ Vfl) 4- (a/au2)f2(x2, ~'2 ~I, X))(a/OX2) 
2 2 + (a /au2 )ga (x2 ,  ?. ~°~(t, x2))u~ ~) = o. (64) 
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Making use of (58) and the fact that (O/Oxl)V (°) = 0, (63) can be rewritten 
as  

- (O /&)  V m = ((O/Oxl)  V ( l ) ) ~ ( x l ,  u] °1) 

+ ((e/Ox~) V~)'f2(x2, r~°)(t, x)) 

+ ((~l~x~) v(°~)y~(xi) +g2~(x~, u~°~), 

V( ' (  tj ,, x~, x~)=g~v(x O. (65) 

The problem of computing V(~)(t, x~, x2), using (65), can be viewed as the 
computation of a cost functional subject to a state equation constraint, as 
follows: 

21 =j](x~, u~°~), xt(to) =xl0, (66a) 

22 =f2(x2, )/(2°)(t, x)), x2(to) = Xzo, (66b) 

J=g21f(xO+ [((c3/Ox2)V(°~)'f21(xl)+g21(xl, u~°))] dt. (66c) 
to 

Notice that this is not the same as the first-order equivalent problem in 
the CLPS case, because the zeroth order strategy for Player 1 depends on 
OL information here, which makes the state equation for the equivalent 
problem different from the CLPS case. The computation of 7 (21)( t, x), from 
(65), is equivalent to the following static problem: 

min{uz[(O2/guZ)gz(x2, 7(2°~(t, x)) + ((~/Ox2) V(°))'(O2/~uZ)fz(x2,7~°~(t, x))]u2 
u2 

+ ((~?/Ox2) V°))'(O/~?u2)f:(xz, 7 (2°~( t, x))u2}. (67) 

The higher-order terms in the expansion of the optimal strategies can 
be obtained in a similar fashion, but the expressions are very lengthy, and 
hence, will not be provided here. We note, however, that the computation 
of these higher-order terms for Player 1 can equivalently be viewed as the 
solution of an LQ optimization problem; for Player 2, it is equivalent to the 
evaluation of a cost functional subject to a state equation, together with a 
static optimization problem. 

3.4. Policy Iteration. In this section, we show that the asymptotic 
expansion of the Nash equilibrium strategies can be interpreted as a policy 
iteration algorithm. Let us first consider a policy iteration of the Cournot 
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type (Ref. 1) : 

~/1~k+ 1) = arg min Jl(T1, ~'2~k~), (68a) 
y1EF! 

Y2(k+ 1) = a rg  m i n  J2(~/l(k), ~'2), (68b) 
Y2~Fz 

where k=0 ,  1 . . . .  , )'~{0}eFl, g2(0)eF2 are specified, and F, is chosen to be 
compatible with the given information pattern. In what follows, we show 
that, after k-steps of the Cournot iteration, the strategies 71{~) and 
Y2(k) are 0(~ 1") close to the Nash equilibrium strategies under all three infor- 
mation patterns. 

To show this, let us first consider the OL case. Clearly, the pair 
(ul{m(t), u2<o)(t)) is O(e °) close to the Nash equilibrium solution pair 
(u~(t), u~(t)). Now, we shall proceed by induction. Assume that the pair 
(u~(k)(t), u2(k)(t)) is O(e k) close to the Nash equilibrium solution, i.e., 

k - I  
bli(k)(t) = 2 eJblSJ)(l) + o(6k), i = 1, 2.  (69) 

j=0 

To obtain uuk+ l)(0, using the Cournot iteration, we fix u2(t)= uz(~)(t), and 
minimize J~(ul(t), u2(t)) with respect to u1(t). The necessary conditions for 
this minimization are given by (4), (6), (8), with i= 1 and u~(t) replaced by 
U2(e~(t). The (k+ t)th order term in the expansion of Ul(k+l)(t) is given by 
(16)-(19), where k is replaced by k+  1. Upon examination of (16)-(19), it 
is clear that the (k+ 1)th order term of ul{k+l}(t) depends on u~zJ}(t), j < k ,  
and does not depend on u~j)(t), j >  k. Therefore, from the induction hypoth- 
esis whereby 

u2~(t) = u~ (t) + O(e ~), 

we have that 

ulna+ j~( t) = u*( t) + O( e k + '). 

Similarly, one can show that 

uak+ ~(t) = u~( t) + O( e k+ 1). 

A similar argument shows that 

r,~k~ = r~* + O(ek), 

even under the CLPS or OL-CLPS information patterns, where the DM's 
use dynamic information, because the asymptotic expansions in the previous 
two sections were conducted in the policy space (and not on the open-loop 
representations of the policies). 

Now, we can state the following theorem. 
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Theorem 3.1. Suppose that the Nash equilibrium strategies, under OL, 
CLPS, or OL-CLPS information, are expandable as a power series in e. 
Then, after k steps of the Cournot iteration, 

Yi(k) = 7" + O(ek), i= 1, 2. 

Proof. See the discussion before the theorem. [] 

Suppose that, instead of the Cournot iteration, we use the Gauss-Seidel 
iteration (Ref. 1), given by 

71(~+ 1) = arg rain J1 (7~, 72(~)), (70a) 
?'l~Fz 

Ya(~+ ~) = arg min J2(YJ(k+ l), 72), (70b) 
72~F2 

where k=0,  1 , . . . ,  72~o)~F2 is specified. Then, we have the following 
theorem. 

Theorem 3.2. Suppose that the Nash equilibrium strategies, under OL, 
CLPS, or OL-CLPS information, are expandable as a power series in E. 
Denoting the strategies generically by (7 f,  Y*), we have after k steps of the 
Gauss-Seidel iteration, 

7~(k) = 7 * + O(e 2~-~), 7~(~) = 7" + O(e 2k). 

Proof. The proof is similar to that of Theorem 3.1, with a minor 
modification. When k = l ,  since 71~l)=y*+O(e), Player 2's strategy is 
72o) = 7 ~ + O(e 2). Now, by induction, one can obtain the desired result. [] 

The conclusions of Theorems 3.1 and 3.2 are important, because they 
establish the strategic stability of the asymptotic solution. As we mentioned 
at the beginning of Section 2, these results can readily be extended to the 
multiple-player case. There is one caveat, however, in the case of Theorem 
3.2. When there are more than two players, it should be noted that only the 
player acting last, at each step of the Gauss-Seidel iteration, obtains an 
O(e k+l) approximation to the actual solution, while the rest of the players 
obtain an O(e ~) approximation to the actual solution. In other words, in 
the multiplayer (more than two players) case, the Gauss-Seidel iteration 
does not perform better than the Cournot iteration. 

4. Existence, Uniqueness, and Convergence of the Solution 

In this previous section, we showed that, under the assumption of 
asymptotic expandability of the Nash equilibrium solution, the original 
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problem can be decomposed into a sequence of simpler, equivalent problems 
under all three information structures. In this section, we prove that the 
solution to each of these equivalent problems exists, and is unique. Further, 
we will show that the pair of strategies { 7 *~, ?'*k}, where 

k 
~'i e ,  i=1,2 ,  k = l , 2  . . . . .  

1=o 

are in an O(e 2~ + 2) Nash equilibrium. 
We first make precise the notion of an O(E ")Nash equilibrium. 

Definition 4.1. A pair of strategies {~' ~, ?'~} constitutes an O(e ") Nash 
equilibrium if the3, satisfy the following pair of inequalities for all yieFi, 
i=1 ,2 :  

J , ( r * ,  r*)  <-J,(r,, ~'~) + O(E"), 

J:(7*,  )'*) <J:(7 ~, 7:) + o(E"). 

The above definition reflects the fact that, for small values of e, neither 
player has a significant incentive to deviate from the O(E ") equilibrium 
solution. 

4.1. Open-Loop Information Structure. Before stating the main theo- 
rem of this subsection, we introduce the following conditions: 

(At) The zeroth order optimal control problems (24) admit unique 
continuous solutions. 

Precise conditions for this can be found in texts on optimal control; 
see, e.g., Ref. 2. 

(A2) The following inequalities hold: 

Hxx - g x . g ~  ~H~ >_ O, (82/Sx2)gi(x(tf )) >_ O, H, ,  > O, 

where 

Hu.:=(82/au~)g~(xl, ui) (o~' ~2 2 +p~ (o/au,)f,(xi,  u,), 

H~:=  (a'-/ax~)g~(x,, u~) +p?)'(a2/ax~)~(x,, u,), 

H.x:= (a2/au~ ax~)gi(x~, u~) +py(a2/aui  8x~)f,(x~, u~), 

Hxu := (a'-/~x, au,)g,(xi, u,) +p~?~'(~2/ax, C~u~)f(x~, u,). 

Theorem 4.1. Under Assumptions (A1)-(A2), there exists a unique 
solution to the kth order equivalent problem (25), k = 1, 2 . . . . .  Further, if 
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Procedure 3.1 leads to the series 
k 

u*(t)= Z etul')(t)' 
l = 0  

then the open-loop policies {u*k(t), u*k(t)} are in an O(e 2~+z) equilibrium. 

Proof. For k > 1, by Assumption (A2), the cost for the equivalent 
problem, given by (25b), is convex in (xi, ui) and is strictly convex in ui. 
Hence, being linear-quadratic, the optimal control problem defined by (25) 
admits a unique continuous solution, provided that Mpk(t) and Muk(t) are 
bounded and continuous for every k. To show the latter, note that x}°)(t), 
p}°)(t), u~°~(t), i = 1, 2, are continuous. Now, let us assume that x~(t) ,  
p}°(t), u}l)(t), i= 1, 2, are all continuous for l<_k- 1. Then, being polynomial 
functions of xl°(t), p}l~(t), u}l)(t), i= 1, 2, clearly M,k(t) and Mpk(t) are also 
continuous and thereby bounded in the closed interval [to, ty ]. This estab- 
lishes the existence and uniqueness of the solutions to the decomposed prob- 
lems. To prove the remaining part of the theorem, we consider the following 
optimization problems: 

inf Jl(Ul, U2k), inf J2(ut~, u2), 
Ul U2 

and simply note that the following relationships follow from Ref. 2, Chapter 
3, Theorem 2.1" 

Jl(u*k, U~k) = inf J~(ui, u~k) + O(e 2~ + 2), 
Ul 

J2(U~k, U~k) = inf J2(U*k, u2) + O ( ~ : 2 k + 2 ) .  [ ]  

u2 

We now specialize the above result to the class of linear-quadratic (LQ) 
differential games. Consider the following system equation and cost function 
Ji, for Player i, i= 1, 2: 

21 = Alxl + eAlzx2 + Blul , (71a) 

22 = A2x2 + eA21xl + B2u2, (71b) 

Ji(ui, u i) = (1/2)x'(tf )Q~fx(tf ) 

+ (1/2) (x'Q'x+u'Riu) dt, (71c) 
0 

where 

x:=(xl x'" , 22 , 

R' :=block diag{R It, eR~2}, 
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Q}:=block diag{Q~f, eQ~2f} >_0, 

Q~ :=block diag{Qll, EQ~2} >0, 

Q}:=block diag{eQ~lf, Q~2f} >_0, 

Q2:=block diag{eQ~, Q~2} >0, 

R2:=block diag{ER~,, R~2}. 

Further, assume that R i~ > 0, i-- 1, 2. 
Now, assume that there exists a unique solution set F(t; e), i= 1, 2, to 

the coupled matrix Riccati differential equations 

p~ + p~A + AP~ + Q~-p~ 2 BS(R~fl-'BJ'Ps=O, 
j= 1,2 

P guy ) = Q'f, (72) 

where 

A= I A~ eA12] Bt=  B2 A ' [B~, 0l', =[0, B;]'. (73) 
LffA21 2 J 

Then, from Ref. 1, the LQ differential game admits a unique Nash equilib- 
rium solution given by 

u*(t) = -[(RIM))-IBr(t)P~(t; e)]x*(t), i =  1, 2, (74a) 

x*( t) = O( t, to)X( to), (74b) 

(d/dt)O(t, to) 

=(A( t ) -  ~ B~(t)(R~i(t))-lB~'(t)U(t; e)x*(t)) O(t' t,2 

~(to, to) = L (74c) 

Suppose that P~, i= 1, 2, admits an expansion in terms of e as 

Pi(t; e) = ~ e~P~l)(t); 
/=0 

then, 

Pl<°)(t)=IPlo]°) 00], P2(°)(t)=I00 pZ;)(t)], (75a) 

~;,~!o) 4- ,~ ,p((o) 4- p~.C°),4 . -  p'..~°)R '(R (.~ - 1Biped°) + Q,-O,i - 

P~°)(tf ) = Q~¢. (75b) 
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Note that the above equation is the Riccati equation associated with the 
control problem obtained by setting e = 0. For k > 1, we have 

/5 x~) + p i(k) A (0) + A (0;p ;(k) + A (1)'p i(k- 1) + p ~(~- 1)A (1) 

_~ Q,k,__ ~ El(l, E BJ(J~JJ) -1Bj'Pi`k-'l,=O, 
l - -0 j = H 2  

pi(k)( t s ) = Q}(k), (76) 

where 

A ~°)= diag{Al, A 2 } ,  e A ( I ) = A - A  (°~, 

Q)(°)- diag{Q 1 -  nf, 0}, QY°) = diag{0, Q~2y}, 

eQ}.(')=Q~f-Qis(°) , Q}(k'=0, k_>2, i=1,2 .  

Note that the higher-order terms given by (76) are linear equations, 
whereas the higher-order terms obtained using Procedure 3.1, specifically 
(26b), are Riccati equations. This apparent discrepancy can be explained by 
the fact that, in obtaining (76), we modified Procedure 3.1 whereby the 
control values of the DM's and the associated costate vectors were expanded 
in powers of e, but the state vector was not. This modification is convenient 
in the case of LQ games as it leads to linear differential equations instead of 
Riccati equations. Now, we state the following theorem for the LQ differen- 
tial game. 

Theorem 4.2. There exists an e0 > 0 such that the coupled set of Riccati 
equations (72) admits a unique solution for all es[-e0, eo], and this solution 
is infinitely many times continuously differentiable in e, at e = 0. Further, the 
pair of OL strategies {ul~(t), uzk(t)}, where uik(t) is given by (74a), with 
U(t;  e) replaced by Y~=o etPi(°(t),  provides an 0(e  2k+2) OL Nash equilib- 
rium for the LQ differential game described by (71). 

Proof. The first part of the theorem follows directly by applying the 
implicit function theorem stated in the Appendix to (72), and the rest follows 
from Theorem 4.1. [] 

4.2. Closed-Loop Perfect State Information Structure. In this subsec- 
tion, we obtain the counterparts of Theorems 4.1 and 4.2 for the CLPS 
information structure. We again assume the validity of (A1) and (A2) stated 
in the previous subsection. Now we state the following theorem which is the 
counterpart of Theorem 4.1. 

Theorem 4.3. Suppose that the strongly time consistent (feedback) 
Nash equilibrium solution y*(t,x),  i=1,2 ,  is expandable in e as 
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~. ( / ) ,  ~1~o Yll)(t,x)el+O(e~+~) • Then, ~i it, x), i=1, 2, O<_l<_k, are unique, 
under Assumptions (A1)-(A2), provided that the zeroth order strategies 
y I°)( • , • ), i = 1, 2, have continuous first partial derivatives. Further, the pair 
of strategies { 7 *k(t, x), 7*~(t, x) }, where 

k 
r~(t, x)= Z r~'~( t, x)E', 

/=0 

is in an O(E 2k+2) Nash equilibrium. 

Proof. From (A1), we have that the zeroth order problem (which is 
the same as in the OL case, except that the class of permissible strategies have 
CLPS information) admits a unique solution. Further, by the hypothesis of 
the theorem, 7/~°)(t, x) and V}°)(t, x) have continuous first and second partial 
derivatives. Suppose that y~1)(t, x) and V}°(t, x) have continuous first and 
second partial derivatives, for l<m. Then, the equivalent problem defined 
by (45) corresponds to the partial differential equation (38), since Mok(t, x) 
admits continuous first partials in x and t. But clearly the evaluation of the 
cost subject to a state equation yields a unique function, which completes 
the uniqueness part of the theorem. To prove the remaining part of the 
theorem, we introduce the following optimization problems: 

inf Jl(Tl(t, x), T*~(t, x)), inf J2(T*k(t, x), 72(t, x)). 
71EFI ~,2er2 

Then, we simply note, from Ref. 2, Chapter 3, Theorem 5.1, the order 
relationships 

Jl()'~k(t, x), T~'k(t, x)) = inf Jl(~',(t, x), T~k(t, x))+ O(e2k+2), 
)tl ~FI 

Ja(T*k(t, x), 7~k(t, x))= inf Ja(T*~(t, x), 72(t, x)) + O(eZk+2), 
y2~F2 

which completes the proof. [] 

A a pecial case, let us consider the LQ differential game defined by 
(71). "h,,.a, from Ref. 1, we know that, if there exists a solution to the 
coupled matrix Riccati equations 

z~i+Z~P+P'Zt+ e y~ ZJBJ(RS.)-'Rjj(R~)) - ' B f z j +  Q*=0, 
j=  1,2 

Z~(tf ) = Q/r, (77) 

where 

F(t):=A(t)-  y. BJ(RJj)-'BJ'Z j, (78) 
j=  1,2 



162 JOTA: VOL. 71, NO. 1, OCTOBER 1991 

then under the CLPS information pattern there exists a Nash equilibrium 
solution in feedback strategies given by 

?'*(t, x) = -(R~i)-lB~(t)'Z~(t)x(t), i = 1, 2. (79) 

Procedure 3.2 for computing approximate solutions now reduces to 
computing approximate solutions to the coupled Riccati equations (78). 
Suppose that 

k 

zi( t )  = ~ zi(t)(t)et + O(ek+ 1). 
l = 0  

Then, we have the following equations for computing Z~(k)(t), k > 0: 
For k = 0, 

Z'<°)(t)=[Zlol°) 00], Z2~°)(t)=[00 Z~0~0)], (80a) 

ff~i[ °) 4- A ' 7  iC°) 4- 7 ! ! ° ) A . - -  7 ' J , ° ) R ( R ! A -  1tl ' 7  i(°) 4- i _ 
- - ' ~  i ~ i i  - -  ~ n  1 ~ z  ~ l t  ~ t ~ , J ~ u .  , ~ i ~ i i  - -  Q U - -  O, 

- Q ~ l ,  (80b) 

for k_>l, 

z '(*~ + z"~)P(°~ + p~o), z , ~  + ~E' z i(,~p(,-,~ + ~ i  p(~ _,~,z i ( l )  

/ = 0  / = 0  

k - I  

+ E E ZJ(')BJ(R~)-IRjj(R~i) - ,Bj 'Zj(k- ' - I )+ Q i(~)=O, 
t ~ : 0  j = l , 2  

zi~k)(tf) = 0. (81) 

The above set of equations was first obtained in Ref. 8, but we have 
derived it here directly by using Procedure 3.2 without the need for the 
solution of the perturbed problem. To show this, note that, for k = 1 and 
i= 1, (34) is given by 

- (  8/8t) V]')( t, xl , x2) = x lZ  l~°)A 12x2 + x'2Q~zx2 
t 2(0)  1 -- 1 t 2(0)  t +x2Z22 8~(R22) 82z2~ x2+((UexOV) (A,- 8,8~Zl~°))x~ 

+ ((8/8x2) V)'(A2- B2B'2Z~(2°))x2, 

V]l)( tf, xl , x2) = x~Q ~2Fx2. (82) 

Assuming that V]~)(t, x~, xz)=x 'Z~)x ,  one can verify, by substituting this 
form in (82), that Z]t)(t) indeed satisfies (81). 

Now, we state the counterpart of Theorem 4.2 for the CLPS case. 

Theorem 4.4. There exists an E0 > 0 such that the set of coupled Riccati 
equations (77) admits a unique solution for all ~ e[-Co, Eo], and this solution 
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is infinitely many times continuously differentiable in e, at e = 0. Further, the 
pair of feedback strategies {y~k(t, x), y2~(t, x)}, where y~k(t, x) is given by 

= O ( e  2k+2) (79), with zi(t) replaced by ~ o EIZ~(l)(t) , is in an equilibrium. 

Proof. The first part of  the theorem follows directly by applying to 
(77) the implicit function theorem given in the Appendix; the rest follows 
from Theorem 4.1. [] 

4.3. Mixed Information Structure. We first state the following counter- 
part of Theorems 4.1 and 4.3 for the OL-CLPS information structure. 

Theorem 4.5. Suppose that the robust Nash equilibrium policies 
y f(t) and 7*(t, x) are expandable in e as 

k k 
~, 7~')(t)e'+O(e ~+1) and Y. 7~l)(t,x)el+O(ek+l), 

l = 0  /=0  

respectively. Then, y !t)(. ), i = 1, 2, 0_< l<_ k, are unique under Assumptions 
(A1)-(A3). Further, the pair of strategies {y*~(t), y~k(t, x)}, where 

k 

t=0  

provides an O(e 2~ + 2) Nash equilibrium. 

Proof. It is similar to the proofs of Theorems 4.1 and 4.3. [] 

Theorem 4.6. There exists an e0 > 0 such that the LQ problem admits 
a unique, robust OL-CLPS equilibrium solution for all e e [-e0,  e0], and this 
solution is infinitely many times continuously differentiable in e, at e = 0. 

Proof. From Ref. 11, there exists a unique, robust Nash equilibrium 
solution to the LQ OL-CLPS problem if and only if there exists a unique 
solution to a certain class of linear differential equations with mixed bound- 
ary conditions. Applying the theorem of Appendix (see Remark 6.2) to this 
set of differential equations yields the desired result. [] 

We will not give the general expressions for 7/}k)(. ) for the LQ case as 
they are complicated. But it should be noted that y ]°)(t), y ILk(t) are the same 
as in the OL case, 7~2°)(t,x) is the same as in the CLPS case, whereas 
y~l)(t, x) is of the form Dx+d, which is an affine function of x unlike the 
CLPS case. 

4.4. Comparison of OL, CLPS, and OL-CLPS Nash Equilibrium 
Solutions. In the case of intrinsic nonzero-sum two-person differential 
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games, it is well known (Ref. 1) that the state trajectories generated by a 
pair of strategies that are in Nash equilibrium are generally different depend- 
ing on whether the problem has an OL information structure or a CLPS 
information structure. This is definitely also true in the weakly coupled 
nonlinear differential game problem considered in this paper. Our objective 
in this subsection is to establish this directly. Toward this goal, what we will 
show is that, if the players use O(e k+ 1) approximate Nash strategies, i.e., 

k 
7 i= ~ 7}l~E t, k > 0 ,  i = 1, 2, 

t=0 

then only the zeroth order trajectories are identical under the OL and CLPS 
information structures, and the higher-order state trajectories are generally 
different. We will verify this explicitly for k = 1 ; for the case k > 1, the argu- 
ment is very similar. 

As we indicated earlier, the zeroth order problems are the same under 
both information structures. Hence, from optimal control theory, we know 
that 

pl°~( t) = ( ~ / ~xi) v~°~( t, Xl , x2), 

and the zeroth order state trajectory x C°) is the same under the two infor- 
mation structures and is given by (10). The first-order trajectory xll)(t),  i= 
1, 2, in the case of the OL information structure is given by (11). Substituting 
for u}~)(t) in the equation for x}~(t)  yields 

~ ' ~ =  [(~/~x,)J~(x~ °~, u~ °~) 
- ( a /au3 f ( x~  °~, u~°~)(IL, , ) - ' (a2/ax,u3g(x~% u}°~)]x~ ' 

_ (O/~?xi)f(x~O), (o) , (0) . (o),_(0)± e t..(o), ui ) (O/ax i ) f  (x~ , . i  jy~i -rjot~.j j ,  

x ~ ( t j )  = 0. (83) 

Since the first-order solution corresponds to an LQ control problem, we 
have that 

pii( t) = Sii( t)x}')( t) + s,i( t), 

where Stj(t) satisfies a Riccati equation. Using this in (83), we have 

~I' ~ = [(O/~x~)f~(x~ °~, ~o~) 

-(~/~u,)f,(x~ °~, ~ I ° ~ ) ( H . . ) - ' ( ~ / ~ x , u , ) g ( x l  °~, u~ °)) 

- ( g / a x i ) f ( x f  °), u~°))(a/ax,)f'(x~ °), ul°))Sii(t)lx~ ') 

- (c~/ax,)f(xl °), u~°))(O/c3x,)f'(xl °), uf°))s,M) +fj(x~°)), 

x~)(ti) = O. (84) 
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Now, let us look at the state equation for xM), when the CLPS Nash 
equilibrium strategy is used: 

.~,=Z(x,, y*(t, x)) + eZ~(x~). (85) 

Expanding the above equation in terms of e, and retaining only the first- 
order terms yields, 

2~ 1 ) = [(8/8xi)f(x~ °), ?" }°)(t, x~°))) + (8/Sui)f(x~ °), • }°)(t, x~°))) l 

× [(a/ax,)~, ?~(t, x?~)]x~" + r~'~(t, x?~), 

xlJ)(tf)=O, (86) 

where we have assumed that the zeroth order solution has continuous first 
partial derivatives. Clearly, (84) and (86) need not yield the same solution 
for xl~)(t). This is more obvious, if we look at (76) and (81), for k=  1, which 
are the first-order gain matrices in the LQ case for the OL and the CLPS 
information patterns, respectively. The matrix R~i appears only in (81); 
hence, by changing Rjj, we can make Zm)(t)  different from Pm)(t). Also, 
both the OL and CLPS trajectories are different from the trajectory obtained 
in the OL-CLPS case, because as we noted at the end of the last section, the 
first-order strategy for Player 2 (the one using CLPS information) is an 
affine function of the state, unlike the case when both players use the same 
information. This is in contrast with the result in regularly perturbed optimal 
control problems (Ref. 2), where the state trajectories are identical, to all 
orders of E, regardless of whether the solution is derived using Pontryagin's 
minimum principle or dynamic programming. 

5. Conclusions 

In this paper ~v, have studied a class of nonzero-sum, nonlinear, two- 
person differential nes where the players are weakly coupled through the 
state equation and their performance indices. We have obtained conditions 
under which unique O(e 2k+2) Nash equilibrium strategies exist, under the 
following information structures and with the further refinement of strong 
time consistency and/or robustness: both players use either open-loop or 
closed-loop information; or one player uses open-loop information and the 
other player uses closed-loop information. Further, we have developed an 
iterative procedure to obtain the Nash equilibrium. It should be noted that 
the iterative procedure can be interpreted as a policy iteration scheme in the 
following manner. If one player uses a policy that is O(~ k) close to his Nash 
equilibrium policy, then the other player's response is O(e k+l) close to his 
Nash equilibrium policy. This result is intuitive if we note that, to obtain 
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an O(e ~+ 1) approximation to the Nash equilibrium solution of one player, 
we need only terms up to the kth order in the e expansion of the policy of 
the other player. 

We have also established certain similarities and differences between the 
weakly coupled game problem and the regularly perturbed single decision 
maker optimal control problem. We have shown that, under all three infor- 
mation structures, the equivalent problems associated with each stage of the 
iteration are similar. However, while in the optimal control problem the 
state trajectory is the same irrespective of whether a feedback policy or open- 
loop policy is used (Ref. 2), in the genuine game case only the zeroth order 
trajectories are the same, and all the higher-order trajectories are different 
for different types of information structures. 

As mentioned in Section 2, there are no conceptual difficulties in extend- 
ing the results of this paper to obtain O(6 2~+2) Nash strategies when there 
are more than two players. Again, we expect the zeroth term in the expansion 
of the Nash equilibrium solution to be the solution of the zeroth order 
problems and the higher-order terms to be interpreted as the solutions to 
simpler optimal control problems and/or the solutions to static optimization 
problems. Further, a policy-iteration interpretation of these solutions is also 
possible as mentioned in Section 3.4. Direct extensions to zero-sum games 
also seem to be possible, where in fact stronger results could be obtained. It 
is well known (Ref. l) that, in zero-sum differential games, the optimal state 
trajectory is the same irrespective of the type of information pattern (even 
though the existence of a saddle point will depend on the particular infor- 
mation structure used). Hence, it would be an interesting exercise to connect 
our approach in this paper with the results of Ref. 2 for the optimal control 
problem, in the context of zero-sum differential games with weakly coupled 
players. Another area for future work in this direction would be the study 
of stochastic games with weakly coupled decision makers. Some results have 
been reported in this context in Ref. 6, when the available information is 
common to both players. 

6. Appendix: Implicit Function Theorem for Ordinary Differential 
Equations 

The theorems stated below deal with the existence and other properties 
of solutions to the following perturbed differential equation (Ref. 7) : 

(d/dt)y =f(y, t, e), y(0, e)=y0.  (87) 

Theorem 6.1. Suppose that, in the domain G={O<t<T, ]y[<b,  
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t el_< #}, the function f ( y ,  t, E) is continuous with respect to the set of its 
variables and satisfies the Lipschitz condition 

If(Y~ , t, e ) - f ( y 2 ,  t, e)I _<N[y~-y21, 
where N is the same constant for all e on the segment I e I -< d. Suppose that 
the solution to the scalar differential equation 

(d/dt)~]=f( 9, t, 0), p(0) =y0, 

exists, is unique on [0, T], and belongs to D =  {0_<t_< T, ]y] <b}. Then, for 
sufficiently small e, the solution y(t ,  E) of (87) also exists and is unique on 
[0, T]; it belongs to D, and we have the following limit uniformly with 
respect to t: 

tim y(t ,  e) =~(t).  
E ~ O  

Further, if f (y, t, e) possesses continuous and uniformly bounded partial 
derivatives with respect to y and e to the order k + 1 inclusive, in the domain 
G, then the solution y(t ,  e) to (87) has the following asymptotic representa- 
tion in the interval [0, T]: 

y(t ,  e) =9(t)  + e(8/Se)y( t ,  O) 

+. • • + ( e ~/k!)(Ok/c~6 k)y(t, O) + ek+ ~( t, ¢), 

wheree k + i(t, e) = O(e k+ ~). 

Remark 6.1. Theorem 6.1 remains essentially intact even i fy  is a vector 
and/or  the initial condition is also perturbed, i.e., y(0, e )=y0 + w(E), where 
w(e) is O(e). 

Remark 6.2. Suppose that y is a vector, some of the components of y 
are specified at time t = 0, and the rest of the components are specified at 
time t = T. Again, the results of Theorem 6.1 are valid, because of the follow- 
ing reason. Assume that there exists a unique solution to the differential 
equation with e = 0. Then, there exists a unique initial condition Y0 that leads 
to satisfaction of the final condition, when E = 0. Now, as in Remark 6. i, by 
assuming an initial condition of  the form y(to)=y0 + w(e), we have a unique 
solution to the differential equation. Hence, we can choose a function w(- ) 
to lead to satisfaction of the final condition. 
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