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Image Space Approach to Penalty Methods 

M. PAPPALARDO ! 

Communicated by F. Giannessi 

Abstract. In this paper, we introduce a unified framework for the study 
of penalty concepts by means of the separation functions in the image 
space (see Ref. 1). Moreover, we establish new results concerning a 
correspondence between the solutions of the constrained problem and 
the limit points of the unconstrained minima. Finally, we analyze some 
known classes of penalty functions and some known classical results 
about penalization, and we show that they can be derived from our 
results directly. 
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1. Introduction 

Recently, a general approach to optimization problems and related 
questions has been proposed (see Ref. 1) by means of  the image problem 
and the image-space concept. The purpose of  this paper  is to investigate 
an important  part of  optimization theory, that of  penalty methods, by 
following the above-mentioned proposed general scheme, in order to estab- 
lish more general penalty relationships. 

The classical penalty method for a constrained extremum problem, 
with 4) : X C ~" -> ~ and g : IR ~ --> ~ "  as objective and constraint functions, 
respectively, leads us to study an unconstrained problem having ~b + or(g; o2) 
as the objective functions, with a suitable or: R,n x fI  x N" and a suitable set 
f~ of  parameters.  In our  scheme, the unconstrained problems will have 
w (~b, g; w ) as an objective function, with a suitable choice of  w : ~ x ~ m x f~ -> 
N ' ,  which will be called separation function. 

Such an approach is clearly more general, and thus it permits us to 
achieve results of  different types with respect to the classical ones. After 
the preliminaries and the definitions, in Sections 3 and 4 we shall study 
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some relationships between the optima of  unconstrained problems and the 
optimum of  the constrained one. In Section 5, after having specified the 
family of  functions w, we shall then establish a result concerning minima 
convergence of  the unconstrained problems to the minimum of  the given 
problem, which is a generalization of a well-known Courant theorem (see 
Ref. 2). In Section 6, we show that many classical results are a direct 
consequence of  our results. 

2. Preliminaries and Definitions 

Let us suppose that we have the following problem2: 

min ~b(x), s.t. xrR&{xcX:g(x)>-O},  (1) 

where X CR" is an open set, f : X ~ ,  f c  C°(X), and g : ~ " - ~ R ' ,  g~  
c°(R"). 

The following definition will be useful. 

Definition 2.1. A function w : R ~ + " ~ R  is called a weak separation 
function iff 

{(u, v ) ~ x R " :  w(u, v)> 0}_~ ~ { ( u ,  v)~R xR':  u>0,v->0}; 

it is called a strong separation function iff 

{(u, v ) ~  xR": w(u, v)>0}c_ ~. 

Some relationships between separation functions (weak and strong) 
and penalty methods (exterior and interior) have recently been studied (see 
Ref. 1). Furthermore, given Y~ R, let us define f ( x )  = f f ( ~ ) -  ~b(x), and let 
us consider a family of  separation functions w(u, v; to), which depends on 
the parameter to c ~.  

The penalized problems will be the following ones: 

~(w) & sup w(f(x), g(x), to). (2) 
x E X  

We will study lim supo,_,+~ a (w)  and lira info,~+~ a(to) in order to investi- 
gate the optimality of  if; this will be done for both weak and strong separation 
functions in Sections 3 and 4, respectively. In Section 5, we will study the 
limit points of  x(w) which are the optima of  (2), when they exist. 

2 If x e R ~, x ~ 0 means that x~ > 0 for every i = 1,..., n. 
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Finally, we want to observe that the following four examples of classic 
penalty functions (see Refs. 3-5) are included in the scheme of weak and 
strong separation functions when we consider w(u, v; to) = u - 7r(v; to): 

I O, if v>-0, 

(i) r e = l ,  r r ( v ; w ) =  tov /c(v+c) ,  i f - c < v < 0 ,  
(+co ,  if v <-- -c ,  

where the constraint of problem (1) is g ( x ) > - - c ~ - ;  

(ii) r e = l ,  7r(v; ¢o) = { 0' 
if v->0, 

exp(- tov)  - 1, if v -- 0; 

(iii) m = 1, ~r(v; w) = o)q~(v), where 

0, if v->0, 
q~(v) = - 0 ,  if v < 0 ;  

(iv) r e = l ,  7r(v;to) ~to/v, if v > 0 ,  

= I.+~, if v--<0. 

3. Exterior Penalty Method 

We will suppose in this section that ~ C_ ~, that the family w(u, v; w) 
is a weak separation function, and that w(0,0; w ) = 0 ,  Vw ~fL This last 
condition is really natural. It can be imposed without loss of generality, 
because it is possible to satisfy it by means of  a translation and, moreover, 
it is verified by all the concrete examples of  penalty functions existing in 
the current literature. Furthermore, we suppose that w(u ,v ; to )~  
C°(R x W" x fD. The following lemma holds. 

Lemma 3.1. a(to)->O, Vto ~ .  

Proofl Due to the fact that 

a(to) _> w(f (2) ;  g(X); w) = w(O, g(~); to) >__ O, 

we obtain the desired thesis by observing that 

lev>o w(u, v; to) a___ {(u, v) x Rl+m: w(u, v; ~)  > O} D 

and that w is continuous. [] 

We call W1 the class of  functions w(u, v; to) satisfying the following 
property: 

{(u, v) ~ ~l+m: lira sup w(u, v; o~) = 0} c~ ~ =  Q; (3) 
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and we call W2 the class of  functions w(u, v; to) satisfying the following 
property:  

{(u, v) c ~ + " :  lim inf w(u, v; to) = O} n YC = Q. (4) 
c o ~  q - c o  

We can now prove the following theorem. 

Theorem 3.1. Let us suppose that the functions w(u, v; to) belong to 
the class W~ and ~q= ~+. Then, lim sup,o_~+~ c~(to) = 0  implies that ~ is the 
minimum point o f  (1). 

Proof. Let us suppose,  ab absurdo, that ~ is not optimal. Then, there 
exists Y ~ X such that, having defined t7 = ~b(ff) - ~b(Y) = f (Y)  and ~ = g(Y), 
we have (if, zT) 6 YC. I f  this were true, we should find that a (w)  -> w(ff, zT; to) > 
0, Vto 6 R, because of  the definitions of  a (to) and weak separation function; 
consequently, 

lim sup a(to)  ~ lim sup w(ff; ~; to) > 0, 
to --~ + o 0  t o ~ q - o o  

where the last inequality follows from assumption (3). [] 

With only formal changes, the above p roof  can be used to prove the 
following theorem. 

Theorem 3.2. Let us suppose that the function w(u, v; to) belongs to 
the class W2 and that 12 = R ÷. Then, lim inf,~_,+~ of(to) = 0 implies that ~ is 
the minimum point o f  (1). 

Example 3.1. We now show that Theorem 3.1 is not true if condition 
(3) does not hold. Let us suppose that ~ (x )  = lxl ,  g(x) -- 0, x = ~ ,  ~ = 1, and 

w(u,v;to) ~tou+v, if u < 0 ,  
=L(u/to)+v, if u - 0 .  

Remark 3.1. It is clear that the assumption f~ = •+ can be changed 
with another  that ensures us that +oo is an accumulat ion point of  fL 

Remark 3.2. We want to observe that W2 D W~ and that the classical 
penalty families in the literature are in W~. 

Remark 3.3. A family of  weak separation functions for problem (1) 
can be obtained if we consider a classical sequence {~rr}r~ of  functions 
~r : R" ~ R such that 

(i) 7r, ~ C°(R~); 
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(ii) 7r~(x)=OC~xER; 
(iii) "rrr(x)>OC=>x~R; 
(iv) ~r~÷~(x)> re(x) ,  Vx~  R; 
(v) lim~_,+~ "rrr(X) = +oo, Vx ~ R. 

Then, we can define w(u, v; ~) = u -  7rL~j(v), taking into account that the 
class {~-~} must realize the continuity of  w. 3 We observe that such a family 
belongs to class W2. 

The study of  lim sup,o-,+~ a(oJ) gives us a complete outline. In fact, 
we can prove the following theorem. 

Theorem 3.3. Let us suppose that X is compact ,  that Ft = ~+, and that 
the functions w(u, v; oJ) satisfy the following properties: 

(a) {(u, v)~Rl+m: l i m s u p , ~ + ~  w(u, v; w) - ->0}=~4 ;  
(b) lim supo~_,+o~ w(0, v; o9)=0, if v - 0 ;  
(c) limsup,o~+~w(u,O;~)=O, if u>-O. 
Then, if  lira s u p , ~  o~(w)> 0, ~ is not a minimum point for (1). 

P r o o f .  I f  

lira sup c~ (o9) = ff > O, 

for every e >  O, e<< 1, there exists a sequence { w r } ~ ,  with 

lira o)r = + o o ,  
r ~ q - c o  

such that 

O< c~- E-<- a(wr)  ~ ~ + E. 

Because of  the definition of  a(oJ), 

Vr, 3xr~X:  O < 5 - 2 e < w ( f ( x r ) , g ( x r ) ;  ~or)-<~+2e. 

Let Y be a cluster point of  the sequence { x r } ~ ;  since X is compact ,  Y c X;  
and let us suppose that {Xrk}k~ is a subsequence of {x~},.~v such that 

lira xr~ --- 97; 
k ~ + e c ~  

since w is continuous, we have that 

0<~-2e_< . .  lim w(f(:~),g(~); ~o)-<~+2e;  

3 [w] denotes the lower integer part of w, namely the maximum integer less than or equal to w. 
4 ~e denotes the closure of the set Yg. 
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that is, 

3~, Vw>-ff): O<ff-3~<-w(f(:~),g(:~); w)---ff+3e. 

Now, thanks to (a), we have only three possible cases: 
(i) f(Y) = 0 and g(Y)-> 0; in this case, assumption (b) is violated; 
(ii) f()?)-> 0 and g()?)= 0; in this case, assumption (c) ,_'s violated; 
(iii) f(Y) > 0 and g(Y) -> 0; in this case, ~ is not optimal. So, we have 

the thesis. [] 

Remark 3.4. Assumption (a) of Theorem 3.3 is verified, for example, 
by all the families of weak separation functions w(u, v; w) such that 

Vo)1->o92, lev_>o w(u, v; wl)___lev_>o w(u, v; w2) 

and 

(-] {lev_>0 w(u, v; w)}--- ~. 

Example 3.2. We want to show that Theorem 3.3 does not hold if one 
of the assumptions (a), (b), (c) is not true. 

(i) Let us consider =-Ixl, g(x)= 1, x - - R ,  x = 0 ,  and 

w(u, v; oJ)=~ wu+v' if u-<O, 

[.(1/o~)u+v, i f u - O .  

It is obvious that lira supo~+o~ (oJ) = 1 and that X is optimal, but assumption 
(b) is not verified. 

(ii) Let us consider ~b(x)=x, g(x )=x(1-x ) ,  if=O, X = R ,  and 

w(u, v; w ) = {  wu+v '  i f u < O ,  

u+wv, if u_>0. 

It is obvious that lim sup~,_~+~ a (o9) = 1 and that g is optimal, but assumption 
(c) is not verified. 

(iii) Let us consider 4)(x) = x, g(x) -= 1, £ = 0, X = (0, +c~), and 

w(u,v;w)={u+v,  i f u < O ,  
u+wv, ifu>-O. 

It is obvious that lira supo~ ~+o~ a (oJ) > 0 and that ~ is optimal, but assumption 
(a) is not verified. 

Remark 3.5. With the position F =  (f, g), the optimality for (1) is 
obviously equivalent to the impossibility of the generalized system 

F(x) ~ ~ ,  x ~ X, (5) 
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which has been studied in Ref. 1. Then, a possible idea for generalizing the 
concept of  penalty method is to conceive the penalization of  a generalized 
system. In particular, given ff : R ~ x ~ -~ N, Yg C N ~, F :  X C_ ~" ~ ~ ~, assuming 
that ff is a generalized weak separation function in the sense that 
{h ~R~: v?(h) > 0}_~ Yg, and defining 

c~(co) & sup u3(F(x); co), 
x E X  

we find the following proposition. 

Proposition 3.1. If  l iminf~_,+~8(co)>0,  then the system (5) is 
impossible. 

Proof. Let us suppose, ab absurdo, that there exists ~E X such that 
F (£)  ~ Y(; hence, u3(F(~); w) > 0, for every co ~ ~, and supx~x ~ ( F ( x ) ;  co) > 
0, for every co ~ N; therefore, 

lira inf a(co) ->0. [~ 
co  ~ ,  + e z )  

4. Interior Penalty Method 

Let us suppose in the rest of this section that the family w(u, v; co) is 
a strong separation family, that w(u, v; co) is continuous, and that f~ = E+. 

Remark 4,1. In this case, ~(w) can also be negative. 
Let us prove the following proposition. 

Proposition 4.1. I f  there exists co such that a (co)>  0, then ~ is not 
optimal. 

Proof. The assumption means that there exists ~ ~ X such that w(f (£) ,  
g(~); w) > O, and hence ( f (£ ) ,  g(£)) ~ ~. The thesis follows. D 

Moreover, the following theorem holds. 

Theorem 4.1. Let us suppose that the functions w(u, v; co) satisfy the 
following properties: 

(a) V(a, ~)~in t  2¢, we have that 

Vos, 3co - o5: (~, ~) ~ lev>0 w(u, v; co); 

(b) tim sup,o_,+o~ w(u, 0; co) = 0, if u - 0. 
Then, if lira sup~oo+~ a(co)<0, ~ is global optimum for (1). 
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Proof. Let us suppose, ab absurdo,  that ~ is not optimal. Then, there 
exist 5~ X such that (t~, ~ )&(f (5 ) ,  g (5 ) )e  W. Thus, we have only two 
possible situations: 

(i) g ( 5 ) > 0 ;  (ii) g(:~)=0. 

If  (i) holds, then (~, ~)~ int ~ and hence w(t~, ~; to)> 0 frequently s when 
to . +o0 because of  assumption (a), and consequently lira sup~.+oo a (w) _> 0; 
if (ii) holds, then from a(w)  _ w(u ,  0; to), we deduce that 

lira sup a(to)-> lira sup w(t~, 0; to) =0,  

where the last equality derives from assumption (b). [] 

Example 4.1. Let us show by means of two examples that, without 
assumptions (a) and (b), Theorem 4.1 does not hold. 

(i) Let us suppose that u > 0 ,  v > 0 ,  w ( u , v ; t o ) = u v - 1 ,  g = 1 / 2 ,  
&(x)=x ,  g ( x ) = x .  We see that limsupo~.+ooa(w)<:0 and that g is not 
optimal, but assumption (a) is not verified. 

(ii) Let us suppose that u > 0 ,  v > 0 ,  w ( u , v ; t o ) = t o u v - 1 ,  g = l ,  
qS(x)=x 2, g ( x ) = - O .  We see that limsup~.+o~ a(~o)<0 and that g is not 
optimal, but assumption (b) is not verified. 

Now, we analyze the case in which 

lira sup a(to) = 0. 

It is useful to define the following function6: 

~(e)  ~ lim sup ( sup  w ( f ( x ) ,  g ( x ) +  g; t o ) ) ,  

where _~ = ( e , . . . ,  e) ~ ~" and e c R. Then, the following theorem holds. 

Theorem 4,2. Let us suppose that limsupo~_~+~a(to)=0 and that 
assumption (a) of Theorem 4.1 holds and that the following property is true: 

3 g > 0 :  6(g) = 0, Vg c [0,_~]. (6) 

Then, £ is a minimum point of (1). 

Proof. Let us suppose, ab absurdo,  that £ is not optimal. Then, there 
exists £ ~ R such that (t~, 6) & (f(£) ,  g(£)) ~ W. Two cases are possible: 

(i) ( ~ , ~ ) ~ ;  (ii) ( a , t ; ) ~ / ~ .  

5 In the sense that Va3, 3w_> o3: w(u, v; w)>0. 
61f a, b ~ W ~, a + b means ( a~ + b~, . . , , a~ + b,,). 
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In case (i), because of assumption (a), we have a ( w ) -  > k > 0  frequently 7 
when o~ ~ +o% and consequently 

lim sup a(o~) > 0, 

and this is against the hypothesis. In case (ii), we can consider (if, g+  7), 
where r/ is a vector which is zero in the components where ~ > 0  and 
otherwise is g/2. Now, (~, g+  ~ ) c  Y~, and we can conclude analogously 
after using (6). D 

Remark 4.2. Let us suppose that 

lira sup c~ (oJ) = 0 
co---> q - c o  

and that condition (6) does not hold, but condition (a) of Theorem 4.t 
holds. The idea for generalizing Theorem 4.2 might consist in supposing 
the existence of a function E :R" . .~m with the following properties: 

(a) lim/ixli~+~ E(x )=O;  
(b) lim s u p ~ + ~  [ sup~× w( f ( x ) ,  g ( x ) + E ( x ) ;  o.,)] =0.  

The penalty scheme of Sections 3 and 4 represents a theoretical approach, 
in the sense that every time we have a particular problem we must choose 
our class of separation functions. A possibility in this sense will be exploited 
in the next section. Nevertheless, we want to observe that our scheme is in 
the spirit of penalty methods, because we study an unconstrained problem 
instead of the constrained one. 

5. Convergence of Penalized Optima 

Now, we wilt study a particular family of weak separation functions, 
and we will obtain, directly from Theorem 3.1, a result ensuring us that the 
limit points of the optimal solutions of the penalized problem are optimal 
for (1). So doing, we show the first possibility to apply the theoretical 
scheme of  Sections 3 and 4 to have a result useful from the computational 
viewpoint. 

Let us suppose in the rest of the section that 

w( u, v; r) ~ u - ~r(v; r), 

with ~r:R" x N ~  (i.e., f~ =N) satisfying the following properties: 

zr(-; r)~ C°(Nm), VreN,  (7a) 

7r(v; r )=0 ,  iff v>--O, (7b) 

or(v; r) ~0 ,  Vv, Vr, (7c) 
r l im zr(v; r )=+oo,  Vv~:0. (7d) 

7 See Footnote 5. 



150 JOTA: VOL. 64, NO. 1, JANUARY 1990 

We want to observe that assumptions (7) are just those of  the well- 
known Courant  theorem. The following theorem ensures that such a theorem 
is now a consequence of  Theorem 3.1, because the family satisfying (7) 
belongs to W~. 

Theorem 5.1. Let us suppose that assumptions (7) hold and also that 
there exists a sequence {Xr}r~ of  global maximum points of  the problems 
(2). Then, every limit point o f  the sequence {x~}r~ is a global minimum 
point for  problem (1). 

Proof. Let x ° be a cluster point of  {x~}r~N, and let us suppose that 
X r "  X ° (otherwise, we can consider a subsequence). It is well known (see 
Ref. 2) that x°6  R; therefore, we can consider 

a(r) = w(qb(x °) - 49(x~), g(x~); r) = th(x °) - ~b (x~) - 7r(g(xr); r). 

Let us observe that our class of  penalty functions belongs to WI and then 
we can apply Theorem 3.1, 

0 -  < lira sup a ( r )  = lim sup [~b(x °) - ~b (xr) - ~r(g(xr); r)] -- 0, 
r --~ -1-oo r ~ - b o o  

where the last equality comes from the continuity of  6, g, and ~r. Taking 
into account Theorem 3.1, we achieve the desired thesis. [] 

6. Comparison with Classical Results 

We want to briefly observe that some known results and som:~ known 
classes of  penalty functions are enclosed in that satisfying conditions (7) 
and then they can be derived from our results. We quote Theorem 1 of  Ref. 
6, p. 196: 

"Let H : R  ~ ~ be a penalty exterior function for problem (1), in the 
sense that H(x) = ~7'=1 h(gi(x)), with h : R ~ R such that h(y) = 0, if y -> 0, 
and h ( y ) = + o e ,  if y < 0 .  Let us suppose that H verifies the following 
conditions: 

(i) H(x) >- O, Vx, 
(ii) H(x)=OC:>xcX={xlgi(x)<-O, Vi}, 
(iii) H is continuous. 

Moreover,  let us suppose that f is continuous, X is closed, and that one 
of  the following two conditions is verified: 

(a) f (x )~+oe ,  when ttxll~+eo, 
(b) X is bounded and H ( x ) ~  +oe when I[xll-~ +oe. 
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Then, when r-~ +co, we have that the sequence 

f f ( r )~  inf { f ( x ) +  rH(x)}  
X E ~  n 

admits a cluster point that is optimum for (1) and H(Y(r))-- ,  0." 
We observe that conditions (7) are verified, because (iii)¢:>(7a), 

(ii)¢:>(7b), (i)¢:>(7c), ( i ) ~ ( 7 d ) ,  and then we can apply our Theorem 5.I. 
Then, Theorem 1 of Ref. 6 can be derived from our results. Analogously, 
this happens for the penalty function P(x, r) of  Ref. 7, for the augmented 
Lagrangian of  Ref. 8 (p. 96), for the nonditterentiable exact penalty function 
P of Ref. 8 (p, 180), for the penalty class of  Ref. 9, for that of Ref. 10, 
(p. 90) and Ref. 10 (p. 93), and for many others in the literature. 

7. Conclusions 

In this paper, we have shown that the theory of  the penalty methods 
can be studied in a more general way by means of  the analysis of  the image 
problem (Ref. 1). We can derive the classical results and the classical penalty 
function families. Naturally, the absolute generality of the separation func- 
tions, which give us the theoretical scheme of Sections 2, 3, 4 with the 
relative results, does not permit us to obtain theoretical and numerical 
results on the convergence of minima. But the natural specification of the 
family w, which has been treated in Section 5, shows how it is possible to 
generalize some classical results, like the Courant  theorem, also in the field 
of  minima convergence. 

Furthermore, we want to observe that our results can be extended, with 
obvious changes, to extremum constrained problems in spaces more general 
than ~ ,  such as the complete metric spaces. 
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